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Abstract: The monitoring and surveillance of maritime activities are critical issues in both military and1

civilian fields, including among others fisheries monitoring, maritime traffic surveillance, coastal and2

at-sea safety operations, tactical situations. In operational contexts, ship detection and identification is3

traditionally performed by a human observer who identifies all kinds of ships from a visual analysis4

of remotely-sensed images. Such a task is very time consuming and cannot be conducted at a very5

large scale, while Sentinel-1 SAR data now provide a regular and worldwide coverage. Meanwhile,6

with the emergence of GPUs, deep learning methods are now established as state-of-the-art solutions7

for computer vision, replacing human intervention in many contexts. They have been shown to8

be adapted for ship detection, most often with very high resolution SAR or optical imagery. In9

this paper, we go one step further and investigate a deep neural network for the joint classification10

and characterization of ships from SAR Sentinel-1 data. We benefit from the synergies between AIS11

(Automatic Identification System) and Sentinel-1 data to build significant training datasets. We design12

a multi-task neural network architecture composed of one joint convolutional network connected13

to three task-specific networks, namely for ship detection, classification and length estimation. The14

experimental assessment showed our network provides promising results, with accurate classification15

and length performance (classification overall accuracy: 97.25%, mean length error: 4.65 m ± 8.55 m).16

Keywords: Deep neural network, Sentinel-1 SAR images, Ship identification, Ship characterization,17

Multi-task learning18

1. Introduction19

Deep learning is considered as one of the major breakthrough related to big data and computer vision20

[1]. It has become very popular and successful in many fields including remote sensing [2]. Deep21

learning is a paradigm for representation learning and is based on multiple levels of information.22

When applied on visual data such as images, it is usually achieved by means of convolutional neural23

networks. These networks consist of multiple layers (such as convolution, pooling, fully connected24

and normalization layers) aiming to transform original data (raw input) into higher-level semantic25

representation. With the composition of enough such elementary operations, very complex functions26

can be learned. For classification tasks, higher-level representation layers amplify aspects of the input27

that are important for discrimination and discard irrelevant variations. For humans, it is simple28

through visual inspection to know what objects are in an image, where they are, and how they interact29

in a very fast and accurate way, allowing to perform complex tasks. Fast and accurate algorithms for30

object detection are thus sought to allow computers to perform such tasks, at a much larger scale than31
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humans can achieve.32

33

Ship detection and classification have been extensively addressed with traditional pattern recognition34

techniques for optical images. Zhu et al.[3] and Antelo et al.[4] extracted handcrafted features from35

images such as shapes, textures and physical properties, while Chen et al.[5] and Wang et al.[6]36

exploited Dynamic Bayesian Networks to classify different kinds of ships. Such extracted features are37

known for their lack of robustness that can raise challenges in practical applications (e.g. they may38

lead to poor performances when the images are corrupted by blur, distortion, or illumination which39

are common artifacts in remote sensing). Furthermore, they cannot overcome the issues raised by big40

data such as image variabilities (i.e. ships of same type may have different shape, color, size, etc.) and41

data volume. Recently, following the emergence of deep learning, an autoencoder-based deep neural42

network combined with extreme learning machine was proposed [7] and outperformed some other43

methods using SPOT-5 spaceborne optical images for ship detection.44

45

Compared with optical remote sensing, satellite SAR imaging appears more suited for maritime46

traffic surveillance in operational contexts as it is not critically affected by weather conditions47

and day-night cycles. In this context, open-source Sentinel-1 SAR data are particularly appealing.48

Almost all coastal zones and shipping routes are covered by Interferometric Wide Swath Mode49

(IW), while the Extra-Wide Swath Mode (EW) acquires data over open oceans, providing a global50

coverage for sea-oriented applications. Such images, combined with the Automatic Identification51

System (AIS), represent a large amount of data that can be employed for training deep learning52

models [8]. AIS provides meaningful and relevant information about ships (such as position, type,53

length, rate of turn, speed over ground, etc.). The combination of these two data sources could54

leverage new applications to the detection and estimation of ship parameters from SAR images,55

which remains a very challenging task. Indeed, detecting inshore and offshore ships is critical56

in both military and civilian fields (e.g. for monitoring of fisheries, management of maritime57

traffics, safety of coast and sea, etc). In operational contexts, the approaches used so far still rely58

on manual visual interpretations that are time-consuming, possibly error-prone, and definitely59

irrelevant to scale up to the available data streams. On the contrary, the availability of satellite data60

such as Sentinel-1 SAR makes possible the exploration of efficient and accurate learning-based schemes.61

62

One may however consider with care AIS data as they involve specific features. AIS is mandatory for63

large vessels (e.g., >500GT, passenger vessels). As such, it provides representative vessel datasets64

for international maritime traffic, but may not cover some maritime activities (e.g., small fishing65

vessels). Though not authorized, ships can easily turn off their AIS and/or spoof their identity. While66

AIS tracking strategies [9] may be considered to address missing track segments, the evaluation of67

spoofing behaviour is a complex task. Iphar et al. [10] evaluate that amongst ships with AIS, about 6%68

have no specified type, 3% are only described as "vessels". Besides, respectively 47% and 18% of the69

vessels may involve uncertain length and beam data. These points should be considered with care in70

the analysis of AIS datasets, especially when considering learning strategies as addressed in this work.71

72

Among existing methods for ship detection in SAR images, Constant False Alarm Rate (CFAR)-based73

methods have been widely used [11,12]. The advantage of such methods is their reliability and high74

efficiency. Using AIS information along with SAR images significantly improves ship detection75

performance [13]. As the choice of features has an impact on the performance of discrimination,76

deep neural networks have recently taken the lead thanks to their ability to extract (or learn)77

features that are richer than hand-crafted (or expert) features. In [14], a framework named Sea-Land78

Segmentation-based Convolutional Neural Network (SLS-CNN) was proposed for ship detection,79

combined with the use of saliency computation. A modified Faster R-CNN based on CFAR algorithm80

for SAR ship detection was proposed in [15] with good detection performance. In [16], texture features81
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extracted from SAR images are fed into artificial neural networks (TF-ANN) to discriminate ship pixels82

from sea ones. Schwegmann et al.[17] employed highway network for ship detection in SAR images and83

achieved good results, especially in reducing the false detection rate. These state-of-the-art approaches84

focused on ship detection in SAR images. In this paper, we aim to go beyond ship detection and85

investigate higher-level tasks, namely the identification of ship types (a.k.a. classification) and their86

length estimation, which to our knowledge remain poorly addressed using learning-based frameworks.87

88

The problem of ship length estimation from SAR images has been briefly discussed in [18,19]. In [18],89

the best shape of a ship is extracted from a SAR image using inertia tensors. The estimated shape90

allows to obtain the ship length. However, the absence of ground truth does not allow to validate91

the accuracy of this method. In [19], a three-step method is proposed in order to extract a rectangle92

that will be the reference model for ship length estimation. The method produces good results (mean93

absolute error: 30 m ± 36.6 m). However, the results are presented on a limited dataset (only 127 ships)94

and their generalization may be questioned.95

96

In this paper, we propose a method based on deep learning for ship identification and characterization97

with the synergetical use of Sentinel-1 SAR images and AIS data.98

2. Material and Methods99

The proposed framework combines the creation of a reference groundtruthed dataset using AIS-SAR100

synergies and the design of a multi-task deep learning model. In this section, we first introduce the101

proposed multi-task neural network architecture, which jointly addresses ship detection, classification102

and length estimation. Second, we describe the training framework in terms of the considered training103

losses and of the implemented optimization scheme. Third, we detail the creation of the considered104

reference datasets, including how we tackled data augmentation and class imbalance issues, which105

have been shown to be critical for the learning process.106

2.1. Proposed framework107

The proposed multi-task framework is based on two stages, with a first common part and then108

three task-oriented branches for ship detection, classification and length estimation, respectively (see109

Figure 1). The first part is a convolutional network made of 5 layers. It is followed by the task-oriented110

branches. All these branches are made of convolutional layers followed by fully connected layers (the111

number of which depends on the complexity of the task). For the detection task, the output consists in112

a pixel-wise probability map of the presence of ships. It only requires 1 fully-connected layer after the 4113

convolutional layers. For the classification task, we consider 4 or 5 ship classes (Cargo, Tanker, Fishing,114

Passenger, and optionally Tug). The branch also requires 4 convolutional layers and 2 fully connected115

layers. The last task is related to the length estimation. This branch is composed of 4 convolutional116

layers and 5 fully-connected layers.117

This architecture is inspired from state-of-the-art architectures [20–22]. The number of layers has been118

chosen to be similar to the first layers of the VGG network [22]. All the activations of the convolutional119

layers and fully-connected layers are ReLu [23]. Other activation functions are employed for the output120

layers: a sigmoid for the detection, a softmax activation for the classification, and a linear activation is121

employed for the length estimation, further details are presented in Section 2.2. We may emphasize122

that our model includes a detection component. Though this is not a targeted operational objective in123

our context, it was shown to improve the performance for the other tasks (See Table 7).124

2.2. Training procedure125

We describe below the considered training strategy, especially the training losses considered for each126

task-specific component. The proposed end-to-end learning scheme combines task-specific training127

losses as follows:128
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conv, 64x20x20

upsampling, 64x40x40

Detection

conv, 256x20x20

conv, 512x4x4

conv, 256x4x4

conv, 128x20x20 conv, 128x20x20

+

+

+

conv, 128x80x80

maxpooling, 512x20x20

Input, 2x80x80

Figure 1. Proposed multi-task architecture for ship detection, classification (4 classes) and length
estimation from a Sentinel-1 SAR image.
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• Detection loss: the detection output is a ship presence probability. We employ a binary
cross-entropy loss, which is defined by:

Ldet = −
1
N

N

∑
n=1

∑
k∈I

(yklog(p(k)) + (1− yk)log(1− p(k)), (1)

where N is the number of samples, k is a pixel of the output detection image I, yk is the ground129

truth of ship presence (0 or 1), and p(k) is the predicted probability of ship presence. It is a usual130

loss function for binary classification tasks [24].131

• Classification loss: The output for the last classification layer is the probability that the input
image corresponds to one of the considered ship types. We use here the categorical cross-entropy
loss:

Lclass = −
1
N

N

∑
n=1

nc

∑
c=1

(yo,clog(po,c)), (2)

where N is the number of samples, nc is the number of classes (here, nc = 4 or nc = 5), yo,c is a132

binary indicator (0 or 1) if class label c is the correct classification for observation o and po,c is the133

predicted probability for the observation o to belong to class c. It is a widely-used loss function134

for multiclass classification tasks [25,26].135

• Length estimation loss: in the length estimation network, the 4 fully-connected layers of shape
(64×1×1) are connected to each other (see Figure 1). The idea is to propagate the difference
between the first layer and the current layer and is related to residual learning [27]. We use here
the mean squared error defined as

Llength =
1
N

N

∑
n=1

(lpred − ltrue)
2, (3)

where N is the number of samples, lpred is the predicted length and ltrue is the true length.136

Overall, we define the loss function of the whole network as

L = Ldet + Lclass + Llength. (4)

Each specific loss employed to design the loss of the whole network could have been weighted.137

Nevertheless, we have observed no significant effect of such a weighting scheme. Thus we decided138

to rely on a simple combination through adding the different task-dedicated losses, giving the same139

importance to each task. Our network is trained end-to-end using RMSProp optimizer [28]. The140

weights of the network are updated by using a learning rate of 1e-4 and a learning rate decay over141

each update of 1e-6 over the 500 iterations. Such parameterization has shown good results for our142

characterization tasks.143

2.3. Creation of reference datasets144

With a view to implementing deep learning strategies, we first address the creation of reference datasets145

from the synergy between AIS data and Sentinel-1 SAR data. AIS transceiver sends data every 2 to 10146

seconds. These data mainly consist in a positional accuracy (up to 0.0001 minutes precision), and the147

course over ground (relative to true north to 0.1o). For a given SAR image, one can interpolate AIS148

data from the associated acquisition time. Thus it is possible to know the precise location of the ships149

in the SAR image and the related information (in our case, length and type). The footprint of the ship150

is obtained by thresholding the SAR image in the area where it is located (the brightest pixel of the151

image). Since the database is very unbalanced in terms of class distribution, a strategy is also proposed152

in order to enlarge the training set with translations and rotations, which is a standard procedure for153

database enlargement (a.k.a. data augmentation). Concurrently to our work, a similar database has154

been proposed in [29]. We also evaluate our framework with this dataset (see Section 3.5).155
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In our experiments, we consider a dataset composed of 18,894 raw SAR images of size 400×400 pixels156

with a 10 m resolution. The polarization of the images are either HH (proportion of horizontally157

transmitted waves which return horizontally) or VV (proportion of vertically transmitted waves which158

return vertically). Polarization has a significant effect on SAR backscatter. However, our goal is to159

allow us to process any Sentinel-1 SAR images. We thus consider any HH and VV polarized image160

without prior information on the type of polarization. Each image is accompanied with the incidence161

angle since it impacts the backscatter intensity of the signal. For the proposed architecture, the input162

is a 2-band image (backscatter intensity and incidence angle). Thus we did not use any pre-trained163

network since we assume that they can not handle such input data. We rely on Automatic Identification164

System (AIS) to extract images that contain a ship in their center. AIS also provides us with information165

about the ship type and length. As stated before, AIS may have been corrupted (e.g. with spoofing),166

when creating the database, we only consider ships that responds to the two following criteria; (i)167

their type is clearly defined (i.e. they belongs to the retained classes), (ii) their length is greater than168

0 and smaller than 400 meters (the largest ship in the world). Besides, the SAR images we selected169

were acquired over European waters, where we expect AIS data to be of higher-quality compared with170

other maritime areas.171

The dataset is strongly imbalanced, amongst the 5 classes (Tanker, Cargo, Fishing, Passenger and Tug),172

the Cargo is the most represented (10,196 instances), while the Tug is the less represented (only 444173

instances). The class distribution is detailed in Figure 2 and Table 1. The length distribution shows that174

Tanker, Cargo, and Passenger ships have similar length distributions. Fishing ships have relatively small175

lengths, while Tug ship length are intermediate.176

Figure 2. Boxplot of length distribution for each class in our dataset. Length data are given in meters.
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Tanker Cargo Fishing Passenger Tug
Number of 4737 10196 2664 1071 444samples
Length mean (m) 168.4 146.5 26.6 153.5 47.3
Length standard 64.6 60.8 12.2 68.9 26.0deviation (m)
Number of augmented 263 0 2336 3929 -samples (4 classes)
Number of augmented 0 0 1336 2929 3556samples (5 classes)

Table 1. Length distribution and number of samples for each class in our dataset.

To account for class imbalance [30], we apply data augmentation with translations and rotations.177

We first perform a rotation of a random angle centered on the brightest pixel of the SAR image (the178

center of the ship), and then perform a random translation. The same transformation is applied179

to the incidence angle image. The images employed to train the networks are of size 80×80 pixels.180

They contain ships (not necessarily in their center, see Figure 4). The ship footprint groundtruth is181

generated by thresholding the SAR image since we precisely know the location of the ship (i.e. it is the182

brightest pixel of the SAR image, see Figure 3). The obtained footprint is not perfect (see Figure 3b) but183

was shown to be sufficient to train the network. Let us note that a CFAR approach could have been184

employed in order to extract more precisely the ship footprint [11]. But since our goal is not to detect185

ships, a coarse ship footprint is sufficient. We considered 2 configurations for the databases; a 4-classes186

database, employed to compare our baseline to other state-of-the-art approaches (namely MLP and187

R-CNN), and 5-classes database in order to evaluate how our network responds with more classes.188

Each database is composed of 20,000 images of 80×80 pixels, with the same amount of samples per189

class (5,000 per class for the 4-classes database, and 4,000 per class for the 5-classes database). The190

networks are trained with 16,000 images and the remaining 4,000 are used for validation. Throughout191

the data augmentation process, we ensure that images can be seen either in the training or validation192

set, but not in both. Ships with no AIS signal are not considered in our dataset (neither to train or193

evaluate our model), since our strategy to build the dataset relies on matching AIS signal with SAR194

imagery. However, once a model has been trained, it can perform in an operational settings to detect195

ships with no AIS (it is indeed one of our long-term goals).196

(a) SAR image. (b) Ship footprint.

Figure 3. Example of SAR image (with backscatter intensity) and associated ship footprint (best viewed
in color).
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(a) Tanker. (b) Cargo. (c) Fishing.

(d) Passenger. (e) Tug.

Figure 4. Examples of SAR image (with backscatter intensity) for each ship type of the collected
database.
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3. Results197

We run all numerical experiments on a PC with a NVIDIA GTX 1080 Ti, an Intel Xeon W-2145 CPU198

3.70GHz and 64GB RAM (with a Keras [31] implementation). We evaluate the proposed framework199

with respect to other popular deep learning-based solutions. We first consider a Multi-Layer200

Perceptron (MLP) [32] with only one hidden layer with 128 hidden units. The MLP is the most201

simple network that can be proposed for the desired task and can be a good basis in order to evaluate202

the performance of our network. We also designed a R-CNN (Regions with CNN features) [33]203

network in order to extract ship bounding boxes along with classification. Even if the R-CNN-based204

bounding boxes do not allow to precisely measure the ship length, they can provide a good basis for205

its estimation. R-CNN is a state-of-the-art algorithm for object detection and classification [33]. Thus206

it is worth being compared with our proposed model. The R-CNN has a very simple architecture207

presented in Figure 5. The networks are trained using 16,000 images from the augmented dataset and208

the remaining 4,000 images are used for validation.209

210

The evaluation of the models is performed using several metrics. The classification task is assessed211

through the confusion matrix, giving, for each class and overall, several metrics. The Intersection over212

Union (IoU or Jaccard index) [34] measures similarity between finite sample sets, and is defined as213

the size of the intersection divided by the size of the union of the sample sets. It has been designed214

for the evaluation of object detection. The F-score is the harmonic mean of precision and recall, it215

reaches its best value at 1 and worst at 0. The Kappa coefficient [35] (κ) is generated from a statistical216

test to evaluate the accuracy of a classification. Kappa essentially evaluates how well the classification217

performs as compared to just randomly assigning values (i.e. did the classification do better than218

randomness?) The Kappa coefficient can range from -1 to 1. A value of 0 (respectively -1 or 1) indicates219

that the classification is no better (respectively worse or better) than a random classification.220

For the length estimation task, the mean error (and its standard deviation) are employed. For a ship221

k, the length error is defined as ek = lk,pred − lk,true, where lk,pred is the predicted length and lk,true is222

the actual length. The mean error merr_length (respectively the standard deviation stdeverr_length), is the223

mean (respectively the standard deviation) of all the ek. We further refer mean error to merr_length ±224

stdeverr_length.225

conv, 128x80x80

maxpooling, 512x20x20

Input, 2x80x80

conv, 512x20x20

Output: conv, 9x20x20

Figure 5. R-CNN architecture considered for ship classification.

3.1. MLP model226

For a 80×80 image, the MLP runs at 2,000 frames per second. The whole training takes about one227

hour. The testing takes less than a minute. It produces very poor results. Indeed, the overall accuracy228
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for classification is 25%, which means that the classifier assigns the same class to all the images (see229

Table 2). The length estimation is also rather inaccurate, the ship length being underestimated with a230

very large standard deviation (mean error: -7.5 m ± 128 m).231

Confusion matrix

Ground Truth
Prediction

Tanker Cargo Fishing Passenger Precision

Tanker 1000 0 0 0 100.0
Cargo 1000 0 0 0 0.0
Fishing 1000 0 0 0 0
Passenger 1000 0 0 0 0.0
Recall 25.0 - - -

Accuracy metrics
Label Tanker Cargo Fishing Passenger Overall
IoU 25.0 0.0 0.0 0.0 6.25
F-Score 40.0 - - - 10.00
Accuracy 25.0 75.0 75.0 75.0 25.00
κ 0.0 0.0 0.0 0.0 0.25

Table 2. Confusion matrix and accuracy metrics for the MLP with 4 classes.

3.2. R-CNN model232

For a 80×80 image, the R-CNN runs at 333 frames per second. The whole training takes about 6.5233

hours and the testing about a minute. It produces better results than the MLP. The network estimates234

the 4 corners of the bounding box. As the groundtruth for bounding boxes is obtained from the ship235

footprint extracted by thresholding the SAR image, it might not be well-defined (see Figure 6c and 6d).236

In Figure 6c, the bounding box is well centered on the ship, but has a wrong size. In Figure 6d, the237

bounding box is also not well-sized, and accounts for the brightest part of the ship. We recall that the238

detection task is not our main objective, but rather regarded as a means to better constrain the training239

of the models. The R-CNN have a classification overall accuracy of 89.29%. Several other metrics are240

presented in Table 3.241

242

Confusion matrix

Ground Truth
Prediction

Tanker Cargo Fishing Passenger Precision

Tanker 845 97 3 33 86.40
Cargo 98 787 24 77 79.82
Fishing 2 9 891 51 93.49
Passenger 8 15 1 961 97.56
Recall 88.67 86.67 96.95 85.65

Accuracy metrics
Label Tanker Cargo Fishing Passenger Overall
IoU 77.81 71.09 90.83 83.86 80.90
F-Score 87.52 83.10 95.19 91.22 89.26
Accuracy 93.82 91.80 97.69 95.26 89.29
κ 0.83 0.78 0.94 0.88 0.88

Table 3. Confusion matrix and accuracy metrics for the R-CNN with 4 classes.
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(a) Accurate bounding box
superimposed to the SAR image.
The ship type (Passenger) is well
predicted.

(b) Accurate bounding box
superimposed to the SAR image.
The ship type (Tanker) is well predicted.

(c) Inaccurate bounding box
superimposed to the SAR image.
The ship type predicted (Fishing) is not
the good one (Cargo).

(d) Inaccurate bounding box
superimposed to the SAR image.
The ship type (Tanker) is well predicted.

Figure 6. Illustration of detection and classification performance of the evaluated R-CNN model: each
subpanel depicts a SAR image with superimposed the detected bounding box.
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3.3. Our network243

For a 80×80 image, our method can run at 250 frames per second. The whole training takes about244

9 hours and the testing about a minute. With an overall accuracy and a mean F-score of 97.2%, the245

proposed multi-task architecture significantly outperforms the benchmarked MLP and R-CNN models.246

We report in Table 4 the confusion matrix and additional accuracy metrics. Interestingly, classification247

performances are relatively homogeneous across ship types (mean accuracy above 92% for all classes).248

Tankers involve the greater misclassification rate with some confusion with cargo.249

Regarding length estimation performance, our framework achieves very promising results. The length250

is slightly over-estimated (mean error: 4.65 m ± 8.55 m), which is very good regarding the spatial251

resolution of the Sentinel-1 SAR data (10m/pixel). To our knowledge, this is the first demonstration252

that reasonably-accurate ship length estimates can be derived from SAR images using learning-based253

schemes, whereas previous attempts using model-driven approaches led to much poorer performance.254

Overall, the results of the classification and length estimation tasks for all the tested architectures are255

summarized in Table 6.256

(a) SAR image. (b) Detection result.

Figure 7. Example of detection output for the considered multi-task architecture: left, SAR image
(with backscatter intensity) used as input; right, output of the detection module of the considered
architecture.

Confusion matrix

Ground Truth
Prediction

Tanker Cargo Fishing Passenger Precision(%)

Tanker 985 11 0 4 98.5
Cargo 65 907 12 16 90.7
Fishing 0 2 998 0 99.8
Passenger 0 0 0 1000 100.0
Recall(%) 93.81 98.59 98.81 98.04

Accuracy metrics
Label Tanker Cargo Fishing Passenger Overall
IoU(%) 92.49 89.54 98.62 98.04 94.67
F-Score(%) 96.10 94.48 99.30 99.01 97.22
Accuracy(%) 98.00 97.35 99.65 99.50 97.25
κ 0.95 0.93 0.99 0.99 0.97
Table 4. Confusion matrix and accuracy metrics for the proposed network with 4 classes.

We also train our model with 5 classes, and it confirms that our framework performs well. The length257

is slightly over-estimated (mean error: 1.93 m ± 8.8 m) and the classification is also very good (see258
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Table 5). Here, we still report some light confusion for Tanker and Cargo classes. The accuracy metrics259

are slightly worse that the 4-class model but still report an overall accuracy and a mean F-score of260

97.4%.261

Confusion matrix

Ground Truth
Prediction

Tanker Cargo Fishing Passenger Tug Precision(%)

Tanker 771 28 0 1 0 96.38
Cargo 60 732 3 3 2 91.50
Fishing 0 1 799 0 0 99.88
Passenger 3 1 0 796 0 99.50
Tug 0 0 0 0 800.0 100.00
Recall(%) 92.45 96.06 99.63 99.50 99.75

Accuracy metrics
Label Tanker Cargo Fishing Passenger Tug Overall
IoU(%) 89.34 88.19 99.50 99.00 99.75 95.16
F-Score(%) 94.37 93.73 99.75 99.50 99.88 97.44
Accuracy(%) 97.70 97.55 99.90 99.80 99.95 97.45
κ 0.93 0.92 1.00 0.99 1.00 0.97

Table 5. Confusion matrix and accuracy metrics for the proposed network with 5 classes.

Architecture Length mean error (m) Classification overall accuracy (%)
MLP -7.50± 128 25.00
R-CNN - 88.57
Our network 4.65± 8.55 97.25

Table 6. Results of all the tested architectures for the classification (4 classes) and length estimation.

We further analyse the proposed scheme and the relevance of the multi-task setting, compared262

with task-specific architectures. To this end, we perform an ablation study and train the proposed263

architecture using (i) length estimation loss only, (ii) classification loss only, (iii) the combination of264

length estimation and classification losses (i.e., without the detection loss). We report in Table 7 the265

resulting performances compared to those of the proposed end-to-end learning strategy. Regarding266

the classification issue, combined losses result in an improvement of about 1.3% (above 25% in terms267

of relative gain). The improvement is even more significant for length estimation with a relative gain268

in the mean error of about 36%. Interestingly, we note that the additional use of the detection loss also269

greatly contributes to the improvement of length estimation performance (mean error 2.85m without270

using the detection loss during training vs. 1.93m when using jointly detection, classification and271

length estimation losses). As an illustration of the detection component of the proposed architecture,272

we illustrate in Figure 7 a detection result. As mentioned above, the thorough evaluation of this273

detection model is not the main objective of this study. Furthermore, without any precise ship footprint274

groundtruth, is is impossible to quantitatively evaluate the performance of the network for this specific275

task. Let us recall that the detection task has been widely addressed in the literature [14–16]. Overall,276

this complementary evaluation supports the idea that Neural Network architectures for SAR image277

analysis may share some low-level task-independent layers, whose training can highly benefit from278

the existence of multi-task datasets.279

3.4. Application to a full SAR image280

We illustrate here an application of the proposed approach to a real SAR image acquired on April 4,281

2017 in Western Brittany, France. We proceed in several steps as follows. First, a CFAR-based ship282

detector is applied. Then, for each detected ship, we apply the trained deep network model to predict283
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Length mean error (m) Classification overall accuracy (%)
(i) 3.07± 9.0 -
(ii) - 96.10
(iii) 2.85± 8.9 97.50
Full network 1.93± 8.8 97.45

Table 7. Ablation study, performance of the network for different scenarii: (i) only length estimation,
(ii) only classification, (iii) length estimation and classification without detection.

the ship category and its length. For illustration purposes, we report in Figure 8 the detected ships284

which could be matched to AIS signals.285

For the considered SAR image, among the 98 ships detected by the CFAR-based ship detector, 66 ships286

have their length documented and 69 ships belong to one of the 5 proposed classes after AIS matching.287

We may point out that the Tug class is not represented. We report classification and length estimation288

performance in Table 8. Ship classification performance is in line with the performance reported above.289

Regarding length estimation, the mean error 14.56 m ± 39.98 m is larger than that reported for the290

groudtruthed dataset. Still, this error level is satisfactory given the pixel resolution of 10 m of the SAR291

image. Let us note that, given the limited samples available, the standard deviation is not fully relevant292

here. While a special care was undertaken for the creation of our SAR-AIS dataset, this application to293

a single SAR image exploits the raw AIS data. AIS data may be significanty corrupted, which may294

partially explain these differences.295

Confusion matrix

Ground Truth
Prediction

Tanker Cargo Fishing Passenger Precision(%)

Tanker 13 3 0 2 72.22
Cargo 5 30 0 0 85.71
Fishing 0 0 14 0 100.00
Passenger 0 0 0 1 100.00
Recall 72.22 90.91 100.00 33.33

Accuracy metrics
Label Tanker Cargo Fishing Passenger Overall(%)
IoU 56.52 78.95 100.00 33.33 67.20
F-Score 72.22 88.24 100.00 50.00 77.61
Accuracy 85.29 88.24 100.00 97.06 85.29
κ 0.62 0.76 1.00 0.49 0.85

Table 8. Classification scores of the proposed network on small patches extracted from a SAR scene.

3.5. Application to the OpenSARShip dataset296

The OpenSARShip dataset [29] has recently been made available to the community. We report here the297

results obtained with our framework when applied on this dataset. This dataset comprises SAR data298

with different polarization characteristics and also includes ship categories. With a view to ease the299

comparison with the previous results, we focus on SAR images that are in VV polarization and the ship300

categories considered, which leads to considering the following four categories; tanker, cargo, fishing301

and passengers. Overall, we considered a dataset of 5,225 ships (80% were employed for training302

and 20% for testing). In the OpenSARShip dataset, the classes are not equally represented. We report303

classification and length estimation performance in Table 9. We also evaluate the performance of the304

model trained on our dataset and applied on OpenSARShip dataset and conversely.305

The results show that our model produces good results when trained and tested on the same306

database. However, the results do not transfer from one dataset to an other. We suggest that this307
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(a) Image location

(b) SAR image with ships identified from the matching of CFAR-based detection
and AIS. ? Tanker, ? Cargo, ? Fishing, ? Passenger (best viewed in color).

Figure 8. SAR image acquired on April 4, 2017 in Western Brittany, France.
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may relate to differences in the maritime traffic and environment between Europe (our dataset) and308

Asia (OpenSARShip dataset). The comparison to previous work on OpenSARShip dataset is not309

straightforward. For instance, [36] considers only a three-class dataset (Tanker, Cargo and Other). The310

reported accuracy score (76%) is lower than our 87.7% accuracy score for the considered 5-class dataset.311

We may also emphasize that [36] does not address ship length estimation.312

Train Train
Ours OpenSARShip Ours OpenSARShip

Te
st Ours 97.45 22.18

Te
st Ours 1.93± 8.8 56.78 ± 314.78

OpenSARShip 34.05 87.71 OpenSARShip -102.51± 123.94 -0.23 ± 11.04

Classification overall Length mean
accuracy (%) error (m)

Table 9. Comparison of the results of the network on our database and on the OpenSARShip database.

4. Discussion313

The reported results show that a dedicated architecture is necessary for ship classification and length314

estimation, while state-of-the art architectures failed to achieve satisfying performances. The MLP315

is sufficient for ship detection on SAR images (from a visual assessment). But this should not be316

considered as a good result since we only have (positive) examples of ships in our database (no negative317

samples, so we can not assess the false positives). Thus, the network only learns a thresholding318

and can not discard a ship from other floating objects (e.g. icebergs). Indeed, iceberg detection319

and discrimination between iceberg and ship are specific research questions [37,38]. Overall, the320

performance of the MLP stresses the complexity of the classification and length estimation tasks.321

In terms of classification accuracy, the R-CNN performs better than the MLP, with an overall accuracy322

of 88.57%. These results support the proposed architecture with three task-specific networks which323

share a common low-level network. The latter is interpreted as a feature extraction unit which the324

task-specific networks rely on.325

Compared to the state-of-the art architectures (MLP and R-CNN), our model produces better results326

for ship classification and length estimation from Sentinel-1 SAR images with only few confusions327

between classes. A multi-task architecture is well adapted for simultaneous ship classification and328

length estimation. Our model also performs well when a new class is added (e.g. Tug). Furthermore,329

adding a detection task (even with a coarse ground truth) tends to improve the length estimation.330

Our experiments also show that the learnt models do not transfer well from a dataset to an other. We331

suggest that this may relate to differences in the characteristics of the maritime traffic and/or marine332

environment. Future work should further explore these aspects for the application of the proposed333

model worldwide.334

5. Conclusion335

In this paper, a multi-task neural network approach was introduced. It jointly addresses the detection,336

classification and length estimation of ships in Sentinel-1 SAR images. We exploit synergies between337

AIS and Sentinel-1 to automatically build reference datasets for training and evaluation purposes, with338

the ultimate goal of relying solely on SAR imagery to counter lack or corruption of AIS information that339

correspond to illegal activities. While the polarization type has a significant effect on SAR backscatter,340

we were able to train a model which jointly processes HH or VV polarisation without prior information341

on the type of polarisation. Our results support the assumption that HH and VV polarizations share342

common image features and that differences in backscatter distributions can be handled through an343

appropriate parameterization of the network.344
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Regarding the considered architecture, a mutual convolutional branch transforms raw inputs into345

meaningful information. Such information is fed into three task-specific branches. Experimental346

evaluation shows improvement over standard MLP or R-CNN. Ship detection cannot be totally347

assessed, but a visual inspection supports the relevance of this detection stage. Besides, it was348

shown to significantly contribute to improved performance of the classification and length estimation349

components. Overall, we report promising performance for ship classification (above 90% of correct350

classification) and length estimation (relative bias below 10%). Considering a residual architecture351

appears as a critical feature to reach good length estimation performance, but this would require352

further investigation.353

Future work may further investigate the training and evaluation of the detection stage. The automation354

of the matching process between AIS data and SAR images has the potential for significantly increasing355

the size and diversity of the training and evaluation datasets. This may provide new avenues to address356

generalization and transfer issues between geographic areas pointed out in our results. Furthermore,357

while SAR imagery less affected by weather conditions than optical imagery, a specific analysis of358

the impact of weather conditions onto identification performance would also be of interest. Finally,359

the specificity of the SAR imagery would call for dedicated operations, while our network relies on360

standard techniques issued from computer vision.361
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