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This work considers serial production systems with several process steps and a possible quality control

at final step. It deals with the problem of optimizing planned lead time when the real lead time for

each process is stochastic and the finished product quality is uncertain unless it is inspected. Three

analytical models are proposed aiming to minimize the expected total cost, which is composed of the

inventory and backlogging costs for the finished product and quality costs associated with inspection

and non-conformities. These models correspond to three quality control policies: i) without quality con-

trol, ii) with quality control but without taking into account the inspection duration when optimizing

the planned lead time and iii) with quality control and with considering the inspection duration when

optimizing the planned lead time. Based on the results, it can be highlighted the economic advantage of

integrating quality control at the early stage of supply and production planning decisions for some cost

parameters conditions. The robustness of the proposed models is also analyzed regarding the variance of

the probability distributions of the lead times.

Keywords: Production planning; Cycle time uncertainty; Imperfect linear production process; Quality

control.

1. Introduction

Uncertainty is one of the most challenging aspects in supply chain (SC) design and planning, and

operations management. It is attracting more and more researches because of the growing need of

efficient, sustainable, agile and resilient systems and organisations at different stages of the whole

supply chain of products and services. In fact, the challenge is how to deal with uncertainty in

order to mitigate its impacts on the performances of the supply chain. The difficulties caused to
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companies lie in the decision making concerning several activities such as production planning,

quality control, inventory regulation, and demand satisfaction (Tang 1990).

Several research works have focused on identifying the sources and how to manage uncertainty and

risks in SC. In the literature review of Simangunsong, Hendry, and Stevenson (2012), 14 sources of

uncertainty have been reported and divided into three groups: i) internal organisation uncertainty;

ii) internal supply-chain uncertainty and iii) external uncertainties. Managing uncertainty in SC

consists of defining approaches and techniques to model and to decide appropriate actions aiming

to reduce and/or cope with uncertainty. Moreover, new contexts and sources of uncertainty en-

countered may constrain companies to review their SC redesign strategies to be adopted (Van der

Vorst and Beulens 2002).

In pull- and hybrid pull-push-based SC systems, such as Engineer-To-Order (ETO), Make-To-

Order (MTO) and Assemble-To-Order (ATO), associated with Just-In-Time (JIT) manufacturing,

the production process of a product begins only after a confirmed customer order is received. This

enables firms to launch production based on customer orders with a specific quantity and due

date, and, consequently, inventory of finished products can be reduced to zero. Nevertheless, the

effectiveness of this kind of environment can be considerably affected by the variation of some

inherently-uncertain parameters, often considered as deterministic, whose effects may propagate

and intensify along the subsequent echelons of the SC. For instance, the production process can

be interrupted by a machine breakdown, some components replenishment lead times can be sig-

nificantly longer than planned ones, or a quality issue can arise which lead to additional time to

inspect/rework/reproduce impacted semi-finished or finished products. Therefore, the occurrence

of this kind of events may delay the delivery of finished products and increase production costs.

In this paper, we consider a serial production system in ETO environment where a tailored finished

product fulfil a specific customer request and pass through successive processing steps. We precise

that all process steps (work-stations, assembly units...) are considered independent enterprises (or

partners) where we have no control on internal decisions to coordinate activities inside them. All

what we know is an estimation of the lead time of each partner. Consequently, we are responsible

for providing the costumer with good quality products and respecting the delivery date. During

the contract negotiation step, (1) a client orders a quantity of a specific product. Then, (2) we

design the corresponding successive processing steps, (3) we estimate the total lead time, (4) we

negotiate (i) the planned due date for client delivery, (ii) the unit non-conformity cost and (iii)

the unit backlogging cost. According to the negotiated parameters and using our approach, we

can decide the date when the first process starts and which quality control policy to adopt. We

precise that, at our decision level, only the distribution of probability of each partner’s lead time
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is known. It is obtained with statistics or estimated by partner himself, and includes all aspects

such as assembly durations, transportation, waiting times, etc. This assumption is often used in

literature ((May, Atkinson, and Ferrer 2017), (Kuang, Hu, and Ko 2016), (Ding, Benyoucef, and

Xie 2005), (Petrovic, Roy, and Petrovic 1998)).

This paper is a revised and extended version of (Ben-Ammar, Bettayeb, and Dolgui 2017) that

aims to optimize planned lead times while minimising the expected total cost of a linear production

process, where the lead times between process steps are stochastic and the finished product quality

is uncertain. Three mathematical models were developed and tested to evaluate different quality

control policies. In this extended version, the mathematical models are refined and the experiments

are extended by including additional analysis of the effects of several parameters and by providing

an analysis of robustness regarding the variation of lead times’ variance.

The rest of the paper is organized as follows. In section 2, and without being exhaustive on this

topic, we will focus on some relevant works related to linear supply and production planning inte-

grating quality control. The problem description and the general assumptions are given in section 3.

The forth section details the analytical models corresponding to three different quality control poli-

cies and explains the associated optimization approach. Section 5 presents the experimental results,

compares the economical performances of each quality policy and analysis the effects of some pa-

rameters. The paper ends by giving the conclusion and the perspectives of this work.

2. Related works

One of the first study of lead time uncertainty is presented in Whybark and Williams (1976). A

simulation model is developed to suggest that safety lead times may perform better than safety

stocks in a multi-level serial production system when the production and replenishment times

are random. Earlier, a one-stage and one-period planning model under stochastic processing time

was proposed by Weeks (1981). Author considered tardiness and holding costs and proved that

this problem is equivalent to the standard ‘Newsboy’ problem. A few years later, Yano (1987a)

proposed an analytical approach to model a two-stage systems and to determine the planned lead

times while minimizing holding and tardiness costs. She assumed a Lot-For-Lot policy, a stochastic

procurement and processing times, and a deterministic demand. This model has been extended in

Yano (1987b) to model three-stage systems and to integrate a replenishment cost. The objective

function was to minimize the expected total cost, which is composed of a holding and tardiness costs

at each stage, and a tardiness cost for the finished product. The author underlined that, for more

than three process steps, modelling the problem seemed to be difficult. It is only after many year
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that Elhafsi (2002) overcame this barrier by proposing an analytical model based on recursivity.

Author proved the convexity of the objective function and proposed a heuristic based on dynamic

programming to find approximate solutions of good quality in an acceptable computation time.

In inventory control process, Kim et al. (2004) consider a one product, a one-period planning

and an Erlang-distributed lead times to optimize the expected total cost, which is composed of

ordering, holding and tardiness costs. Based on the analytical formulation, approximate solutions

are proposed and compared to the optimal ones for the case where the prior information on the

lead time distribution is available, and another case where no information exists. For uncertain lead

times, authors proved the effectiveness and the robustness of the proposed method and specified how

costs could be reduced. Two years later, the same problem and the bull-whip effect was studied by

Kim et al. (2006) when both demand and lead times are stochastic. By using an analytical method

to model a multi-stage supply chain, author proved that prior information on lead times variability

could be very helpful to control the bull-whip effect.

As reported by (Jansen et al. 2018; Dolgui et al. 2013), the literature contains few publications

considering serial supply and production planning under uncertain lead times (see Table 1). The

most of existing work investigates the uncertainty of lead time for one item or for assembly systems.

Readers can refer to (Dolgui et al. 2013; Dolgui and Prodhon 2007; Guide and Srivastava 2000)

where more complete literature reviews are provided concerning supply planning dealing with

uncertainty on lead times. For other sources of uncertainty (demand, capacity, cost, etc.) readers

can refer to the surveys of Aloulou, Dolgui, and Kovalyov (2014) and Dı́az-Madroñero, Mula, and

Peidro (2014).

On another hand, in the last few decades, there has been a growing interest in integrating quality

control in supply and production planning. In fact, the quality should be rigorously checked before

delivering the finished product. In this way, the company ensures customer satisfaction and avoid

excessive product returns. In this regard, Bettayeb, Bassetto, and Sahnoun (2014) proposed an

exposure-based quality control planning approach to prevent excessive scraps in semiconductor

manufacturing under limited quality control capacity constraint. Moreover, it is also necessary

to find a good compromise between the inspection costs and the cost of non-conformities. In

this regard, Colledani and T. (2006) investigate the interaction between quality control system

and production system and show how they impact each others performances. They underline the

necessity of jointly considering quality and logistics requirements while designing a production

system. The work of Rosenblatt and Lee (1986) studies the relationship and the economic impact

of the interaction between production planning, quality of products and the deterioration of the

production process. The considered production process has two possible states in which it generates
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Table 1.: Linear production systems under uncertainty of lead times
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Comments

1

Weeks (1981) CH ; CT x x Newsboy Formulae; Con-
tinuous lead times.

Matsuura and Tsubone (1993); Mat-
suura, Tsubone, and Kanezashi (1996)

CRV x x MTO environment; Queu-
ing models.

Buzacott and Shanthikumar (1994) CH ; CT x x Stochastic modelling;
Safety stock versus safety
time

Kim et al. (2004) CH ; CT x x Erlang-distributed lead
times; (s,Q) inventory
model; approximate
solutions

Kim et al. (2006) BWE x x Normal-distributed lead
time; stochastic demand;
(R,S) inventory model

2-3 Yano (1987a,b) CH ; CT x x Analytical approach, con-
tinuous lead times

m

Gong, de Kok, and Ding (1994) CH ; CT x x Holding cost for each pro-
cess; tardiness cost for the
finished product

Elhafsi (2002) CH ; CT ; CE x x Planned start time for
each process; recursive re-
lations

This paper CH ; CT ; CQ x x Newsboy Formula; dis-
crete lead times; quality
control

CT : Tardiness cost, CH : Holding cost, CE : Earliness cost, CQ: Quality cost, CRV : Capacity Requirements
variations, BWE: Bull-whip effect

different rates of defectives. The objective is to determine the economic production quantities of

this kind of production process while minimizing the total annual cost. The optimal production run

time is determined for two deterioration models and multi-state deterioration. Recently, Bettayeb,

Brahimi, and Lemoine (2017) proposed an integrated model for single item lot sizing and quality

control planning. The objective is to minimize the total cost while ensuring a given level of outgoing

quality. The total cost is composed of holding, setup, production and inspection costs.

We note also that there are other interesting works on the trade-off between planned lead times

and quality issues (number of rejects) in (Dolgui, Levin, and Louly 2005) and (Schemeleva,

Delorme, and Dolgui 2018), but the decision variables in that works were the lot sizes and their

sequencing order.
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As it is shown in Table 1, no publication has been found in the literature that takes into account

both uncertainties of lead times and finished product quality in linear production systems. For such

a system, the research question is about how to efficiently coordinate production planning with

quality control decisions. In this work, we seek to fulfill this research gap by proposing an integrated

model of supply planning optimization and quality control of imperfect linear production systems

with stochastic lead times.

3. Problem description and formulation

The problem under consideration in this paper concerns the optimization of production planning of

an imperfect linear production process where the lead times of the production steps are stochastic

and quality control can be used to decrease non-quality costs. The objective is to evaluate the effect

of quality issues on the total cost of such a system and to analyse the opportunity of integrating

quality control activities in the optimal release date calculation. Before detailing the problem and

general assumptions, the following are the notations that will be used in next sections. All costs

are expressed in monetary unit.

Parameters

CP Production cost

ci Unit inspection cost

cnc Unit non-conformity cost

CQ Quality cost: the sum of inspection and non-conformity costs

SR Sampling rate, i.e. the proportion of products inspected or the probability that a

given product is being inspected

ch Unit inventory holding cost per time unit

ct Unit tardiness penalty per time unit

T Due date

q0 Proportion of non-conforming finished products generated by the whole production

process.
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m Number of production process operations

Lj Lead time of operation j ∈ {1, 2, ...,m}, it is a discrete random variable which varies

between lj and uj

L Total lead time, i.e. L =
∑m

j=1 Lj

U Longest possible duration of total lead time, i.e. U =
∑m

j=1 uj

V Shortest possible duration of total lead time, i.e. V =
∑m

j=1 lj

ti Unit inspection duration

Decision variables

X Order release date

Functions

Pr[[A]] Probability of A

E[[A]] Expected value of A

Fi(.) Convolution cumulative distribution function of
∑m

j=i Lj ∀i ∈ {1, ...,m}

z+ max(z, T )

z− min(z, T )

Figure 1.: Linear production process

The considered production system is composed of m process operations (Fig.1), which are consec-

utively executed to obtain the finished product FP . Without loss of generality, we assume that:

• The demand is known and equal to one;

• The lead time Lj of a process step j is an independent discrete random variable with known

probability distribution and finite upper value. It includes capacity constraints, machine

breakdowns, stochastic variations on operation processing times, etc.;
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• No decision is possible on the start date for intermediate process steps;

• The average outgoing quality level q0, before the final inspection of the finished product, is

known. It is the result of the succession of different and independent quality control policies

applied within each process step;

• A final error-free inspection of the finished product (e.g. functional testing) may be done

after the last process step. It is used to control/adjust the quality level delivered to the final

customer;

• The rework of non-conforming finished product is instantaneous and cost-free, i.e. rework

duration and cost are neglected compared to those of inspection.

The product starts to be processed at time X, to be decided, and the fished product is available

at TFP = X+L, after accumulating the m random lead times (L = L1 +L2 + · · ·+Lm). Note that

TFP is a random variable because of the randomness of L. Apart from the processing cost (omitted

here), and depending on the due date and the effective delivery date of the finished product, the

generated production cost is either proportional to the holding cost, if the product is finished before

the due date, or proportional to the tardiness penalty, if it is available after the due date, or equal

to zero, if it is finished just in time.

4. Analytical models and optimization approach

This section contains three models, each of them corresponds to a different policy regarding the

quality control (see Figure 2). In the first policy, no quality control is performed by the producer

who assumes a penalty for each non-conforming product delivered to the customer. In the second

policy, the quality control is performed at the end of production process but only the lead times

are taken into account in the optimization of the order release date. In the last policy, the quality

control and the lead time are both taken into account when optimizing the order release date.

(a) Policy π0: without quality control (b) Policies π1&π2: with quality control performed by the pro-
ducer

Figure 2.: Quality control policies
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4.1 Policy (π0): No quality control

This policy corresponds to the case where no quality control is performed during the production

process. However, for each non-conforming product delivered to the customer, the producer pays

a non-conformity penalty. The total cost is composed of the costs of production (C0
P ) and quality

(C0
Q):

TC0(X,L) = C0
P + C0

Q (1)

where C0
P is equal to the sum of the inventory holding cost (CH ) and the tardiness cost (CT ),

which are given below:

• if the finished product is available before T , it will be stored. The corresponding inventory

holding cost CH is equal to:

CH = ch × (T − T−FP ) (2)

• if the finished products are delivered after the due date T , there will be a stockout. Then,

tardiness cost is equal to:

CT = ct × (T+
FP − T ) (3)

The cost of quality, in this case, corresponds to non-conformity penalty, which is equal to:

C0
Q = q0 × cnc (4)

The total cost TC0(X,L) is a discrete random variable because of the randomness of the total lead

time L. The latter being the sum of the random variables Lj , each of which varies between lj and

uj , the total cost has a finite number of possible values.

Property 1. The expression of the expected value of the total cost of policy π0 is:

E[[TC0(X,L)]] = ch ×
T−1−X∑
s=V

F1(s) + ct ×

(
X + U − T −

U−1∑
s=T−X

F1(s)

)
+ q0 × cnc (5)

where T − U ≤ X ≤ T − V and Fi is the convolution cumulative distribution function of Li +

9
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Li+1 + · · ·+ Lm, which is defined as below:

Fi(s) =


Pr[[Lm ≤ s]] if i = m

∑
vi+wi=s
vi+wi∈N

Pr[[Li = vi]]× Fi+1(wi) ∀i = 1, . . . ,m− 1

Proof . From expressions (1), (2) and (3), we have:

E[[TC0(X,L)]] = E[[C0
P (X,L)]] + q0 × cnc = ch ×

(
T − E[[T−FP ]]

)
+ ct ×

(
E[[T+

FP ]]− T
)

+ q0 × cnc

Let Γ be a positive and finite discrete random variable and CDFΓ its cumulative distribution func-

tion. The expression of Γ’s expected value can be written in the following form:

E[[Γ]] =
∑
s≥0

(1− Pr[[Γ ≤ s]]) =
∑
s≥0

(1− CDFΓ(s)) (6)

Thus, knowing that X + L does not depend on T , we have:

E[[T+
FP ]] =

∑
s≥0

(1− Pr[[T ≤ s]]× Pr[[TFP ≤ s]])

Moreover, knowing that Pr[[T ≤ s]] = 0 ∀s ∈ [0, T [ and Pr[[T ≤ s]] = 1 ∀s ≥ T , then:

E[[T+
FP ]] = T +

∑
s≥T

(1− Pr[[TFP ≤ s]]) = T +
∑
s≥T

(1− F1(s−X))

The finished product is available at period U +X at latest. Thus, T+
FP varies between T and X+U .

Then:

E[[T+
FP ]] = U +X −

U−1∑
s=T−X

F1(s) (7)

In the same way, using the fact that the finished product can never be available before period X+V ,

i.e. T−FP ∈ [X + V, T ], it can be easily proved that:

E[[T−FP ]] = T −
T−1−X∑
s=V

F1(s) (8)

10
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Then, equation (5) can be deduced.�

The expected total cost expressed in (5) constitutes a non-linear objective function to be minimized.

An exact method based on the well-known Newsboy formula is used to solve this problem in

polynomial time. This method is detailed in the next proposition and an illustrative example is

given in section 5.1

Proposition 1. The method based on Newsboy formula gives the optimal order release date of the

reference case X∗0 which should satisfy the following optimality condition:

F1(T −X∗0 − 1) ≤ ct
ch + ct

≤ F1(T −X∗0 ) (9)

were F1 is the convolution cumulative distribution function of the total lead time and ct and ch are

the unit time tardiness cost and the unit time holding cost, respectively.

Proof . See (Ben-Ammar et al. 2014) or (Ben-Ammar, A., and Wu 2018).�

4.2 Policy 1 (π1): Separated afterwards quality control planning

With this policy, we suppose that one quality inspection is performed just after the last pro-

duction operation. A proportion of finished products is randomly sampled and inspected. The

non-conforming products detected by inspection are repaired with no-extra cost. Thus, the total

cost is composed of production and quality costs, denoted by C1
P and C1

Q, respectively.

TC1(X,L, SR) = C1
P + C1

Q (10)

Note that, in this case, the actual production cost C1
P is equal to C0∗

P −∆h + ∆t, where:

• C0∗
P is the optimal planned production cost associated to optimal order release date X∗0 ;

• ∆h is the holding cost reduction corresponding to the time the product is being inspected:

∆h = ch ×max (min (I;T − TFP ) ; 0) (11)

where I = ti×SR is the inspection duration which corresponds to the quality control strategy

in place;

11
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• ∆t is the tardiness cost increase due to the product inspection:

∆t = ct × (I −max (min (I;T − TFP ) ; 0)) (12)

The quality cost C1
Q is composed of the cost of inspection and the penalty paid by the producer

to the customer for non-conforming units:

C1
Q = q0 × (1− SR)× cnc + SR× ci

As in the previous case, the total cost is also a discrete random variable varying within a finite

range. Its expected value is derived in the following property.

Property 2. The expression of the expected value of the total cost of policy π1 is:

E[[TC1(X∗0 , L, SR)]] =E[[TC0(X∗0 , L)]]− (ch + ct)×
T−X∗

0−1∑
s=T−X∗

0−I
F1(s)− SR× (cnc × q0 − ci − ct × ti)

Proof . E[[TC0(X∗0 , L)]] can be easily calculated using equation (5) after calculating X∗0 using equa-

tion (9). From equations (11) and (12), it can be easily deduced that:

E[[∆h −∆t]] = (ct + ch)× E[[max(min(I;T −X∗0 − L); 0)]]− ct × I

Knowing that max(min(I;T − X∗0 − L); 0) is a positive and finite discrete random variable and

using equation (6), we get:

E[[max(min(I;T −X∗0 − L); 0))]] =
∑
s≥0

(1− Pr[[max(min(I;T −X∗0 − L); 0) ≤ s]])

Knowing that s ≥ 0, and I and T −X∗0 − L are independent, so:

Pr[[max(min(I;T −X∗0 − L); 0) ≤ s]]) = Pr[[I > s]]× Pr[[T −X∗0 − L > s]]

12
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then:

E[[max(min(I;T −X∗0 − L); 0))]] =

I−1∑
s=0

Pr[[L ≤ T −X∗0 − s− 1]]

=

I−1∑
s=0

F1(T − s− 1−X∗0 )

=

I+X∗
0−T∑

s=X∗
0−T+1

F1(−s)

=

T−X∗
0−1∑

s=T−X∗
0−I

F1(s)

Then, the targeted expression of E[[TC1(X∗0 , L, SR)]] is immediate.�

4.3 Policy 2 (π2): Integrated production planning and quality control

In this case, we suppose the same process as in policy π1 except that the duration of quality control

of the finished product is taking into account when optimizing the order release date. Similarly to

policy π1 , the total cost is composed of production and quality costs as follows:

TC2(X,L, SR) = C2
P + C2

Q (13)

where:

C2
P = [ch × (T −min(T ;TFP + I)) + ct × (max(T ;TFP + I)− T )]

C2
Q = q0 × (1− SR)× cnc + SR× ci)

TC2(X,L, SR) is also discrete random variable having a finite range of possible values. Thus, the

mathematical expectation of the total cost can be determined, as given in if the following property.

Property 3. The expression of the expected value of the total cost of Policy 2 is:

E[[TC2(X,L, SR)]] =ch ×

(
T−X−I−1∑

s=V

F1(s)

)
+ ct ×

(
U +X − T −

U−1∑
s=T−X−I

F1(s)

)

+ q0 × (1− SR)× cnc + SR× ci (14)

13
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Proof . From expressions (7) and (8), and by replacing X by X + I, we can deduce:

E[[(TFP + I)+]] = U +X + I −
U−1∑

s=T−X−I
F1(s)

and in the same way

E[[(TFP + I)−]] = T −
T−X−I−1∑

s=V

F1(s)�

The expected total cost expressed in (14) is also a non-linear objective function to be minimized

and for which the Newsboy formula is used to solve it in polynomial time. This method is detailed

in the next proposition and an illustrative example is given in section 5.1

Proposition 2. The method based on Newsboy formula gives the following optimality condition

for the order release date X∗2 of Policy 2:

F1(T −X∗2 − I − 1) ≤ ct
ct + ch

≤ F1(T −X∗2 − I) (15)

where F1 is the convolution cumulative distribution function of the total lead time, I is the quality

inspection duration, and ct and ch are the unit time tardiness cost and the unit time holding cost,

respectively.

Proof . Same as the proof of Proposition 1.�

5. Numerical results and discussions

The proposed three policies described in Section 3 have been coded in C++. The experiments have

been carried out on a computer with 2.32 GHz Intel core i7 and 8 GB of RAM memory.

5.1 Numerical example

This example is given to illustrate the approach with m = 6, i.e. 6 production steps. The

proportion of defectives generated by the whole process is q0 = 0.05. The cost parameters are as

follows: ch = 1, ct = 10, ci = 0.1 and cnc = 10, and the sampling rate SR varies between 0 and 1.

The due date is known and fixed at T = 34, and the distributions of process steps’ lead times are

given in Figure 5.
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For all policies, the convolution cumulative distribution function is the same and is equal to:

F1(1) = ... = F1(12) = 0;F1(13) = 0.000108;F1(14) = 0.001836;F1(15) = 0.011088;F1(16) =

0.0383976;F1(17) = 0.0947814;F1(18) = 0.187245;F1(19) = 0.314841;F1(20) = 0.46686;F1(21) =

0.622675;F1(22) = 0.760313;F1(23) = 0.865462;F1(24) = 0.935485;F1(25) = 0, 974091;F1(26) =

0.990933;F1(27) = 0.996905;F1(28) = 0.999185;F1(29) = 0.999837;F1(30) = 0.99996;F1(31) =

0.999994;F1(32) = 1.

Using Propositions (1) and (2), optimal solutions for the three policies are found as follows:

• For policy π0, the optimal release date X∗0 is given by the proposition (1) and depends on ch

and ct. The optimality condition is: F1(23) = F1(34−X∗0 −1) ≤ 10/(1+10) ≤ F1(34−X∗0 ) =

F1(24). Thus, X∗0 = 10.

• For policy π1, X∗1 = X∗0 = 10.

• For policy π2, the optimal release date X∗2 is given by the proposition (2) and does not depend

only on ch and ct but also on SR. For example, for SR = 0.4, the optimality condition is:

F1(23) = F1(34−X∗2 − 4− 1) ≤ 10/(1 + 10) ≤ F1(34−X∗2 − 4) = F1(24). Thus, X∗2 = 6.

The results of this example for different values SR are summarized in Table 2. We note that

only the expected cost of Policy 1 (π1) and Policy 2 (π2) vary with SR. As can be seen

from this table, π2 dominates the others because it is at least as efficient as each them (when

SR = 0). It is also important to note that π1 and π2 allow the reduction of quality cost when

sampling rate increases which is the result of reducing non-conformity costs. However, the

total expected cost of π1 is always greater than π0’s one because they have the same optimised

order release date, and therefore an extra tardiness cost is generated by inspection only in policy π1.

Table 2.: Results of the numerical example

SR X∗0 = X∗1 ETC0∗ CQ0 ETC1∗ CQ1 X∗2 ETC2∗ CQ2

0 10 4.89969 0.5 4.89969 0.5 10 4.89969 0.5

0.2 10 4.89969 0.5 6.93616 0.42 8 4.81969 0.42

0.4 10 4.89969 0.5 14.8713 0.34 6 4.73969 0.34

0.6 10 4.89969 0.5 29.2683 0.26 4 4.65969 0.26

0.8 10 4.89969 0.5 47.7234 0.18 2 4.57969 0.18

1 10 4.89969 0.5 67.5012 0.1 0 4.49969 0.1

15



November 8, 2018 International Journal of Production Research IntegProdPlan&QuaCtrlOptimizationRevised

(a) L1 (b) L2 (c) L3

(d) L4 (e) L5 (f) L6

Figure 3.: Probability distributions of the lead times L1 to L6 of the numerical example

5.2 Comparison of the three policies

In this subsection, we compare the three quality control policies. We notice firstly that the difference

between the expected total costs E[[TC2(X∗2 , L, SR)]] and E[[TC0(X∗0 , L)]] is always equal to SR(ci−

q0cnc). From this, we can deduce analytically that π2 outperforms π0 when ci < q0cnc and vice-

versa. In other words, when the inspection cost is greater than the non-conformity cost of the

proportion of defectives, π0 is dominant, i.e. it is not profitable to make any quality control.

Figure 4 illustrates the evolution of the expected total cost of the three policies as function of the

number of process steps m for three combinations of inspection and non conformity cost rates: (a)

ρi = ci/ch = 0 & ρnc = cnc/ch = 20, (b) ρi = 10 & ρnc = 20 and (c) ρi = 10 & ρnc = 1000. The

other parameters are: q0 = 0.05, ti = 10, SR = 0.4 and ρt = ct/ch = 100. Sub-figures (a) and (c)

Sub-figure (b) illustrates the case when the policy π0 dominates the other two policies. We can

remark that when the number of process steps increases the gaps between the three policies tend

to be constant and that the gap between π1 and π2 tends to zero.

(a) ρi = 0 & ρnc = 20 (b) ρi = 10 & ρnc = 20 (c) ρi = 10 & ρnc = 1000

Figure 4.: Comparison of the three policies: ETC as function of m
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In order to go farther in the analyse of the relative performance of the three policies, we compare

them two-by-two according to their expected total costs. To do so, we use the following performance

criteria:

• The gap between policy π0 and policy π1:

GAP01(%) = 100× ETC0 − ETC1

ETC1

• The gap between policy π0 and policy π2:

GAP02(%) = 100× ETC0 − ETC2

ETC2

• The gap between policy π1 and policy π2:

GAP12(%) = 100× ETC1 − ETC2

ETC2

Figure 5, Figure 6 and Figure 7 show the variation of the gaps between the three policies as

function of the sampling rate and non conformity cost rate (ρnc = cnc/ch) for different values of

inspection cost rate (ρi = ci/ch). Firstly, it can be seen the trivial fact that, if non-conformity

penalty is negligible (ρnc ≤ 1), policy π0 outperforms both other policies π1 and π2, whatever are

the inspection cost and the sampling rate.

Figure 5 illustrates that GAP01 varies between -100% and 20%. When ρi is less than or equal

to 30, there exists a non-conformity cost for which the gap is maximum only for specific value

of sampling rate. This fact can be used to help decision maker regarding the inspection capacity

needed.

From Figure 6, it can bee seen that, for ρi ≤ 30, increasing the sampling rate improves the

performance of π2 compared to π0. In contrary, when inspection cost increases, assuming non-

conformity cost becomes better than doing inspection.

Figure 7 shows the evolution of the gap between policies π1 and π2 as function of the sampling

rate for different values of the non-conformity and inspection costs. It can been seen that π2 always

outperforms π1 whatever are the cost parameters and the sampling rate. In fact, GAP12(%) is

always positive and increases with the sampling rate. We remark also that this gap is globally less

important when the inspection cost increases: it becomes less than 7% when ρi = 1000, whatever

are the sampling rate and the non-conformity cost. It outlines the importance of integrating quality

control in supply and production planning.
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(a) ρi = 0.1 (b) ρi = 1 (c) ρi = 10

(d) ρi = 30 (e) ρi = 100 (f) ρi = 1000

Figure 5.: Performance of policy π0 compared to policy π1

(a) ρi = 0.1 (b) ρi = 1 (c) ρi = 10

(d) ρi = 30 (e) ρi = 100 (f) ρi = 1000

Figure 6.: Performance of policy π0 compared to policy π2

It can be concluded that even if it is clear that quality control is not always economically beneficial

when the cost of quality is much higher than the non-conformity penalties, companies may be

sometimes obliged to set up quality control (warranties, others usages of the information brought

by inspection, certification, etc). In this case it is proven that integrating the quality control into

the production planning is advisable to minimize the cost of production.
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(a) ρi = 0.1 (b) ρi = 1 (c) ρi = 10

(d) ρi = 30 (e) ρi = 100 (f) ρi = 1000

Figure 7.: Performance of policy π1 compared to policy π2

The previous results showed that, when the final inspection is mandatory to improve the quality

level of the final product delivered to the final customer, the final inspection should be considered

as a final process step when optimising the planned lead time. This is proved by the fact that

policy π2 always dominates policy π1. Moreover, policy π2 and policy π1 cover policy π0, because

the latter is a special case of the first ones when SR = 0. That is why, we focus only on policy π2

in the following experiments to analyse the effects of two parameters on the effectiveness and the

robustness of the proposed approach.

5.3 Impact of the number of process steps on policy 2

To analyse the performance of π2, we perform several experiments and variate the number of

process steps. For more than 30 process, the probability distribution of the delivery date of the

finished product tends to a Normal distribution. This well known phenomena, which is explained

theoretically by the central limit theorem, is illustrated in in Figure 8 where the number of process

steps (m) varies between 10 and 100. The lead time of each process varies between 3 and 7, and its

probability distribution is illustrated in the same figure. Computationally, our approach remains

efficient even if the total number of process steps is large. This is shown in Figure 9 which gives the

evolution of CPU times as function of m. It can be seen that the CPU time remains less than 14

seconds for a serial production process with 6000 steps, even if it is unlikely to have such a number

of process steps in practice.
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We note that, even if our method is an effective way to optimize the ETC of the production process

under uncertainty of lead time and quality control, the effect of lead time uncertainty increases

as function of the number of steps. In fact, even if the variances of steps’ lead times are low, the

more is number of process steps, the more is the variability of the delivery date. Therefore, the

occurrence of extreme values of the latter can lead to extremely high costs. The solution to this

problem is to cope with the sources of these uncertainties by trying to eliminate them as much as

possible.

T

Figure 8.: Effect of m on the probability distribution of the delivery date of policy π2 (X∗2 +L+ I)

Figure 9.: Effect of m on the CPU Time of policy π2

5.4 Robustness of policy 2

In order to analyse the effect of lead times variability on the robustness of Policy 2, we carried out

several experiments. We consider a system with m = 6 process steps having the same probability

distribution of their lead times (see Figure 10–(a)) and the following parameters: ch = 1, ρt ∈

{0.1, 1, 2, 5, 10, 30, 50, 100}, ρi = 0, ρnc = 20 and SR = 0.4. Then, we proceed by varying the

20



November 8, 2018 International Journal of Production Research IntegProdPlan&QuaCtrlOptimizationRevised

variance of process steps’ lead times (∆VAR) between -75% and 75% (Figure 10–(b) to –(g))

compared to the reference case (Figure 10–(a)) .

(a) fLj

(b) f∆VAR=−75%
Lj

(c) f∆VAR=−50%
Lj

(d) f∆VAR=−25%
Lj

(e) f∆VAR=+25%
Lj

(f) f∆VAR=+50%
Lj

(g) f∆VAR=+75%
Lj

Figure 10.: Probability distributions of the lead times Lj and the modified distributions corre-
sponding to different levels of ∆VAR

Figure 11 represents the probability distributions of the delivery date for different levels of variance

variation (∆VAR) for m = 6, while using the same order release date X∗2 optimised for the reference

case. From the zooming in at the right of the delivery date T , it can be seen that a positive variation

of ∆VAR leads to an increased probability of backlogging, and a decreased probability of positive

inventory level, and vice-versa.

Figure 12 shows the effect of the variation of the variance of lead times on the ETC as function of

the backlogging cost rate ρt, for a serial production system with m = 100 process steps. We firstly

notice that, for a relatively low variation of the variance of lead times (∆VAR = −25% and 25%),

the variation of ETC increases slightly with the backlogging cost rate ρt and remains at around

±10%. We also notice that, for an increased ρt, the variation of ETC is clearly more significant,

when ∆VAR is positive than when it is negative. However, when the backlogging cost is relatively

low (0 < ρt ≤ 10), a variance reduction (∆VAR < 0) has more significant impact on the ETC. It

means that, it should be better to overestimate the variability of the lead times. It is worthwhile to
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mention that it is highly important to obtain reliable statistical data to get a good estimate of the

probability distributions of lead times and to track and eliminate as much as possible the sources

of the uncertainty.

T

Figure 11.: Probability distribution of the delivery date for different levels of variance variation

Figure 12.: Effect of lead time variance on the expected total cost of policy π2

6. Conclusion and Perspectives

In this work, the main purpose was to integrate quality control to supply and production planning

under uncertainties of lead times and finished product quality in linear systems. We consider a

single-period production planning model with a known demand and a known due date. To our

best of knowledge, this is the first study to investigate serial systems with quality control and

uncertainty of lead times. We propose an analytical model to analyse three quality control policies:

i) without quality control, ii) with quality control but inspection duration is not integrated when

optimising the release date, and iii) with quality control and the inspection duration is included

when optimising the release date. The proposed model optimises, for a given quality control policy,
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the order release date while minimizing the expected total cost which is the sum of inventory

holding, backlogging and quality costs.

In order to test the advantages of each quality control policy, several experiments were carried out.

As shown from results analysis, there is a significant economical advantage of integrating quality

control planning at the early stage of supply and production planning decisions. The robustness

of the solution provided by this model is also analysed regarding the variance of lead times. It can

been noticed that the ETC is more affected when the variability increases than when it decreases.

This implies that, if the variability of lead times cannot be reduced and/or precisely estimated, it

is preferable to overestimate it in order to avoid the situation with a high increase of the actual

total cost compared to what was expected.

Moreover, the proposed model may be helpful during contract negotiation step with a customer

in an ETO environment with successive processing steps. When a given client orders a tailored

finished product, a decision maker can estimate the total lead time and negotiate (i) the planned

due date for client delivery, (ii) the unit non-conformity cost and (iii) the unit backlogging cost.

According to the negotiated parameters and using our approach, he can decide the date when the

first process starts and which quality control policy to adopt. Furthermore, the proposed approach

can profit from the abundance of real-time data in the context of Industry 4.0 environment which

will allow to improve the precision of uncertainty estimation and to make it possible to adopt

more reactive, coordinated and integrated decision making approaches to optimizing all kinds of

operational activities in the SC.

Several perspectives to this work are identified and are to be explored. Firstly, it will be interesting

to investigate the case where it is possible to make and to coordinate quality control decisions at

each process step and where the quality of the finished product depends on the sampling decisions

of all process steps. The second perspective to this work is to extend this model by integrating

other activities such as maintenance and by considering other kinds of production systems such

as assembly systems, where the finished product is assembled from several components and semi-

finished products. Finally, the objective is to generalize the model for the case of multi-period

planning, multi-product, and multi-stage assembly systems, and to propose efficient optimization

techniques for them.
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