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Abstract—The objective of this work is to introduce a convex
combination of two filters to perform a variable sparse system
identification. The first filter is based on the Least Mean Fourth
algorithm (LMF), whereas the second is based on its sparse aware
version, i.e., the Zero-attractor-LMF (ZA-LMF) algorithm. The
convex combination is proposed to solve the sparsity problem
under non-Gaussian noise environments. The universality study
of the filter indicates that the convex combination always chooses
the component filter that offers the lowest Excess Mean Square
Error (EMSE) possible. Computer Simulations are performed to
confirm the theoretical findings.

Index Terms—Least Mean Fourth (LMF), Transform Domain
(TD), Zero-Attractor ZA, Weighted Zero Attractor WZA, Lp
norm, L0 norm, Sparse solution

I. INTRODUCTION

Since the introduction of the Wiener filter theory, the full
density of the optimum solution (in a system identification
setting) was taken for granted as a fact. However, with time,
it is found that the sparse system has noticeable frequent
occurrence in the nature and practice. For example, in an
acoustic echo cancellation scenario, it is found that the impulse
response has small significant elements, whereas the rest are
negligibly small. The explanation of this phenomena is due
to the large delays introduced in these type of systems [1].
Another interesting prominence is in wireless communication
multi-path channels, where the environment contains few
dominant signal reflectors implying that the impulse response
of the channel is sparse, which is similar to the acoustic
echo cancellation system [2]. Large reflectors are also one
of the features of the under sea communication channels,
where the channel is found to be sparse [3]. Other types of
systems have been found to have special structure as well, for
example the envelope of the impulse response is exponential in
special cases of the acoustic echo cancellation system, which
is an additional fact that helps the designer of the adaptive
algorithm to achieve better design. The sparsity of the optimal
solution is considered even as a stronger feature and exploiting
this information is a must for the algorithms’ designer [4].
This remarkable structure has triggered the research for the
sparse system identification, which nevertheless its novelty,
has already produced a plethora of algorithms.

Before understanding the problem from sparsity structure
vantage point, the solution is customized to the problem under

consideration. This leads to the introduction of family of
algorithms based on Proportionate Update (PN) concept. PN
algorithms assign adaption rate (step size) for each elements
that is proportionate to its value. Proportionate Update Least
Mean Square (PN-LMS) and its variants, µ-law MPNLMS
[5] and Improved PN-LMS [6], were introduced in beginning
for solving the echo cancellation problem [7]. The PN-LMF
algorithm has been recently proposed and analyzed in [8].
The PN techniques modify the sparse-agnostic algorithms
(like LMS [9] and LMF [10]) to sparse aware. However
their performance begins to deteriorate as the number of the
significant elements increases.

Another area of research emerged after the advent of the
Compressive Sensing (CS) and the LASSO operator tech-
niques [11]. The CS proposed solutions to the problem by
using sparsity-recognizing norm l0. However, because of the
difficulty in optimizing this norm and its mathematical non-
convexity properties, the l1 norm is ascribed instead to yield
a real time solution to the problem. The LASSO technique is
implemented with the Mean Square Error (MSE) function of
the LMS, and the resultant algorithm is called as Zero Attrac-
tor LMS (LMS) [13]. The ZA-LMF algorithm is introduced in
[14]. This LASSO technique results in lower steady state error
and also reduces the computational complexity. In order to
overcome the deterioration of the EMSE of the ZA-LMS when
sparsity increases, the Re-weighted ZA-LMS (RZA-LMS) is
proposed. The RZA-LMS [13] assigns weights for elements
before taking the l1 norm. The weights are assigned according
to the elements which are to be included in applying the
attraction-to-zero force. The RZA-LMS and RZA-LMF [14]
are found to be very sensitive to the choice of parameters,
which implies that they cannot be considered as final solution
to the variable sparsity problem.

The convex combination filter, a filter that chooses between
two component filters, is considered as a solution to the trade-
off between the two algorithms [15]. For example, the tracking
ability of the LMS is superior to that of the RLS under specific
conditions, and the converse is true for the RLS. By using a
convex combination of the RLS and LMS [16], the trade-off
is removed and the convex filter will always insure the best
tracking ability, and the convex is called universal — it always
chooses the best performing component filter. By looking at
the variable sparsity identification as a trade-off between the



sparse-aware algorithm and the sparse-agnostic algorithm, a
convex combination is proposed with the LMS and the ZA-
LMS as component filters [17].

The LMF is known to be superior to the LMS algorithm
when the Signal-to-Noise Ratio (SNR) is low and the measure-
ment noise is non-Gaussian. In this work we propose a convex
combination of LMF and ZA-LMF algorithms to solve the
problem of variable sparse system identification under these
conditions.

II. LMS AND LMF ALGORITHMS: PERFORMANCE
INVESTIGATION IN LOW SNR ENVIRONMENTS

The Wiener filter problem depends heavily on the assump-
tion of the Gaussianty of the adaptation error. The Gaussian
distribution is known to defined by its first and second only
moments, i.e., the mean and the variance. Assuming the mean
of the distribution is zero, the task of minimizing the error
becomes minimizing the second moment. This results in the
famous LMS algorithm [18], which minimizes the variance
of the adaption error. The LMS performs exceptionally well
when both the input regressors and the measurement noise
are Gaussian under high SNR environments. These conditions,
insures from the first iterations that the adaptation error is a
Gaussian process.

The distribution of the error, however, is a function of
SNR. Figure 1 depicts the relationship between the excess
kurtosis and SNR for the adaption error at the first iteration
in the LMS algorithm. We use the excess kurtosis because
it measures how much the distribution in hand is similar
to the normal distribution. If the excess kurtosis is zero,
we have a perfect normal distribution, where negative and
positive distributions correspond to platykurtic and leptokurtic
distributions, respectively. As it can be seen from this figure,
as the SNR decreases the distribution of the error changes to
platykurtic distribution, which is known for their large vari-
ations of observations. Hence, we infer from this experiment
that the LMS at low SNR suffers slow convergence because it
ignores to minimize the excess kurtosis. On the other hand, the
LMF succeed in minimizing both the variance and the excess
kurtosis simultaneously. We conclude from this observation
that the LMF acknowledges the platykurtic distribution of the
error in a low SNR environment more than does the LMS,
which explains the faster convergence and better MSE level
of the LMF described in [10].

III. PROBLEM FORMULATION

The objective of this work is to introduce a solution to the
problem of variable sparse system identification in low signal
to noise ratio environments. The LMF is a sparse agnostic
algorithm and for sparse systems it has higher excess MSE
compared to its sparse aware companion, ZA-LMF, defined
by the recurrence:

wi = wi−1 + µuTi e
3(i)− ρsign(wi). (1)

It introduces lower EMSE in case of sparse optimum filter,
however, the EMSE starts to increase as the sparsity rate
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Fig. 1: Excess Kurtosis versus SNR.

increases. Hence, both of the algorithms are not suitable (by
itself) for the variable sparse system identification problem.

By combining the two algorithms, with the convex filter
technique introduced in [15], the resultant algorithm is univer-
sal compared to its components. The universality here means
that the convex filter performs as better as its best component
elements (ZA-LMF and LMF in this case), in the steady state.

The solution offered by the convex filter is given by the
following equation:

w(i) = λ(i)w1(i) + [1− λ(i)]w2(i). (2)

The convex combination filter is described in Fig. 2, is an
aggregation of two component filters, in our case one is the
LMF and the second is the ZA-LMF filter.

Fig. 2: Diagram of the convex combination filter.

In order to insure that the combination is convex, we have
to find a function of λ(i) such that it is bounded from zero
to one. Sigmoid function has this property, and it is smooth
as well (perfect for derivative). The combination factor λ(i)
is given by the following equation:

λ(i) =
1

1 + e−a(i)
. (3)

From (3), it is obvious that the update recursion of the convex
factor will be on a(i) rather than λ(i) directly. The recursion
equation is given by

a(i+ 1) = a(i)− µa
2

∂e2(i)

∂a(i)

= a(i) + µae(i)[y1(i)− y2(i)]λ(i)[1− λ(i)]. (4)



The universality, mathematically speaking, is to see where the
combination goes as the nature of the system changes from
sparse through semi-sparse to completely non-sparse. The
combination should follow the change, and offer the lowest
possible EMSE. In order to do this, we study the behavior
of (4) at steady state. At steady state we assume that λ(i) is
independent of ea,k(i), we have the following equation that
describes the steady state behavior of a(i):

E[a(i+ 1)] = E[a(i)] + µaE[λ(i)[1− λ(i)]2]∆J2

− µaE[λ(i)2[1− λ(i)]]∆J1 (5)

where ∆J1 = Jex,1(∞)− Jex,12(∞) and ∆J2 = Jex,2(∞)−
Jex,12(∞), and Jex,1(∞) and Jex,2(∞) denote the steady-
state EMSE of the LMF and the ZA-LMF filters, respectively.

Equation (5) describes the evolution of the E[a(i)] and
assumes that both the algorithms are converged. Next, we
study (5) for the three cases of systems, considering that the
two filers use the same step size.

IV. THE UNIVERSALITY OF THE COMBINATION FILTER

The universality in the EMSE sense means that the convex
filter always performs as good as its best component filter.
Let us denote the EMSE of the LMF filter as Jex,1(i) and the
ZA-LMF filter as Jex,2(i). To decide the universality we use
the cross error between the two filters which is defined by:

Jex,12(i) = E{ea,1(i)ea,2(i)} (6)

We use this cross error as a metric to decide what the filter
chooses in the specific condition. The conditions we have here
are full sparse, semi-sparse or completely non-sparse system
(dense). Before we study the universality, we find the excess
mean square errors, Jex,1(i), Jex,1(i) and Jex,cs(i).

1) EMSE of LMF and ZA-LMF algorithms: We use the
following general LMF recursion to start the analysis of the
EMSE:

wi = wi−1 − si + µe3(i)uTi . (7)

When the sparsity aware term si = 0, we have the ordinary
LMF and si = ρsign(wi) results in ZA-LMF algorithm. We
customize the analysis for the white Gaussian input, which
dictates a linear relation between the EMSE and Mean Square
Deviation (MSD), reads as follows:

MSD(∞) = σ2
uEMSE(∞). (8)

By defining the misalignment error as zi = wo −wi. The
energy conservation is then derived as follows:

‖zi‖22 = {zi−1 + si − µe3(i)uTi }T {zi−1 + si − µe3(i)uTi }
= ‖zi−1‖22 − zTi−1si + µe3(i)zTi−1u

T
i

+ sTi zi−1 + s2i − µe3(i)siui

+ µe3(i)uizi−1 − µe3(i)uisi + µ2e6(i)‖ui‖22. (9)

assuming here that all the signals are real. The Energy relation

then summarizes to

‖zi‖22 = ‖zi−1‖22 + ‖si‖22 − 2zTi−1si + 2µe3(i)zi−1u
T
i

− 2µe3(i)uisi + µ2e6(i)‖ui‖22. (10)

The adaption error is assumed to have a symmetrical pdf, and
invoking the following assumptions:

1) The input is white Gaussian with autocorrelation matrix
σ2
uI.

2) E‖zi‖22 = E‖zi−1‖22 as i → ∞. (steady state defini-
tion).

3) The sparse enforcing term si is independent from the
input regressor and adaption error (this assumption fol-
lows directly from the independent assumption).

4) The weight vector wi is Gaussian at steady state.
5) The measurement noise is white Gaussian with power

σ2
v .

Now, define the following terms as:

2µEe3(i)zi−1u
T
i︸ ︷︷ ︸

A

= µ2Ee6(i)E‖ui‖22︸ ︷︷ ︸
B

+E‖si‖22︸ ︷︷ ︸
C

+ 2EzTi−1si︸ ︷︷ ︸
D

(11)

We tackle the terms as follows:
Term A:

A = 2µEe3(i)zi−1u
T
i = 2µEe3(i)ea(i)

= 2µEe4a(i) + 6µσ2
vEe

2
a(i) (12)

Term B:

B = µ2Mσ2
uEe

6(i)

= µ2Mσ2
u{Ee6a(i) + 15σ2

vEe
4
a(i) + 15η4vEe

2
a(i) + η6v}

(13)

where ηjv = E|v(i)|j
Term C:

C = E‖si‖22 = Mρ2 (14)

and ρ = 0 for LMF.
Term D: Clearly this term vanishes, when the algorithm is
sparse agnostic (LMF). For the case of the ZA-LMF algorithm,
we segment the elements of the sparse optimum filter into two
groups, the zero and the non-zero elements (i.e., significant).
For the non-zeros elements (k ∈ NZ), the sparsity acknowl-
edging term si becomes independent of the filter update vector
wi, while this fact does not hold for the zero elements (k ∈
Z). The term D then can be expanded into its components as
following:

D = E
∑
k∈Z

z(i− 1, k)s(i, k) +
∑
k∈NZ

E{z(i− 1, k)}s(i, k)

= −ρE
∑
k∈Z

w(i− 1, k)sgn{w(i− 1, k)} = ηz (15)

By invoking assumption 3 and Price’s theorem, we deduce the
following:

Ew(i− 1, k)sgn(w(i− 1, k)) = aEw(i− 1, k)2 > 0 (16)

a =
√
{( 2

πσ2
w,k

)} (17)



Substituting (12)-(15) into (11), an expression for the EMSE
is given by

Eea(i)2 =
µMσ2

uη
6
v

6σ2
v − 15µMσ2

uη
4
v︸ ︷︷ ︸

ζLMF

+
Mρ2 + ηz

6µσ2
v − 15µ2Mσ2

uη
4
v︸ ︷︷ ︸

ζZA−LMF

(18)

For the case of ρ = 0, (18) falls back into the EMSE
expression of the LMF described in [19]. Note that Mρ2 +

ηz = ρ{Mρ−
√

2
π (M −N)σw} < 0 1, when the number of

Non-zeros (N ) is very small. From (17), we can see that it
is always beneficial to apply a zero attractor to the sparse
system identification problem, since it will always insures
lower EMSE given that we have chosen the suitable attraction
factor value ρ. Now. it remains to find cross excess mean
square error for the combination filter defined in (6).

2) Cross Excess Mean Square Error, CEMSE: Starting
with the following two recursions of the LMF and ZA-LMF,
respectively2,

w1(i) = w1(i− 1) + µe31(i)uTi (19)
w2(i) = w2(i− 1) + µe32(i)uTi − s(i), (20)

and the relation between the CEMSE and the CMSD, for
Gaussian input defined by

CEMSE(i) = σ4
uCMSD(i). (21)

Now, we can follow an energy conservation argument ap-
proach as follows:

z1(i)T z2(i) = z1(i− 1)T z2(i− 1)− µe32(i)uiz1(i− 1)

+ zT1 (i− 1)si − µe31(i)uiz2(i− 1)

+ µ2e31(i)e32(i)‖ui‖22 − µe31(i)uisi (22)

where zi = wo−wi. Similar to the component filter, at steady
state the following condition is satisfied [15]:

E{z1(i)T z2(i)} = E{z1(i− 1)T z2(i− 1)} (23)

then (22) reduces to

µEe31(i)ea,1(i) + µEe32(i)ea,2(i) = µ2Mσ2
uEe

3
1(i)e32(i)

+ Ez1(i− 1)T s(i) (24)

By ignoring the higher power errors and recalling assumption
4, (24) further reduces to

6µσ2
vJex,12(i) = 9µ2Mσ2

uη
4
vJex,12(i) + 9µ2Mσ2

uη
6
v

+ E z1(i− 1)T s(i)︸ ︷︷ ︸
ζz

(25)

Jex,12(∞) =
µMσ2

uη
6
v

6σ2
v − 9µMσ2

uη
4
v

+
ζs

6µσ2
v − 9µ2Mσ2

uη
6
v

(26)

By following the same argument in Term D (that leads (15),

1Practically,
√

2
π
>> ρ

2we assume equal step sizes for the two recursions.

we conclude

ζz = −ρ
∑
k∈Z

w1(∞, k)sgn(w2(∞, k))

= −aρ
∑
k∈Z

E{w1(∞, k)w2(∞, k)}

= −aρ
∑
k∈Z

E{z1(∞, k)z2(∞, k) (27)

where a =
√
{( 2
πσ2

w,k
)}. In order to investigate the sign of ζz ,

we study the behavior of the cross miss-adjustment as i→∞.
The next step is to prove that the term E{w1(∞, k)w2(∞, k)}
is positive at steady state.

3) Sign of E{w1(∞, k)w2(∞, k)} at steady state: Starting
with the matrix version of (22):

z1(i+ 1) = z1(i)− µe31(i)xTi (28)
z2(i+ 1) = z2(i)− µe32(i)xTi

+ ρsgn{w2(i)} (29)
E{z2(i+ 1)zT1 (i+ 1)} = E{z2(i)− µe32(i)xTi

+ ρsgn{w2(i)}}{z1(i)− µe31(i)xTi }T

= E{z2(i)zT1 (i)} − µE{z2(i)xie
3
1(i)}

− µE{xTi z1(i)e32(i)}
+ µ2E{e31(i)e32(i)xix

T
i }

+ ρE{sgn{w2(i)}z1(i− 1)}
− µρE{sgn{w2(i)}xie31(i)} (30)

Ignoring the higher power errors, and evoking assumption
(5), and the famous independence assumption, recursion (22)
becomes

c(i+ 1) = c(i)− 3µσ2
vc(i)Rx − 3µσ2

vRxc(i) + ρb(i)

− µρσ2
vb(i)Rx + 9µ2η6vRx

+ 18µ2η4vσ
4
xc(i) + 9µ2η4vσ

4
xE{zT1 (i)z2(i)}1 (31)

Recalling that the input correlation matrix of the input is σ2
xI,

we finally have:

c(i+ 1) = c(i)[1− 6µσ2
vσ

2
x + 18µ2η4vσ

4
x] + ρ(1− µσ2

vσ
2
x)b(i)

+ 9µ2σ2
xη

6
v1 + 9µ2η4vσ

4
xE{zT1 (i)z2(i)}1 (32)

where c(i) = diag[E{z2(i)zT1 (i)}] and b(i) =
diag[E{sgn{w2(i)}z1(i)}] . We pursue (32) more by
grouping the elements of c(i) and b(i) into the zero [k ∈ Z]
and non-zero [k ∈ NZ] elements.

For the b(i) = [bNZ(i),bZ(i)]T , we notice that
for the non-zero (significant) elements as i → ∞,
E[sign{wk,2(i)}zk,1] = sign{wok,2}E[zk,1](i) = 0,
whereas, for the zero elements, E[sign{wk,2(i)}zk,1] =
−aE[wk,2(i)wk,1] = −aE[zk,2(i)zk,1] where a =√
{( 2
πσ2

w,k
)}.

Hence, b(i) = −ac(i), when i→∞. Next, the evolution of
the cross weight error vectors, E[zT1 (i)z2(i)]1 = λ(i)is given



by

λ(i+ 1) = (1− 6µσ2
vσ

2
x + 18µ2η4vσ

4
x)1T cNZ(i)

+ (1− 6µσ2
vσ

2
x + 18µ2η4vσ

4
x − aρ(1− µσ2

vσ
2
x))1T cz(i)

+ 9µ2Mσ2
xη

6
v + 9Mµ2η4vσ

4
xλ(i). (33)

The convergence of (33) depends almost on (1 − 6µσ2
vσ

2
x +

18µ2η4vσ
4
x) = α, since ρ ≈ 0. The attraction factor is normally

chosen to be small, since it introduces high EMSE for high ρ
for the non-zero elements. For the convergence condition given
in [10], i.e., 0 < µ < 1

6σ2
vTr(Rx)

= 1
6Mσ2

vσ
2
x

. α < 1. Equation
(33) is descriptive because it gives the convergence of the cross
weight errors in terms of the cross weight error of the zero
and non-zeros elements cZ(i) and cNZ(i), respectively. By
neglecting ρ(.), we have:

λ(i+ 1) = λ(i)[1− 6µσ2
vσ

2
x

+ (9M + 18)µ2η4vσ
4
x] + 9Mµ2σ2

xη
6
v (34)

λ(∞) =
9Mµ2σ2

xη
6
v

µσ2
x(6σ2

v − (9M + 18)µη4vσ
2
x)
> 0 (35)

for large M and Gaussian noise 3.
For k ∈ Z (33) becomes:

ck(i+ 1) = ck(i)[1− 6µσ2
vσ

2
x + 18µ2η4vσ

4
x] + 9µ2σ2

xη
6
v

+ 9µ2η4vσ
4
xλ(i) (36)

ck(∞) =
9Mµ2σ2

x(η4v + σ2
xη

6
vλ(∞))

µσ2
x(6σ2

v − (9M + 18)µη4vσ
2
x)
> 0 (37)

It follows from (37) that ζz < 0 in (27).
In the ensuing, we study the combination behavior in the

three states under consideration.
Non-sparse system (dense): In this case the number of
significant elements in the optimal vector solution is very
large. Hence, S12(∞) ≈ 0 and S(∞) > 0. which means
Jex,1 > Jex,2 for this case. The error difference quantities
in (5) summarizes as follows:

∆J2 = Jex,2(∞)− Jex,12(∞)

=
6M2µ2σ4

uη
4
vη

6
v

(+)
≈ 0 (38)

∆J1 ≈ µMσ2
uη

6
v

6σ2
v − 15µMσ2

uη
4
v

− Mρ2

6σ2
v − 9µMσ2

uη
4
v

> 0 (39)

Note that we have used the small step size approximation,
which is apropos for the LMF filters, since we use very small
step size to annihilate the probability of divergence. This
case corresponds to the second case introduced in [15]. The
evolution of E{a(i)} is described by:

E{a(i+ 1)} ≤ [E{a(i)} − C]a
+

a− (40)

where C = λ+(1 − λ+)2(∆J1 − ∆J2), indicating that the
asymptotic value of Ea(i) = −a+. In another words, the
combination chooses the LMF over the ZA-LMF.
Semi-Sparse Systems:

In this case the following condition is satisfied:

∆J1 > 0,∆J2 > 0 (41)

3Sparse filter are naturally large.

since ∆Jex,1(∞) > ∆Jex,2(∞) > ∆Jex,12 (because the
number of zero elements increased dramatically for this case
compared to the dense systems), the semi-sparse case then
corresponds to the third case in [15], where the asymptotic
combination factor is given by

E[λ(∞)] =
∆J2

∆J1 + ∆J2
> 0.5 (42)

In this case the combination filter is completely optimal and
generates EMSE lower than the EMSE of both components
filter, i.e.:

Jex(∞) ≤ min{Jex,1(∞), Jex,2(∞)} (43)

Sparse Systems:
For this case, Jex,2(∞) > Jex,1(∞), since the S(∞) < 0

because of the dominance of the zero terms.
Jex,2(∞) > Jex,1(∞) is implied because S12(∞) < 0.

Hence, ∆J2 > 0. What remains is ∆J1, which is given by

∆J1 = Jex,1(∞)− Jex,12(∞)

≈ Mρ

6σ2
v

[
ρ

µ
−
√

2

π
(1− N

M
)
σw
µ

+

√
2

π

9

2

σ2
v

σw

]
= kρ2 + lρ (44)

and k = M
6σ2

vµ
> 0 and l =

√
2
π [σw

σ2
v
− 9σ2

v

2σw
]. Assuming that

A.5 is satisfied, the behavior of ∆J1 is a function of the sign
of l. Here, then we consider the following two cases of sign:
l > 0
In this case ∆J1 > 0, and the sparse case matches again with
the third case introduced in [15], i.e., the combination filter
introduces lower EMSE compared to the LMF and ZA-LMF.
l < 0
For this case ∆J1 < 0, for the range of 0 < ρ < l

k . This case
corresponds to the first case in [15]. In which, the evolution
of the combination factor a(i) is described by:

E{a(i+ 1)} ≥ [E{a(i)}+ C]a
+

a− (45)

which leads, eventually, to the asymptotic value of λ(i) = λ+,
which implies that the combination filter switches to the ZA-
LMF completely.

V. SIMULATION RESULTS

The convex combination is tested under low SNR (= 10 dB)
environment with measurement noise modeled with uniform
process. The optimum system with number of taps M = 80,
is first set to be very sparse with fixed value (= 1) at
support S = {5}, then changed to semi sparse system with
S = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}, and completely non-
sparse (dense) system for the last stage. The step size of the
algorithms is 0.002, the zero-attractor factors are 2 × 10−6,
1 × 10−4 for LMF and LMS based algorithms, respectively.
The step size of the convex combination filters (i.e. µa) has
the value of 50 and 10 for LMF and LMS respectively4. It
should be noted that the MSD as a measure of performance

4Unlike the conventional very high values of µa (in terms of 1000,10000),
to avoid instability under the conditions of the experiment— this values are
found by experiment
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Fig. 3: MSD curves for LMF, ZA-LMF algorithms and their convex
combination. SNR level is 10 dB with uniform measurement noise.

is equivalent to the EMSE, especially when we are using
Gaussian with unity input power (this can clearly be seen from
(21). The results are depicted in Figs. 3-4. For the first stage,
the sparse system, the LMS convex combination converged
faster to steady state, but with much higher misadjustment
compared to the convex combination of the LMF. This trend
continued over the three stages of the experiment, proving that
the LMF is superior to the LMS under low SNR with uniform
noise process. The LMF convex filter followed the ZA-LMF
completely, which reaches the lowest steady state level and
it is also fastest. However, the MSD level of the ZA-LMF
deteriorates as the density of the significant elements in the
optimal vector increased. We conclude from the experiment
that not only the LMF convex filter insured lower MSD level
compared to the LMS combination, but it also reduced the
dynamic range of the MSD compared to the LMS.
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Fig. 4: Combination factor evolution for the first experiment

VI. CONCLUSION

In this work, we introduced the convex combination filter of
LMF and ZA-LMF algorithms to solve the problem of variable
sparse system identification under non-Gaussian measurement
environments. The steady state universality is conducted, and
its outcomes is confirmed with computer simulations, where

we found that the convex insures of having the best perfor-
mance among its components. The convex is compared with
its LMS version and found to have excellent performance in
this comparison.
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