
HAL Id: hal-02400269
https://hal.science/hal-02400269

Submitted on 8 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Method of moments: a general framework for frequency
and time-domain numerical methods

Zhizhang Chen, Michel Ney

To cite this version:
Zhizhang Chen, Michel Ney. Method of moments: a general framework for frequency and time-domain
numerical methods. CEM-TD: 7th workshop on Computational Electromagnetics in Time Domain,
Oct 2007, Perugia, Italy. pp.1-4, �10.1109/CEMTD.2007.4373527�. �hal-02400269�

https://hal.science/hal-02400269
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Method of Moments: A General Framework for Frequency- and 
Time-domain Numerical Methods 

Zhizhang (David) Chen* and Michel M. Ney**
*Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS, B3J2X4, Canada

Email: z.chen@dal.ca 
**:Ecole Nationale Superieure des Telecommunications de Bretagne (ENST-Bretagne), 29238 Brest, France

Email: michel.ney@enst-bretagne.fr 

Abstract-Many numerical methods have been derived 

and developed in the past five decades for solving 

electromagnetic structure problems. They can be categorized 

into frequency- and time-domain methods. Among them are 

frequency- and time-domain spectral domain methods, finite­

difference based methods, finite element FEM) methods and 

integral equation methods. These methods have been studied 

extensively and become mature enough such that a number 

of software packages based on them have been developed 

commercially. However, all these methods appear to have 

been unrelated and formulated on different mathematical 

bases. In this paper, we show that all these methods can be 

derived directly with the Method of Moments (MoM). The 

differences among them are (1) the equations and quantities 

to be solved and (2) the expansion and weighting functions 

used. The work presented here opens a new horizon for 

developing other new methods under a unifying framework 

of MoM without considering which methods they belong to. 

Index Terms-Method of Moments, frequency domain, 

time-domain, spectral domain method, finite-difference 

method, finite-element method, integral equation method, 

and pseudo-spectral time-domain method. 

I. INTRODUCTION 

TOSOLVE electromagnetic structure problems, two
types of numerical methods have been developed 

so far: frequency-domain and time-domain methods. 
Thanks to significant advancements in high-speed 
computer technology, both types of the methods become 
increasingly effective in computing complex 
electromagnetic structures used in electronic circuits, 
communication systems, and sensor networks and 
applications. While frequency-domain methods are 
efficient in simulation of narrow band signals, time­
domain methods becomes increasingly popular due to 
their capability of solving wide-band signals. Typically 
among the frequency-domain methods are the finite­
difference frequency-domain methods [l], frequency­
domain finite-element method [2], spectral domain 
method [2], mode matching [2] and transverse-resonance 
method [2]. Among the time-domain techniques are the 
time-domain finite-element methods [3], time-domain 
integral-equation methods [2][4] and the finite-difference 
time-domain based methods (e.g. FDTD and TLM) [5][6]. 

As the results of research advances on these methods, 
simulators have been developed worldwide and have been 
made commercially available (e.g. HFSS by Ansoft [7] 
and XFDTD by Remcom [8]). 

In the numerical methods, the continuous system of 
Maxwell's equations is replaced with a discrete system or 
a system of approximations whose solutions are accurate 
enough with certain parametric constraints. So far, 
different numerical methods have been developed through 
different mathematical processes. They appear to be 
unrelated to each other. For instance, the finite-element 
(FEM) method was based on numerical solutions or 
functional minimization for a generalized wave equation 
[2]. The integral equation (IE) methods came about with 
applying the method of moments (MoM) to an integral 
equation in spatial domain and finite-difference in time 
domain if needed [4]. The widely used finite-difference 
frequency-domain and time-domain methods were 
formulated by direct finite-differencing the frequency­
domain and time-domain Maxwell's equations, 
respectively [1][5]. The TLM method was derived with 
the utilization of transmission line networks [6]. Even the 
classical mode matching was simply application of the 
boundary conditions with mode expansions. 

In this paper, all these numerical methods are shown to 
be derivable from the well-known Method of Moment 
(MoM) [9]. In other words, all these numerical methods 
can be obtained by first expanding solutions in terms of 
sets of basis functions and then minimizing the associated 
residual errors with sets of weighting functions. 
Differences among the different methods are simply the 
uses of different expansion and weighting functions as 
well as solutions of different equations. Consequently, 
different numerical methods are generalized under a 
unifying framework. Numerical issues such as numerical 
stability and dispersions can be directly related to the 
convergence of the expansions and the measure of the 
errors in frequency and spectral domain. In other words, 
the work presented in this paper provides a general 
theoretical framework under which a common procedure 
for developing a numerical technique (including a 
potentially new one) is defined. 
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The paper is organized in the following manner. First, a 
general MoM is reviewed. Then the MoM derivations of 
the frequency- and time-domain finite-difference based 
methods, spectral domain methods, finite-element 
methods, and integral equation method are derived. 
Finally, conclusions and discussions are made. 

II. THE METHOD OF MOMENTS

The Method of Moments (MoM) was developed and 
reported decades ago; [9] is an excellent classical 
reference on the method. In the method, the general 
equation to be solved is expressed as: 

Lf-g=O (1) 

where L is a mathematical operator that can be of either
differential, integral or mixed differential and integral; it 
can be in space, in time or in mixed time and space. f is
the unknown function to be solved. G is the known source 
function. 

The MoM solution involves two computing steps: 
solution expansion and residual (error) minimization. 

In the solution expansion step, a pre-selected set of 
known basis functions in both space and time is first 
chosen and then used to expand f Denote the basis 

functions as cp1 andj as the index for each basis function

(which has to be independent of each other). Then, f is
approximated by a trial function f in terms of weighted

sum of the basis functions: 

N 

f"" ]= "'f.a//Jj (2) 
m=l 

where aj is the expansion coefficient that are to be found.

In the second step ofMoM, the residual error of placing 
(2) in (1) is evaluated as: 

R=Lf-g (3) 

Forcing R to be exact zero in the whole solution domain
is equivalent to finding exact solutions, a difficult task in 
general. In the context of MoM, it is made to be zero in a 
weighted and averaged sense with a pre-selected set of 

known weighting functions, denoted as w; . In a 

mathematical term, this means that R is forced to be null
in terms of its inner product with the weighting functions: 

< R,w; >=0 i=l,2, .... M (4) 

The inner product usually refers to an integral over the 

solution domain defined in a particular function space, for 
instance the Hilbert space [10]. Both the basis and 
weighting functions have to be members of a complete set 
defined in the function space. In addition, the trial function 

f has to satisfy the essential boundary condition.

When the weighting functions are chosen to be the same 

as the expansion functions, w; = <P; the MoM becomes

the Galerkin's method [9]. It has been shown that 
Galerkin's method is equivalent to minimizing inner 
product of R to itself, i.e. <R,R>. 

( 4) is essentially a system of equations for the unknown 

expansion coefficient aj . It is normally solvable, some

times in a recursive fashion. Once aj is found, the

approximating solution f is obtained.

III. DERIVATIONS OF THE FINITE-DIFFERENCE
BASED METHODS WITH MoM 

The finite-differenced based methods are perhaps most 
straightforward methods where differential operators in 
electromagnetic equations are simply replaced with their 
finite-difference counterparts. The resulting equations are 
usually algebraic formulations that can be solved 
relatively easily. The time-domain finite-difference 
methods have become popular these days while the 
frequency-domain finite-difference methods are still 
effective and efficient for narrow band computation. 

The time-domain finite-difference based methods 
include finite-difference time-domain (FDTD) method, 
transmission-line-matrix (TLM) method, multi-resolution 
time-domain (MRTD) method, Crank-Nicolson FDTD, 
alternating-direction-implicit (ADI) FDTD and 
unconditionally stable FDTD using weighted Laguerre 
polynomials. Their MoM derivations were presented in 
[ 11]. Therefore, the derivations are not repeated here. 

In the following paragraphs, we focus on the MoM 
derivation of the frequency-domain finite-difference 
method (FDFD). Before the derivation, a rooftop function 
is introduced below: 

Its graphical representation is shown in Fig. 1. 

Then, consider one of the frequency-domain Maxwell's 
equations: 

. 8Hz aHY ]WE c E = ------ Jo r x 
ay ox 

x 
(6) 
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Fig. 1 Illustration of function T(.;, .;0 , A.;)

With the rooftop function defined, the field components 
are expanded as follows: 

- " 1 1 
HY ""Hy= L.. HY I 1 . .  1 T[x,(ix +-)&,&]T(y,iYL1y,L1y)T[z,(iz +-)&,&) 

i,.,iy,iz lx � •ly,lz� 2 2 

- " 1 1 
Hz""Hz= L..Hzl I I T[x,(ix+-)&,&]T[y,(iy+-)Lly,LlyJI'(z,iz&,&) 

i,.,iy,iz i,.�,iy� •jz 2 2 

(7) 

They are substituted into (6) and the residual errors are 
minimized with 

- - -
1 J J J ( ..... )O[x-(ix +2)fix]O(y-iYAy)O(z-izfiz)dxdydz 

z=--oo y=--oo z=-00 

The result is: 

jOEAAy/'JzEx In+\ -&Jf, I J I +/'Jz]{, I I I 
ix�,iy,iz ix�'iY�'iz ix�'iY2'iz

(8) 

(9) 

This is exactly the same as the finite-difference frequency­
domain formulations derived from Maxwell's equations 
by applying the finite differences directly. 

IV. DERIVATIONS OF THE FREQUENCY-DOMAIN
AND TIME-DOMAIN SPECTRAL DOMAIN METHOD 

WITH MoM 

The frequency-domain spectral-domain method 
developed so far is a specialized numerical method 
designed effectively for the transmission line structures of 
planar types, such as microstrip lines [2]. In it, based on 
the frequency-domain Maxwell's equations, an integral 
equation was first derived where current densities or 
charges on the metal strips are the unknown solutions to 
be found. Then, the MoM technique is applied and a 
system of linear equations is obtained for the expansion 
coefficients. The core of the spectral-domain method is 

that the elements of the coefficient matrix of the system of 
the linear equations are efficiently found with the use of 
the Green's functions in the spectral (or spatial frequency) 
domain (rather than directly in the spatial domain). An 
excellent MoM derivation of the frequency-domain 
spectral domain method is presented in [12]. 

The time-domain spectral domain method that has been 
more comprehensively developed so far is the pseudo­
spectral time-domain (PSTD) method [13]. In the original 
development of PSTD, the Fourier transforms (or other 
transforms) were applied to field components in spatial 
domain. However, in the context ofMoM, this process can 
be shown to amount to expansion and residual 
minimization as described below. First, field quantities are 
expanded as: 

T(t,nlit,At) 

Ha= 
N � N L [ L

X y z Jx ,Jy ,Jz ,n ix ,iy ,iz

1
T[t, (n +-)At, At] 

2 
a=x,y,z 

(10) 

Substitution of (10) into Maxwell's equation in the 
Cartesian coordinates, and residual minimization of the 
resulting equations 

[� [� (, __ [� ( )o(x-ixAx)

with 
1 

o(y-iy Ay)o(z -iz&)O[t-(n +
2

)At]dx�dzdt 

lead to, for instance, 

I I 

FFr'[jkYFFT(H:+2 )]-FFr'[jkzFFT(H;+2 )] (11)

I n+-
+ J I 2 =0 X lx,ly,lz 

(11) is exactly the same as the original PSTD equation 
presented in [13]. Therefore, the PSTD formulations can 
be derived by applying the MoM procedures with 
particular sets of expansion functions that related to the 
Fourier transforms. 
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III. DERIVATIONS OF THE FREQUENCY-DOMAIN
AND TIME-DOMAIN FEM WITH MoM 

In the frequency-domain FEM formulations known so 
far, either an integral equation or a functional (that 
correspond to weak forms of the wave equations) was first 
established [2][3]. Then the function expansion and 
residual minimization were applied in spatial domain. Or, 
the expansion was performed in spatial domain and the 
expansion coefficients were obtained through the residual 
minimization. In the time-domain FEM method, the 
expansion and residual minimization were carried out 
exactly in the same way as that for the frequency-domain 
FEM in the spatial domain. In the time domain, however, 
the finite-differencing was applied to replace temporal 
derivatives. For instance, as described in [3], the second­
order derivative in time is replaced with the central finite 
difference operator (i.e. equation (26) of[3]). However, by 
careful examinations, it can be shown that such a 
replacement actually amounts to expansion and residual 
weighting with a high-order temporal function and a Dirac 
impulse function, respectively. 

III. DERIVATIONS OF INTEGRAL EQUATION
METHODS WITH MoM 

Integral equations methods have been of interest to 
electromagnetic modeling community for more than 30 
years. Many different integral equations have been 
developed from Maxwell's equations such as the electric 
field integral equation (EFIE) [4]. They have been solved 
by following the solution steps of MoM, expansion of E 
and H and minimization of residual errors, in both 
frequency- and time-domains. For example, in [4], the 
expansion function used in space is the divergence­
conforming basis functions on curvilinear triangles and 
expansion function used in time is the Knab's bandlimited 
interpolation function [ 4]: 

sin{ a /(_t )2 -1} 
sin(smt) V NA.t T(t)= 0 

(12) 
SOJ0t � t

2 sinh( a) (-) -1
NA.t 

The use of (12) is to control late-time instability that has 
crippled the wide applications of time-domain integral 
equation methods. 

In all, integral equation techniques have been derived so 
far with an application of the MoM in space and in time (if 
needed) for electromagnetic problems. They naturally fall 
within the frame work ofMoM. 

V. DISCUSSIONS AND CONCLUSIONS 

In this paper, frequency- and time-domain numerical 
methods, such as frequency- and time-domain finite­
difference methods, frequency- and time-domain spectral 
domain methods, frequency- and time-domain finite-

element methods, and frequency- and time-domain 
integral equation methods have been derived with MoM. 
The differences among the different methods are shown to 
be the uses of different expansion and weighting functions 
as well as the equations and quantities to be solved. In 
other words, numerical methods can be generalized under 
the framework of MoM. New methods, particularly 
effective and efficient for specific structures, can now be 
developed with the MoM framework. One of such 
applications was reported in [14] where an unconditionally 
stable time-domain integral equations was developed by 
using the weighted Laguerre polynomials as the expansion 
and weighting functions in time. 

In our other publication such as [ 11 ], we have shown 
numerical issues associated with numerical methods can 
be easily understood with the MoM framework. For 
instance, numerical stability of a time-domain numerical 
methods is associated with the convergence of the 
expansion coefficients as t � oo , while numerical 
dispersion is a measure of the residual errors in the 
spectral domain due to the expansion. 
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