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Abstract—
Today’s network operators strive to create self-healing cellular

networks that have a fully automated troubleshooting manage-
ment process. To this end, the network monitoring system should
be capable of detecting issues, diagnosing them, and triggering
the adequate recovery action. In this paper, we propose an
unsupervised solution to diagnose the root causes of network
issues. As monitoring systems collect a large number of logs from
the different devices in their networks, it is possible to determine
which connections resulted in a poor user experience and apply
a failed/successful label. Our solution, Automatic Root Cause
Diagnosis (ARCD), analyzes labeled connection logs to identify
the major contributors to the network inefficiency (e.g., a faulty
core device) as well as the incompatibilities between different
elements (e.g., make and model of a phone not being able to
access a service). We evaluate the effectiveness of our solution by
using logs from three different real cellular networks. In each
case, ARCD was able to identify the major contributors and
the most widespread incompatibilities. In the three cases, the
precision (detection accuracy) and the recall (detection rate) are
higher than 90%.

Index Terms—Network monitoring, root cause diagnosis, self-
healing networks, fault management, data analysis.

I. INTRODUCTION

Cellular networks have become more complex over the
years, with multiple co-existing Radio Access Technologies
(RATs) from 2G to 4G and now 5G, multiple core net-
work devices from various vendors, multiple services that
go beyond regular telephony, and multiple handsets running
various Operating Systems (OSs). This growing complexity
makes the task of monitoring the network and identifying
the cause of performance degradation more challenging for
network operators. Most devices in the network generate log
messages detailing their operations. Based on these messages
it is possible to reconstruct what happened in the network,
at least to a certain extent. But, given the sheer number
and variety of these messages, it is not feasible for human
operators to analyze all of them directly. This is why log
messages are usually pre-processed before being scrutinized
by human experts who are in charge of identifying and
mitigating the issues by appropriate actions. This analysis,
while partly automated and aided by ad-hoc tools [1], is often
time consuming and inefficient. Network operators would like
to increase the automation of this analysis, in particular for
cellular networks, in order to reduce the time needed to detect,
and fix, performance issues and to spot more complicated
cases that are not always detected by human operators.

The data that are generated by the monitoring system are
a large number of log entries (or simply logs), each of them

being the report of what happened during a session. The term
session depends on the specific service: Call Data Record
(CDR) for a regular phone call or Session Data Record (SDR)
for a service based on Internet Protocol (IP). The log takes
usually the form of a series of 2-tuples (feature, value). The
feature is a name indicating the nature of the corresponding
value (for example cell identifier, content provider, handset
manufacturer), while the value is what has been collected for
this particular session (in our example, a number that enables
to uniquely identify the cell, the name of a provider, and
the name of a manufacturer). The root cause of a network
malfunction can be either a certain 2-tuple, or a combination of
k 2-tuples. Figure 1 shows a simplified view of an LTE cellular
network, including some of its elements and the corresponding
monitoring system, which collects data from the different
devices to produce the CDRs and SDRs.

The literature related to network monitoring is extensive
(see Section II). However, identifying the root cause of prob-
lems in modern cellular networks is still an open research
question due to specific requirements related to the nature
of this type of networks: First, a diagnosis system should
work on various types of logs (phone, data, multimedia
session) because, nowadays, cellular networks carry significant
amounts of data traffic as well as voice. Second, a diagnosis
solution has to deal with the increasing number of features.
Logs can now include features related to the service (e.g.,
the content provider, the quality and priority classes), to the
network (e.g., the RAT and the gateways involved), and to
the user (e.g., the handset type and the handset manufacturer).
Furthermore, these features can depend on each other due to
the architecture of network and services. Third, a diagnosis
solution has to address the complex interplay between features.
For example, an OS version not supporting a particular service.
Both the service and the OS can behave normally in a
majority of sessions when scrutinized independently; the issue
can only be diagnosed in logs containing both. Finally, the
diagnosis solution should focus on problems that have an
actual impact on the network performance. A problem that
happens sometimes in a device that is used by millions of
users can have a greater importance than a problem happening
always in a device used by only a few users. The balance
between number of occurrences and inefficiency is a matter
of prioritizing mitigation actions.

A. Objectives of our Diagnostic System
Our goal is to design a diagnostic system, which addresses

three key and challenging features that network operator
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Figure 1: System architecture of an Long Term Evolution (LTE) network with a subset of the monitored elements;
Evolved Node B (eNodeB), Packet data network Gateway (PGW), Serving Gateway (SGW), and Mobility Management
Entity (MME)

management teams are waiting for:
• Identifying Major Contributors: We call major contrib-

utors all the elements that cause a significant decrease
of the overall network efficiency. For example, a faulty
MME causing a large number of dropped calls. Our goal
is to identify the major contributors in the whole set of
logs. Once these major contributors have been identified,
it is possible for human experts to scrutinize them in order
to resolve the underlying issues.

• Detecting Incompatibilities: A consequence of the great
variety of devices involved is that incompatibilities be-
tween some of them can also result in poor Quality of
Experience (QoE) for the users. An incompatibility is a
failing combination of two, otherwise properly working,
elements. As previously stated, a new release of an OS
can typically be incompatible with a service (e.g., voice
calls, toll numbers).

• Forming Equivalence Classes: Equivalence classes are
sets of key-feature values that correspond to the same
underlying problem or that are strongly correlated. For
instance, if a cell has only a few users and one of them
is significantly more active than all the others (e.g., an
automated bot making robocalls) and if the corresponding
International Mobile Subscriber Identity (IMSI) has an
abnormally high failure rate, the corresponding cell might
have an abnormally high failure rate as well, but this
is only because the specific IMSI is present in the
overwhelming majority of the logs of the calls starting in
that cell. We build equivalence classes to prevent the same
cause to appear in failing logs under multiple features.

We provide more details in Section IV on the reasons for
which these three tasks are relevant and why it is not easy to
automate them reliably.

B. Contributions

In this paper, we present ARCD: a complete solution to
identify the root cause of network inefficiencies. In a pre-
vious paper [2], we have introduced the main idea behind
ARCD. In the present paper, we provide a complete and

detailed description of the solution. In particular, while our
previous paper has only focused on the identification of major
contributors, we present here how ARCD manages to detect
incompatibilities and equivalence classes. To our knowledge, it
is the first time the algorithms behind a complete in-production
anomaly detection system for mobile networks are described
in an academic paper.

We first present the main algorithms that run the ARCD
system. Then, we evaluate ARCD by analyzing the logs of
three different cellular network operators. Our results show
that with an automated solution, we can not only carry out
the analysis done by experts but we can go to a finer level
of diagnosis and point to the root causes of issues with high
precision.

II. RELATED WORK

The literature on automatic root cause diagnosis is exten-
sive [3]. We distinguish two main approaches. One approach
is characterized by analyzing one feature at a time. The second
approach is based on dependency analysis.

A. Approaches

Isolated Features. Some researchers consider each feature
in isolation (e.g., handset type, cell identifier, service), apply-
ing statistical inference, Machine Learning (ML) techniques,
or expert rules to identify the elements causing network
inefficiency. As an example, Gómez-Andrades et al. [4] use
an unsupervised technique based on Self Organizing Maps
and Hierarchical Clustering to identify the cells responsible
for network inefficiency. Other studies, which are not limited
to the radio context, have an end-to-end view of the network
considering only one feature at a time. For example, Serrano
Garcia et al. [5] propose a dynamic diagnosis framework based
on weighted correlation. This framework is applicable at any
level of the network (e.g., cells, core equipment). Such an
approach has also been explored in contexts other than mobile
networks. For instance, Zheng et al. [6] perform rough root
cause location on High Performance Computing (HPC) sys-
tems based on software logs to classify issues into three classes
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of failures: hardware, software and application. This approach,
based on analyzing each feature in isolation, can be accurate
and easy to understand by end users, but its main drawback is
that it does not take into account the dependencies between the
features. For instance the cells connected to a malfunctioning
Base Station Controller (BSC) may appear as inefficient. The
approaches based on considering one feature at a time have
also the obvious limitation of ignoring all the problems caused
by more than one feature, such as incompatibilities and causal
effects. These induced effects cannot be detected unless one
uses dependency analysis.
Dependency-Based. Some researchers have focused on
hierarchical dependencies resulting from the topology of the
network, e.g., the content providers of a mis-configured service
having their content undelivered. To identify such dependen-
cies, they rely on the topology of the network, which is not
always straightforward to obtain in an automated way. Jin et al.
[7] combine multiple classifiers to rank the locations of the
issues. Then, they exploit the topology of the wired access
network to explain the dependencies between the problems.
Mahimkar et al. [8] monitor the Key Performance Indicators
(KPIs) to identify the most inefficient elements in the network.
Then, they explore the higher level elements in the topological
graph of the network to identify the elements impacted by
the same problem. By relying on the network topology to
identify dependencies, one may miss some relevant occasional
dependencies resulting from co-occurrence or coincidence,
e.g., a group of cellphone roaming users (tourists) accessing
the same cell. These dependencies are not predictable by the
experts. To explore both hierarchical and occasional dependen-
cies, different statistical methods have been proposed. These
studies, while addressing some of the challenges related to
root cause analysis, do not meet all the requirements of a
complete and production-ready diagnostic system. First of all,
it is non-trivial to automatically and reliably discover the
network topology. Solutions that require this as an input are not
practical, especially for networks as complex as cellular ones.
Second, the aforementioned statistical tools are not well suited
to handle logs with many features (more than one hundred
in typical LTE networks), especially when many of these
features are categorical. Lastly, for a solution to be viable in a
production environment, it must also be scalable and present
results that are easy to interpret by human operators.

B. Techniques

We can classify root cause diagnosis techniques in two main
categories: expert systems and ML.
Expert Systems. Some researchers used expert systems
to perform root cause diagnosis [3, 9]. Starting from a set
of known issues, they build rules based on KPIs that can
determine the nature and location of each problem. As they
are based on known issues, they need be constantly updated
as new class o problems are discovered. This is the norm in
mobile networks, given the rapid growth of mobile networks
and the multiplicity of actors (equipment vendors, handset
manufacturers, software companies). If human experts need to
implement these updates, the resulting costs can be prohibitive,

given the large volumes of data generated by modern networks.
This is why there have been recently some efforts to build
more autonomous systems based on ML.
Machine Learning. There is a vast literature on classifi-
cation and prediction, including applications to self-healing
cellular networks [10]. Network logs may have Quality of
Service (QoS) labels. As an example, a CDR is labeled as
successful if the call is established and failed if the call
drops. Even though we are dealing with labeled data, our goal
is not to predict the label, which is the goal of supervised
ML techniques. Our goal is to identify the root causes of
problems that can negatively affect the users of cellular
networks. Classification, however, is a potential solution. Some
researchers applied clustering techniques to cluster cells or
another feature into faulty/non faulty one based on specific
KPIs [4]. This approach, as explained in Section II-A, has
many limitations. Decision trees are another technique that
can be used to infer the association rules in a data set [11].
However, it necessitates a database of solved cases, which
would be extremely expensive to generate and to keep up-to-
date. On the one hand, due to dependencies between features,
human experts are not capable of identifying manually all the
major contributors and incompatibilities to train a supervised
system. In general, ML algorithms can learn from labels
but not rules. Reinforcement Learning (RL) addresses this
limitation and thus can be applied to create a self-healing
cellular network [12]. However, in our use case, RL has two
major problems. First, we cannot deploy a solution that acts
directly on the mobile network without human intervention.
Second, it is not straightforward to identify a reward function
for major contributors (and incompatibilities) that can be
automatically evaluated.

III. DATA MODEL AND NOTATIONS

A. Data Records

As detailed in the Third Generation Partnership Project
(3GPP) specification [13], network operators collect data
records to report every mobile communication that is estab-
lished in the network. A data record contains the technical
details of a mobile communication without including its con-
tent. These records can be used in network troubleshooting [9].
We call log an entry in the data records. A log is a series of
2-tuples (feature, value) where the features can be:
Service related extracted via a Deep Packet Inspection (DPI)

module such as service type, Mobile Network Code
(MNC), content provider, QoS Class Identifier (QCI).

Network related such as RAT, MME, Radio Network Con-
troller (RNC), cell.

User related such as IMSI, handset type.
In a log, every feature is associated with a value. We show in

Table I three logs with a few features. Note that every value
used in the paper appears with a hashed value to preserve
anonymity. Logs from the same cell (logs 0 and 2) or from
the same service (0 and 1) can be tracked. The table shows
as well that each log has a feature called label, which is
a binary value indicating whether the communication was
satisfactory or not. The label can be either collected directly
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by the monitoring system, or it can be computed during a
post-processing analysis based on the values of the log.

first cell imsi tac service interface label

0 a3d2 97c8 c567 ea52 eccb failed
1 b37a 56ed ce31 ea52 19c4 successful
2 a3d2 fa3e c41e c98e f487 successful

Table I: Example of a Data Record with a few features

We consider two types of Data Records in this paper:
CDR the records of voice calls. Each time a subscriber

attempts to make a call, a CDR is created. If the call
is dropped, the CDR is labeled as failed.

SDR the records created to track every Internet connection
in cellular networks. An SDR is created each time a
subscriber attempts to use an online mobile application.
SDRs are often the summary of multiple Transmission
Control Protocol (TCP) connections initiated by the mo-
bile application. Unlike CDRs, SDRs are not labeled.
However, it is possible to estimate the QoE for the user
and thus to attribute a label, based on the data rate,
response time, and retransmission ratio.

Thanks to the success/fail label, it is possible to compute the
network inefficiency, that is the proportion of failed commu-
nications. This proportion can be computed over all the logs,
or it can be relative to a specific subset (e.g., all the logs that
share a given feature-value pair).

B. Notation

Let E be a set of logs and f1, f2, ..fn be the features of
the logs. A log x ∈ E can also be represented as a vector
x = (x1, x2, . . . , xn) where xi is the value of the feature fi.
Since every log has a label, we can partition E in two disjoint
subsets: S containing the logs labelled as successful and F
containing the logs labelled as unsatisfactory (i.e., failed).

We introduce the notion of signature to group the logs that
have certain similarities. A k-signature s is the set of all logs,
irrespective of their label, where k pre-determined features
{fp1 , fp2 , . . . , fpk} (1 ≤ pi ≤ n, ∀i) have k specific values
{sp1 , sp2 , . . . , spk}. We call the parameter k the order of the
signature.

For instance, a 2-signature s that groups all logs from
cell ab34 and a mobile phone running the OS b4e8 can be
represented as:

((first cell, ab34) , (handset os, b4e8))

We denote by E(s) the set of all logs matching the signature
s, regardless of their labels. Similarly, we denote by S(s)
(respectively F (s)) the set of all successful (respectively
failed) logs matching signature s.

We define a few quantities that are useful to characterize
signatures. (The operator |.| denotes the cardinality of a set.)
Signature Proportion (π): the proportion of logs matching

s:

π(s) =
|E(s)|
|E|

Complementary Signature Proportion (π): the proportion
of logs that do not match s:

π(s) = 1− π(s)

Failure Ratio (λ): the proportion of failed logs among those
matching s:

λ(s) =
|F (s)|
|E(s)|

Complementary Failure Ratio (λ): the proportion of failed
logs in the data set without considering the logs matching
s:

λ(s) =
|F | − |F (s)|
|E| − |E(s)|

IV. OBJECTIVES OF THE DIAGNOSTIC SYSTEM

Modern cellular networks are complex systems, containing
several devices of different types. Network operators run
extensive monitoring systems to keep a constant watch on all
these devices, in order to detect misbehaving and faulty ones.
Faulty devices are not the only element to influence the QoE of
the end-users. For instance, roaming users could be prevented
from accessing the network because a misconfiguration of
an MME. Users often want to communicate with people (or
services) hosted on networks other than the one of the cellular
one they are connected to. Because of this, problems in other
networks can result in a poor QoE for some of the users of a
given cellular network.

A. Major Contributors

One of the consequences of the ever increasing usage
of cellular networks is that, even though the overwhelming
majority of users have an acceptable QoE, there is no shortage
of failed logs in most production networks. Operators would
like to be able to identify as quickly as possible, and as effi-
ciently as possible, the major contributors, that is the feature-
value pairs (or their combination) corresponding to elements
causing a significant decrease of the network efficiency. When
we exclude the logs matching these feature-value pairs and
recompute the network efficiency, we notice an important
increase. This fact means that these feature-value pairs are the
ones responsible for the network inefficiency. In other terms,
the elements pointed by these feature-value pairs are the root
causes of network major issues.

One has to be careful when applying the definition of major
contributors, as it can lead to some undesirable results. First,
because there is a inherent hierarchy in the cellular network,
one can significantly increase the efficiency of the network
by excluding all the logs that share a very popular feature-
value pair. For instance, we could notice a drastic increase
of the efficiency after excluding the logs matching a device
in the core network. This does not necessarily mean that core
network element is deficient but rather it is due to the fact that
the logs matching the core network element cover multiple
issues at different levels (cell and user issues).

Second, some elements appear in a statistically significant
number of logs, have a high failure ratio, but their inefficiency
is extrinsic, i.e., caused by other elements. For example, a BSC
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connected to four cells can be involved in a large number
of calls. If two or three of its connected cells are faulty,
excluding all the logs referencing this BSC would result in
a larger increase in the efficiency than excluding only the logs
containing one of the cells. But we are interested in identifying
the faulty cells rather than the functioning BSC.

Third, some elements are highly inefficient (they fail often),
however they do not appear in a large number of logs. For
instance a subscriber can attempt to make a single call, which
is dropped. The inefficiency of the IMSI of the subscriber
is 1.0 however it is calculated on only one log. This IMSI
cannot be considered as a major contributor since its removal
has no visible impact on the overall inefficiency. This example
illustrates the tension between major contributors and weak
signals, i.e., elements that have a high inefficiency but that
are shared by a small number of logs.

B. Incompatibilities

While major contributors can potentially affect a non-
negligible number of users, incompatibilities often affect fewer
users, making them a less urgent issue. For example, even
though voice calls using a given technology (4G or 2G) have
a very low failure rate, calls started with 4G and then switched
to 2G may have an abnormally high failure rate. The reason
behind this incompatibility may be an incorrect configuration
of the Circuit Switched Fallback (CSFB) procedure or the use
of devices from different vendors. Similarly, a new release of
a smart phone OS could not be compatible with the Transport
Layer Security (TLS) implementation used by a certain content
provider, because of a bug in the implementation of the TLS
handshake in the new release.

ARCD detects as incompatibilities all the cases where a
combination of two otherwise working elements results in a
higher failure rate. Certain cases that fall within this category
do not necessarily conform with the definition of the term
“incompatibility.” For example, consider two neighboring cells
that work correctly but such that there is a poorly covered area
between the two, so that all the calls started in one cell and
then handed over to the other experience a high drop rate.
ARCD detects this as an incompatibility, even though, there
are no two incompatible devices here. This is, nonetheless, an
issue that must be detected and addressed in order to increase
customer satisfaction.

It is extremely hard for human operators to detect incom-
patibilities simply by looking at the logs, unless these affect
a significant number of logs. This is why network operators
need automated solutions that can identify them with little
or no human intervention. As we discuss in Section VII-E3,
detecting incompatibilities is more computationally intensive
than detecting major contributors, this is why ARCD addresses
each problem separately, giving operators the freedom to
decide how often to trigger each operation.

C. Equivalence Classes

ARCD detects both types of anomaly (major contributors
and incompatibilities) as a set of one, or more, feature-value
pair(s). Because logs are meant to accurately represent the

widest possible number of cases, they contain between 30 and
60 different features (see Table II for the precise number of
features present in each data set). It is common to see a strong
correlation between one or more features for a set of logs. For
example, all SDR corresponding to a given service (feature
service provider) can have the same value for the IP address
of the service (feature host), whenever the service provider
exposes a single IP address as it does happen for smaller
service providers. In this specific example, there is a perfect
correlation between the two features, making them completely
equivalent for a subset of the logs.

The correlation can also reflect the hierarchy of the cellular
network. In the example mentioned above, about a single
failing IMSI in a cell with few users, the IMSI feature is not
exactly equivalent to the cell-id feature, but, for the purpose of
identifying the underlying problem, they are indeed equivalent.

It is important for ARCD to be able to detect these
equivalence classes automatically, in order to present them to
the human operators, who could otherwise be overwhelmed
by a long unorganized list of feature-value pairs. This is
why we build a directed graph where each node contains
one or more feature value pair. Such a data structure has
the added advantage of being well suited to build interactive
visualizations allowing users to easily navigate between the
different problems and to drill down into the details of each
one when needed.

V. MAJOR CONTRIBUTOR DETECTION

We now explain how ARCD processes data records to detect
major contributors and how it then filters the results to produce
a graph of dependencies between issues occurring in the net-
work. The first step is to label each log as successful or failed,
if the input logs are not already labeled. Then, it identifies
the top signatures responsible for the network inefficiency.
These signatures are then classified into equivalence classes,
which are groups of signatures corresponding to the same
problem. Then it generates a graph outlining the dependencies
between all the problems. It finishes by pruning the graph to
remove unnecessary nodes denoting false problems (elements
appearing as inefficient because they share a part of their
logs with malfunctioning ones). Figure 2 gives a graphical
representation of these steps, which are detailed below.

Monitoring
System

Labeling
SDRs Top

Signatures
Detection

Labelled
SDRs

CDRs

Equivalence
Class Com-

putation

Top

Signatures

Graph
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Issue
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Graph
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Figure 2: Major contributor detection steps



6

A. Labeling

The first step consists in labeling the logs. If the data has no
success/failure label, we create a binary feature based on stan-
dardized criteria specified by the 3GPP. In the case of CDRs,
we have a label success/failure based on the Session Initiation
Protocol (SIP) messages exchanged between network devices.
In the case of SDRs, we assess the QoS of TCP connections
based on metrics such as mobile response time, server response
time and re-transmission ratio. For each metric, we set a lower
bound for an acceptable QoS. An SDR with at least one value
below the threshold is labeled as failed.

B. Top Signature Detection

The second step consists in identifying the top 1-signatures
(k-signatures where k = 1) contributing to the overall ineffi-
ciency of the network. To do so, we start by generating the set
of all 1-signatures, that is the set of all possible values taken by
each one of the features. Then, for each signature we compute
two values: the Complementary Signature Proportion π and
the Complementary Failure Ratio λ. The 1-signatures with
the smallest values of λ correspond to the major contributors:
removing all the logs belonging to these signatures results in
smallest overall failure ratio for the remaining logs. Some of
these signatures match a significant fraction of the logs in the
system, for instance because the 1-signature corresponds to a
device that handles a lot of traffic with a slightly higher failure
ratio than the rest of the network.

There is a trade-off between inefficiency and representative-
ness. The Complementary Signature Proportion (π) indicates
whether a 1-signature matters. The larger is π(s), the less
common is the signature s. Our trade-off is thus as follows:
on the one hand we want signatures with the smallest values
of λ but not if the corresponding π is too small. We achieve
this goal by maximizing a linear combination of these two
values:

ν(s) = π(s)− αλ(s)

where α is a parameter to weigh the two aspects mentioned
above. Large values of α correspond to the “major contrib-
utors” (matching many logs), while small values make the
focus on “weak signal”, i.e., signatures with fewer matching
logs but whose failure rate is high. To have a robust solution,
we use several values of α: ten values between 0 and 1
(0.1, 0.2, 0.3, . . . , 1) and then twenty values between 1 and 20
(1, 2, 3, . . . , 20). The first set of values (α < 1) corresponds to
the weak signals while the second corresponds to the major
contributors.

For each one of these values of α, we compute ν for each
1-signature and we take the twenty signatures with the largest
values of ν (“top twenty”). We then compute how many times
one of these signatures is in a top twenty. A signature that
appears often in the top twenty corresponds to a potential
problem. In all our data sets, it is indeed the case that several
signatures appear multiple times in the different top twenties.
We complete this step by taking the fifty signatures that appear
more often in the top twenty. However, we cannot stop here
because some of these 1-signatures could correspond to the

same underlying problem. That is what the following step
address.

C. Equivalence Class Computation

This step consists in grouping signatures related to the same
problem. As an example, consider a user connecting to a
cell, where he is the only active user, with an uncommon
handset type. If, for some reason, the user experiences many
consecutive bad sessions, the resulting logs are labeled as
failed. In this case, the corresponding IMSI, handset type,
and the cell id appear at the top of the signature list that we
generated in the previous step. The three signatures point to
the same problem rather than three separate problems and have
to be grouped into one 3-signature. In general, two signatures
are equivalent when they match the same logs. As an aside, we
cannot determine the causal relationship between the features
and the failure. In our example, either the phone type, the
IMSI, the cell or any combination of these three could be the
cause of the failure.

We address this problem by computing two values for each
pair of 1-signatures in the list produced by the previous step:

c1 =
|E(s1) ∩ E(s2)|
|E(s1)|

c2 =
|E(s1) ∩ E(s2)|
|E(s2)|

.

If both c1 and c2 are larger than a threshold γ, we consider
the two signatures as being equivalent and we merge them
into one 2-signature. We keep repeating this process as long
as at least two signatures satisfy these conditions. This process
can generate “longer” signatures as it keeps merging shorter
ones. For example, it can crate a 3-signature by merging a 2-
signature with a 1-signature, and so on. We stop iterating when
no more signatures are merged. In remainder of this paper, we
set γ = 0.9. The outcome of this step is a set of equivalence
classes, where each class denotes one problem.

D. Graph Computation

A hierarchical dependency is another case of multiple
signatures corresponding to the same underlying problem. For
instance, a BSC connected to faulty cells would appear as
inefficient event if it is not the cause of the problem. In order
to highlight this type of dependencies, we create a graph to
model the dependencies between equivalence classes created
in the previous step. Each equivalence class can be seen as a
k-signature. Equivalence classes are presented as the nodes
of the graph. To connect the nodes we need to test one
way dependencies between equivalence classes (since we have
already dealt with mutual dependencies to identify equivalence
classes). Therefore, for each k-signature s1, we find the all the
signatures s2 such that:

|E(s1) ∩ E(s2)|
|E(s1)|

> γ

which means that the logs matching s1 are approximately a
subset of the logs matching s2. This way, we find all the parent
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Figure 3: Multiple Path Examples

nodes of s1. The output of this process is an acyclic direct
graph, which is not necessarily connected.

The graph may have superfluous connections, as shown in
the example with three signatures s1,s2,s3 in Figure 3. If s1
depends on s2 (s2 is the parent node s1) and s2 depends
on s3 then s1 depends on s3. If we generate the graph as
explained above, we have two paths between s1 and s3: a
direct connection and another connection via s2. In this case,
the direct connection between s1 and s3 is irrelevant since
it does not add any information compared to the connection
via s2. To solve this problem, we use the Depth-first Search
algorithm to find all the paths between every pair of connected
nodes and then we keep only the longest path. Note that
keeping only the longest path does not lead to any information
loss.

Consider the second case in Figure 3. There are three paths
from s4 to s7. Without loss of generality, assume that we have
considered the path through s6 as the longest one. Then, we
will keep only this path between s4 and s7. But, since there
is only one path between s4 and s5, this link is kept as the
longest one between s4 and s5. The same argument applies to
the link between s5 and s7. In this case, we end up removing
only the link between s4 and s7.

E. Graph Pruning

The structure of the graph allows the exploration of faulty
devices and services in a hierarchical way: At the top, we
find frequent signature (having a high π) such as core network
equipment, popular services and handset manufacturers. At the
bottom of the graph, we have less frequent signatures such as
user IMSIs, host IP addresses, and the least used cell ids.

In a well-constructed graph, we need each child node to
have extra information compared to its parent nodes. Other-
wise, it is irrelevant and it should be removed. In our case,
we know that the parent node is inefficient to some extent
(all the nodes in the graph are made up of the inefficient
signatures selected in step 1). And, as the child node matches
a subset of logs of the parent, it is expected to be inefficient
as well. Therefore, presenting the child node is meaningful
only in the case where it is more inefficient than at least one
of its parent nodes. To remove superfluous nodes, we define
a measure called Relative Failure Ratio λr. Suppose that we
have two connected nodes (parent and child). λr is defined as
follows:

λr(sc, sp) =
λ(sc)− λ(sp)

λ(sp)

where sp is the signature in the parent node and sc the one in
the child node. For each node, we calculate its relative failure
ratio with respect to all its parents. We keep the node if at least
one of the relative failure ratios is greater than 0.01. Otherwise,
we remove it. Every time we remove a node, we connect its
ancestors to its successors. After this pruning operation, every
child node in the graph is more inefficient than at least one of
its parent nodes. In such case, we have two possible scenarios:

In the first one, the child node presents a separate problem.
This could be the case of a user trying continuously to call
an unreachable number through a cell having an interference
problem. In the graph, we can find the node containing the
user IMSI as a child of cell id node with user IMSI failure
ratio being higher than the cell failure ratio. The user calling
an unreachable number and the radio interference problem are
two separate issues. It is therefore important to keep the two
nodes.

In the second one, the child node is the root of the ineffi-
ciency of the parent node. Consider the case of a large group
of roaming user (tourists, for example) accessing the network
through a small cell (with few resident users). The roaming
users may experience a bad QoE because of a roaming issue
between their home network and the host network. Since the
roaming users are the main users of the cell, the cell has a high
failure ratio λ. In the graph, we find the MNC of the roaming
users as a child node of the cell with a slightly higher λ. In
this case, the node containing the cell id has to be removed
since roaming is the real issue.

To deal with the second scenario, we proceed as follows.
Consider two connected nodes: a parent node sp and a child
node sc. Let λn be the overall failure ratio of the network.

λn =
|F |
|E|

Our goal is to know whether the high failure ratio of sp is
due to sc. To do so, we restrict to the logs matching sp,
E(sp) instead of using the whole data set. In this subset we
calculate the complementary failure ratio λ(sc) which is the
failure ratio of sp after removing the logs matching sc. If
λ(sc) ≤ λn, then sp is a non faulty signature and the parent
node is removed. Otherwise, we are in the first scenario and
the two nodes present two different problems. As previously
mentioned, each time we remove a node, we connect its
ancestors to its successors. With these new connections, we
may have other nodes to remove. We repeat the pruning
process as long as it has removed at least one node in the
previous iteration. This process is guaranteed to terminate as
it only removes nodes.

VI. INCOMPATIBILITY DETECTION

The procedure described in Section V allows us to detect
major contributors that have a high impact on the network
inefficiency. In this section, we explain how ARCD finds
incompatibilities. By definition, these involve more than one
feature-value pair making their detection more computation-
ally demanding than major contributors. We only needed to
compute all the 1-signatures for major contributors, that is
the set of all logs having the same feature-value pair, for
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all the different feature-value pair present in the logs. When
looking for incompatibilities, we compute all the 2-signatures
that is the set of all logs having the same two feature-value
for two features, for all the features and their values in the
logs. Because of this, finding incompatibilities requires more
memory and more processing time. We decided to separate
the two problems so that operators can decide when to trigger
each detection separately, depending on their needs and the
availability of computing resources.
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Figure 4: Incompatibility detection steps

Figure 4 describes the main steps of incompatibility detec-
tion. We start by labeling data as explained in Section V-A.
Then we identify the signatures pointing to incompatibilities
throughout the network. Next, we filter false incompatibilities,
that is cases where the inefficiency in the logs sharing a given
2-signature is actually explained by a third faulty element
that is also present in most of the logs of the 2-signature
in question. Finally, similarly to Section V, we compute the
equivalence classes.

A. Identifying incompatible signatures
The goal of this step is to find the signatures corresponding

to incompatible elements. To do so, we start by generating the
sets of all 1-signatures and 2-signatures. For each signature,
we measure the failure ratio λ. To decide whether a 2-signature
points an incompatibility, we proceed as follows.

Let us consider a 2-signature s = {fi = vi, fj = vj}
where vi and vj are values taken by the features fi and
fj , corresponding to two 1-signatures (si= {fi = vi} and
sj= {fj = vj} respectively). For example, we could have:

si = (service, a587) sj = (handset os, c255)

s = ((service, a587), (handset os, c255)).

To determine whether two feature-value pairs are incompat-
ible, we compute the gain of s, defined as:

g(s) = λ(s)−max(λ(si), λ(sj)).

The gain allows us to evaluate the impact of combining two
1-signatures on the failure ratio. In other words, we check
if the combination of two elements is more inefficient than
each one apart. If the gain is larger than a threshold, set to
0.2 in our implementation, we consider that the 2-signature s
corresponds to incompatible elements.

B. Filtering False Incompatibilities

A combination with a higher failure ratio than each of its
components does not imply automatically that we are dealing
with an incompatibility. For example, consider the service
type Instant Messaging (IM) and a specific content provider,
both having a low failure rate. However, the combination of
these two elements has a high failure rate. This combination
could be identified in the previous step as an incompatibility.
However, by studying the logs matching this combination, we
may find a single host delivering IM service in the content
provider network. The root of the issue, here, is not an
incompatibility between IM and the content provider but rather
a malfunctioning host.

In order to filter such cases, we proceed as follows. For
each 2-signature selected in the previous step (s), we identify
its matching set of logs E(s). In this subset, we find all the
1-signatures t that represent a significant fraction of E(s):

τ(s) =

{
t| |E(t) ∩ E(s)|

|E(s)|
> γ

}
where γ = 0.9. Then, we re-compute the gain:

g(s) = λ(s)−max
t∈τ

(λ(t)).

If the gain remains higher than the threshold (0.2), it means
that the combination is a real incompatibility: There is no
third element with a high failure ratio co-occurring with the
combination. Otherwise, if the gain drops below the threshold,
there is a third element that is at the origin of the high failure
ratio rather than the combination of the two elements. In this
case, the issue is not an incompatibility but a highly inefficient
single element. We report this element separately with the
appropriate 1-signature and we discard the corresponding 2-
signature from the incompatibility list.

C. Equivalence Class Computation

At this point, we have a list of 2-signatures corresponding
to incompatibilities. But some of the signatures might actually
correspond to the same underlying issue. For instance, suppose
that we detected an incompatibility between a handset type and
an eNodeB identifier. Suppose as well that this eNodeB has
only one static IP address so that we could have detected the
same incompatibility twice. In this case we should group the
eNodeB identifier and its IP address as an equivalence class
that is incompatible with the handset type. The goal of this
step is to find for each feature-value pair present in one of
the 2-signatures, the classes of elements that are incompatible
with it.

Let Ω be the set of all 2-signatures that have passed the
filtering step, where each 2-signature (ωi) is composed of
two 1-signatures βi, δi. For each one of these constituent
1-signatures we build a list of all the other 1-signatures
with which it is incompatible. In other words, for every 1-
signature (ρ) in the union of all the βi and δi we compute
I(ρ) = {θ|(ρ, θ) ∈ Ω or (θ, ρ) ∈ Ω}. As I(ρ) is a set of 1-
signatures, we can proceed as in Section V-C to group I(ρ)
into equivalence classes. Recall that this process can create
“longer” signatures (2-signatures, 3-signatures, etc.) so that,
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at the end of this process, for each 1-signature ρ, which was
in one of the original 2-signatures in Ω, we have a set of
k-signatures that are incompatible with it.

D. Graph Computation

Some incompatibilities may result from other ones. For
example, if a a service and an OS are incompatible, all the OS
versions will be incompatible with that same service. That is
why, to identify the root incompatibility, we need to explore
hierarchical dependencies. Therefore, for each signature ρ we
create a graph as we did in Section V-D. Note that we have
2|Ω| graphs, that is a graph for each 1-signature ρ.

E. Pruning

At this point of the analysis, for each 1-signature ρ, we
have a graph of the elements incompatible with ρ. For each
pair of connected nodes in this graph, either the parent (θp) is
the origin of the incompatibility with ρ or the child (θc) is the
origin. We proceed as in Section V-E to distinguish between
the two cases substituting the failure ratio λ with the gain
g. In other words, we check if θp (the parent of θc) remains
incompatible with ρ after removing the logs matching the child
(θc): we remove the logs matching θc; then, we compute the
gain of the incompatibility between θp and ρ. If the gain is
higher than the threshold, the parent θp is incompatible with
ρ independently of the child θc. The incompatibility of the
child θc with ρ could be seen as a result (inheritance) of the
incompatibility of the parent θp with ρ. In this case, we remove
θc from the graph. If, on the contrary, the gain drops below
the threshold, this means that the child θc is the origin of
the incompatibility with ρ. As the logs of the child θc are a
subset of the logs of the parent θp, θp appeared as incompatible
with ρ. In this case, we remove θp from the graph. Every
time a node is removed, its ancestors are connected to its
successors. We iterate the pruning until we have only isolated
nodes, which correspond to the signatures incompatible with
ρ. Note that we execute the whole process for each one of the
constituent 1-signatures identified in the previous step.

VII. EVALUATION

We have implemented ARCD in a big data cluster and ran
major contributor detection and incompatibility detection as
Spark jobs scheduled by the task manager OAR1 as shown
in Figure 5. OAR is a batch scheduler used in resource
management in HPC and big data structures [14]. ARCD
results are displayed in a Graphical User Interface (GUI). We
evaluate the effectiveness and performance of ARCD thanks
to three different data sets, collected from three different live
cellular networks and stored in an Hadoop Distributed File
System (HDFS) file system. In the this section, after briefly
presenting each data set, we analyze the major contributor
detection results followed by the incompatibilities results.
Finally, we compare the performance of ARCD with Learning
from Examples Module, version 2 (LEM2), which is a well
known algorithm for deducting decision rules from data. We

1http://oar.imag.fr/docs/2.5/OAR-Documentation.pdf

Figure 5: System Architecture

also compare ARCD with Distalyzer [15] which is a log-based
root cause diagnosis solution.

A. Data Sets

We ran ARCD on three data sets from three different
operators and anonymized by a hashing algorithm:
Set 1: SDRs recording TCP connections during one hour in

a European country. A human expert has cleaned and
analyzed this data set so that we can use it as a reference
in the validation process. She removed samples with
missing and inconsistent fields, and truncated extreme
values.

Set 2: SDRs recording TCP connections during one day from
another European operator. This set was not examined by
an expert (raw set).

Set 3: CDRs logging voice calls during one day from an
Asian operator. This is also a raw data set with no pre-
specified root causes but where each entry is labeled as
successful/failed.

Table II summarizes some of the attributes of the data
sets. We used the re-transmission ratio to label each entry for
Set 1 and the server response time for Set 2. These metrics
were suggested by the experts working with the corresponding
operators.

set number number of number of failure
of logs features 1-signatures ratio

1 2500 48 64143 0.05
2 107 31 924836 0.18
3 106 35 162603 0.08

Table II: Validation Data Sets

B. Expert Validation

We worked with three experts from EXFO, having more
than ten years of experience in the domain of mobile network
troubleshooting as well as a telecommunication educational
background. Each of the experts monitors one of the three
networks from which we have extracted the validation data
sets. These experts locate and diagnose inefficiency issues
in mobile networks as part of their daily tasks using EXFO
NOVA solution for network management and optimization.

The experts helped us by providing feedback on the results
of our solution. They confirmed that ARCD extracts from



10

0.10.5 1 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

fa
ilu

re
ra

tio
Set 1

0.10.5 1 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Set 3

0.10.5 1 5 10 15 20 25 30 35 40

0

0.2

0.4

si
gn

at
ur

e
pr

op
or

tio
n

0.10.5 1 5 10 15 20 25 30 35 40

0

0.2

0.4

scoring parameter: α

Figure 6: Box-plots of failure ratio and signature propor-
tion as function of scoring parameter for Sets 1 and 3

the logs actionable information for network troubleshooting.
They also appreciated the output being presented as graphs
that are straightforward to understand, greatly simplifying and
streamlining the analysis of the underlying issues and the
planning of the mitigation actions.

C. Major Contributor Detection

To validate the results on Set 1, we compared the out-
come of our solution with the list of issues identified by
human experts. To validate our results on Sets 2 and 3, we
have created an expert emulator, which mimics the manual
analysis done by human experts. The emulator analyses a
limited number of features (less than ten). For Sets 2 and
3, the experts supervising the networks of the corresponding
operators have kindly indicated the features they are focusing
on. For each feature, the emulator scans the top ten frequent
elements (e.g., top popular services). If one element is more
inefficient than the global network, the elements is identified as
a major contributor. To pinpoint inefficient elements, the expert
emulator calculates the following metrics for each element
and compares them to the the values of the whole network:
failure ratio for CDRs (Set 3); Retransmission ratio (Set1) and
server response time (Set 2). These metrics are the same we
used in the data labeling phase of ARCD. The concept of
hierarchical dependencies is implicitly included in the expert
analysis: Experts start with high level elements (e.g., MNC)
and then move down to lower levels (e.g., IMSI).

1) Parameter Tuning: As explained in Section V, we used a
range of values for α to find the top signatures. Figure 6 shows

the distribution of the signature proportion and the failure
ratio of the top twenty ranked signatures for each value of
the scoring parameter α for Sets 1 and Set 3. As previously
explained, the higher α, the higher the signature proportion
(corresponding to the most used devices and services). Fig-
ure 6 shows also that the smaller α, the higher the failure
ratio. This is not surprising as small values of α correspond
to the most inefficient elements. As one can notice, for both
SDRs and CDRs, the distributions have similar trends. By
scanning an interval containing a large range of values for
α, we find in practice that we identify the most significant
problems, which are feature-value pairs with a sufficiently high
number of occurrences to deserves attention and a sufficiently
high number of failures suggesting a possible malfunction.

2) Accuracy: To evaluate our solution, we select the fol-
lowing metrics:
True Positives (TP): inefficient elements detected by ARCD

and validated either by the expert (Set 1) or by the
emulator (Sets 2 and 3).

False Negatives (FN): inefficient elements detected either by
the expert (Set 1) or the emulator (Sets 2 and 3) but not
detected by ARCD.

False Positives (FP): efficient elements detected by ARCD
but not detected in the validation process because their
inefficiency is no greater than the overall inefficiency of
the network.

Extra Features (EF): inefficient elements detected by
ARCD but not detected in the validation process because
of the limited number of features analyzed by experts
due to time constraints.

Extra Values (EV): inefficient elements detected by ARCD
but not detected in the validation process because experts
analyze only the top 10 frequent elements of each con-
sidered feature.

Precision: The ratio of inefficient elements correctly iden-
tified by ARCD (TP+EF+EV) to the total number of
elements identified by ARCD (TP+FP+EF+EV).

Recall: The ratio of inefficient elements correctly identified
by ARCD (TP+EF+EV) to the total number of inefficient
elements (TP+FN+EF+EV).

Data set TP FN FP EF EV Precision Recall

A
R

C
D Set 1 11 2 0 38 1 1 0.96

Set 2 5 2 5 30 10 0.9 0.95
Set 3 4 1 0 30 16 1 0.98

L
E

M
2 Set 1 5 8 7 13 0.72 0.69

Set 2 7 0 11 43 0.82 1
Set 3 3 2 1 16 0.95 0.9

D
is

ta
ly

ze
r Set 1 8 5 0 31 2 1 0.89

Set 2 4 3 0 17 8 1 0.91
Set 3 3 2 0 42 4 1 0.96

Table III: Major contributor identification results:
A comparison between ARCD, LEM2 and Distalyzer

The first section of Table III shows the overall performance
of ARCD, which is satisfying in terms of TPs and FNs. The
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Figure 7: Pruned Graph of Major Contributors for Set 2 (nodes in gray are removed during the pruning process)

interesting aspect of ARCD is its capability to detect issues
that are not identified by experts since they focus only on
highly frequent elements (such as handset types, services,
and core network equipment) due to time constraints. For
this reason, they miss issues occurring at a finer level of
granularity, which ARCD does detect, such as roaming issues,
bad cell coverage and individual users (bots) submitting a large
number of call requests to unreachable numbers. The major
contributors identified with ARCD explain respectively 91%,
82% and 65% of the failed logs of sets 1, 2 and 3.

3) Output as a Graph: Figure 7 shows an example of the
output of ARCD. It is a portion of the graph created based on
data from Set 2. The criterion for SDR labeling is the server
response time: SDR labeled as failed if response time is larger
than 100 ms (the average server response time for the whole
network is 60 ms). The nodes contain signatures detected as
major contributors. Each node contains the features, a hash
of their values (for confidentiality reasons) and two numbers:
the number of logs matching the signature and the average
response time of the logs matching the signature. We give
the response time rather than the failure ratio to ease the
interpretation of the graph. The labels on the edges contain
the log size and the average response time of the set of logs
matching the parent signature and not matching the child
signature. The nodes filled in gray are the nodes removed
during the pruning process because they denote false problems.

The graph points to two individual problems: a roaming
issue (mnc: c4ca); and a content provider issue (host: 2cc4,
content provider: 7fe1). There is also a set of codependent
problems with the MNC c81e. This MNC has a large number
of logs and a response time slightly higher than the overall
network. By detecting this MNC, one may think of a roaming
issue. However by removing one of its child nodes, we see that
its average response time drops below the average value of the
network. That is why this issue was tagged as a false problem
and was removed in the pruning step. The same reasoning
applies to the Content Provider: d2ed. The node (handset type:
3352, tac:c3a5) has two parent nodes: (handset manufacturer:
c291) and (host: a3d2). This node is kept in the graph because

it is significantly more inefficient than its two parents.

D. Incompatibility Detection

Validating incompatibilities is more complex than validating
major contributors. Incompatibilities are fine-grained issues,
which experts do not address on a regular basis. While
investigating incompatibilities requires a lot of time and effort,
the number of impacted subscribers is generally low. To
validate our results, we relied on expert help. After testing our
solution on the data sets, we presented our results to network
management experts who evaluated the accuracy of the results.

1) Accuracy: To evaluate our solution, we use two metrics
TP and FP. A TP is an incompatibility detected by ARCD
and confirmed by experts to be a real incompatibility, worthy
of being reported and investigated. A FP is an incompatibility
detected by ARCD whose high inefficiency was actually due
to a third feature, detected by the experts. We also measure
the precision, which is the ratio of TP to (TP+FP).

Set TP FP Precision

1 10 1 0.91
2 15 2 0.88
3 6 1 0.86

Table IV: Incompatibility results

The overall performance of our solution is satisfying (see
Table IV). The issues reported are confirmed by experts to be
relevant and deserving attention. In the case of SDRs, we have
mainly detected incompatibilities between services/content
categories with handset types/OS versions. For CDRs, we have
highlighted issues in multi-RAT calls, inaccessible destinations
in a specific RAT, and issues with the location update proce-
dure in some cells. The incompatibilities detected by ARCD
explain 4%, 16% and 7% of the failed logs of data sets 1, 2
and 3 respectively.

2) Output as a Graph: Figure 8 is an example of part of
the output of our solution for the incompatibilities in Set 2.
Recall that, for each 1-signature ρ, we generate a graph of
the elements incompatible with ρ. Figure 8 is the graph of the
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Figure 8: Incompatibilities Pruned Graph for the 1-signature (content category,795f), gray nodes are removed during
the pruning step

elements incompatible with the 1-signature (content category:
795f). The gray nodes are the nodes removed during the
pruning step. The issues highlighted here are incompatibilities
between a content category and a handset. The graph shows
the three families of handsets (three connected components of
the graph) that are incompatible with (content category: 795f):

• The first connected component starting with (handset
manufacturer,70d1) as incompatible with (content cate-
gory: 795f): Many handset types and Type Allocation
Codes (TACs) of this same handset manufacturer are
incompatible with (content category: 795f) as well. These
handset types and TACs are removed during the pruning
process (colored in gray). The root of the incompatibility
with (content category: 795f) is (handset manufacturer:
70d1). The incompatibilities between the handset types
and the TACs with (content category: 795f) result from
this root incompatibility.

• The two connected nodes (handset manufacturer: 1fe4)
and (tac: 3afb, handset type: 27f4): In this case (tac:
3afb, handset type: 27f4) is the origin of the incompati-
bility with (content category: 795f). The incompatibility
between (handset manufacturer: 1fe4) and (content cate-
gory: 795f) results from it.

• The isolated node (handset type: 15f7, tac: a893): This
handset type is simply incompatible with (content cate-
gory: 795f).

E. Comparison with the LEM2 Algorithm

To evaluate our solution, we compare it with the LEM2
algorithm [16], which is a rule deduction algorithm well
suited to our use case: First, it handles inconsistent data, with
the same feature-value pairs being sometimes successful and
sometimes unsuccessful as in our use case. We aim to detect
not only breakdowns (λ = 1) but also inefficient elements
(0 < λ < 1). Second, it generates a minimal and non-
redundant rule set. LEM2 identifies the root of the issues and
does not report additional rules related to feature dependencies.

1) LEM2 Results: LEM2 creates decision rules by adding
1-signatures from the most frequent to the least frequent
until obtaining a k-signature that does not match any of the
successful logs. Once a rule is established, its matching logs
are removed from the set of failed logs. Then the same process
is iterated until covering all the failed logs. We have made the

following two changes2 to the LEM2 algorithm in order to
obtain meaningful results in a reasonable amount of time:
• We stop generating rules when we have explained more

than 90% of the failed logs. The idea behind LEM2 is
to generate rules from the most important to the least
important. As the execution of LEM2 progresses, the
rules cover fewer and fewer logs. At the end of the
execution, we may end up with a thousand of rules
each matching only one log. By adding this breaking
condition, we reduce considerably the execution time. We
also discard insignificant rules.

• In the process of generating a rule, we stop adding new
elements when the rule matches less than 200 logs. Oth-
erwise, the iterations would lead us to have all the rules
with high λ but small π. We would detect breakdowns
but miss inefficiencies.

rule count λ

[(roaming, e4c2), (first location type, 0707), (con-
tent provider, 795f)]

48043 0.67

[(service, ea52), (content provider, 795f), (handset type,
fb38), (src node ip str, 93e3)]

281 0.49

[(service, ea52), (content provider, 795f),
(dest node ip str, a106)]

21926 0.52

[(mcc mnc, 6364), (roaming, e4c2), (serving mcc mnc,
6364), (last location type, 0707), (first location type,
0707), (dest node ip str, 2f2a), (host, a59c)]

3074 0.92

[(mcc mnc, 6364), (first location type, 0707),
(dest node ip str, 79dd), (host, a59c)]

2557 0.90

Table V: LEM2 Example Rules

Table V shows some of the rules that LEM2 found in Set 2.
Each rule is a k-signature, for which the failure ratio is high.
The count column shows the number of logs matching each
rule and the last column gives the failure ratio.

2) Accuracy Comparison: To evaluate the results of the
LEM2 algorithm, we used the same metrics as in Sec-
tion VII-C2. The second section of Table III shows the
corresponding results. The last column contains the number
extra features and values (EF+EV) that LEM2 finds and that
were not detected by the experts. We added EF and EV
because some of the LEM2 rules contain both EF and EV.

The numbers of FP and FN are high due to two reasons:
first, to deduct the rules, LEM2 conducts an analysis in the set

2The modified algorithm is available at https://github.com/mdini/pycon
lem2/blob/master/lem2/lem2 naive.py
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of failed logs without comparing the set of failed logs and the
set of successful logs, leading to many false positives. Second,
during the execution of LEM2, every time a rule is generated,
its matching logs are excluded from the analysis. This may be
the reason behind false negatives as the sets of logs related to
two independent issues may overlap.
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Figure 9: Output from Set 3, signatures identified by
ARCD-MC (major contributors), by ARCD-INCOMP (in-
compatibilities), and LEM2. Each point is a signature, with
its failure ratio and the number of its matching logs.

Figure 9 shows the results obtained by ARCD and LEM2
on Set 3. Each point is a k-signature, the x value is the
number of logs matching that signature and the y value is
its inefficiency. ARCD-MC refers to the signatures detected
by the major contributor detection process. ARCD-INCOMP
refers to the signatures detected in the process of incompat-
ibility detection. LEM2 refers to the signatures identified by
LEM2. The horizontal line shows the inefficiency of the whole
network. The figure shows that, in the specific use case of
root cause diagnosis in mobile networks, ARCD outperforms
LEM2: Most of the signatures identified by ARCD have a
higher failure ratio and a higher number of logs compared to
LEM2 signatures. We can also observe that the identified in-
compatibility signatures are more inefficient but less frequent,
in general, than the signatures of major contributors.

3) Time Complexity: Let m be the number of features, k
the maximum number of value per feature and n the number
of logs. As the dependency analysis (equivalence classes,
hierarchical dependencies and pruning) is only performed on
a limited number of signatures (top fifty), its complexity is
then O(1). Thus, the time complexity of major contributor
detection in our solution is equal to the complexity of top
signature identification which is equal to O(mkn). As m� n,
we can approximate the complexity to O(kn). So, in the
worst case, where a feature has a different value for each
log, the complexity would be O(n2). Otherwise, in general,
it is approximated to O(n). The same reasoning applies to
incompatibility detection. Its time complexity is equal to
O(m2k2n). In the worst case, it is O(n3) and otherwise, O(n).
The complexity of LEM2 is approximated to O(n3).

signature count λ λ t-stat p-value

(content provider, 2c11) 474 320 19 59 0
(imsi, 1197) 49 850 25 52 0.00
(server ip address, 14f1) 2 200 27 2 0.03

Table VI: Distalyzer Example Results

F. Comparison with DISTALYZER

Distalyzer [15] is a log-based solution for root cause di-
agnosis. It analyses the dependencies between features and
infers issue root causes. Distalyzer comprises four steps. First,
it creates features from a set of logs. It extracts events and
state variables from logs. The second step is the predictive
modeling. It selects the variables that explain performance
issues using T-test. Third, it creates a dependency network that
summarizes the dependencies between the selected variables.
Last, the fourth step, attention focusing, consists on exploring
the dependency network to identify root causes. Distalyzer
identifies major contributors but does not address the question
of incompatibilities.

1) Distalyzer Results: To implement Distalyzer, we used
Python3. To calculate T-test, we used Scipy Python package.
For each extracted 1-signature, we compared the distributions
of performance metrics between the set of failed logs and
the set of successful logs. As performance metrics, we used
the failure ratio for Set 3, the re-transmission ratio for Set
1, and the server response time for Set 2, which are the
same metrics used to evaluate ARCD. To create Bayesian
dependency networks, we used PGMPY Python package.

In this section and for the sake of simplicity, all the perfor-
mance metrics are denoted as λ. The mean of a performance
metric in the set matching a signature s is denoted λ(s). In
the same way, the mean of a performance metric in the set
not matching a signature s is denoted λ(s). Table VI shows
few examples of Distalyzer application to Set 1. The count
column contains the number of logs matching each signature.
The t-stat and the p-value columns contain respectively the T-
statistic and the p-value calculated when applying the T-test.
Table VI shows that the T-test is a good trade-off between the
number of occurrences and the performance metric. However,
for a high performance metric value, it may prioritize non-
critical issues. For example, (imsi, 1197) has a high t-statistic
whereas it matches only 49 SDRs. This is explained by its
high mean response time: 850 ms.

2) Accuracy and Time Complexity: The third section of
Table III contains the results of applying Distalyzer to the three
data sets. This table shows that the precision of Distalyzer is
equal to 1 which corresponds to no FPs on the three data
sets. This can be explained as follows. As the sign of the T-
statistic is equal to the sign of (λ− λ), the signatures with a
positive T-statistic are the signatures having a higher failure
ratio (response time or re-transmission ratio) than the rest of
the network. Therefore, they are either TPs, EFs or EVs. For
this reason, we have added a threshold equal to 0 to Distalyzer
to make sure we select only signatures with positive T-statistic
(less efficient than the overall network). Distalyzer identifies
many EFs and EVs. However, it has few FNs. This is due to
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the fact that the T-statistic is proportional to (λ − λ). Thus,
a signature matching few logs and having an extremely high
failure ratio may have a higher T-statistic than a signature
matching a large set of logs and having a moderately high
failure ratio. Thus, the selected signatures in the top of the
ranking may contain many small issues (users, small cells).
This can lead to missing issues with large extent in the selected
signatures. Indeed, we noticed multiple IMSIs in the selected
signatures. In addition, Distalyzer identifies issues related to
inefficient elements. However, it does detect incompatibilities
where two elements are efficient while their combination has
a high failure ratio.

By applying the same reasoning in Section VII-E3, one
can find that Distalyzer has a linear computational complexity
equal to O(mkn) that can be approximated to O(n). There-
fore, Distalyzer has the same time complexity as the process
of identifying major contributors in ARCD.

VIII. CONCLUSION

In this paper, we address the problem of automating the
system that diagnoses cellular networks based on the data
collected from large-scale monitoring systems, proposing a
framework for root cause diagnosis in cellular networks.
ARCD is unsupervised: it does not only automate expert
analysis, but it carries it to a deeper level. Our tests, as well
as the feedback from experts, show that we have promising
results. In comparison to previous work, ARCD can run on a
large number of features with categorial values, to identify the
complex interplay between various features, and to provide an
overview of the main identified malfunctioning devices and
services, which can easily be double-checked by experts.

The three experts who have studied ARCD were extremely
positive about the advantages it brings in their daily tasks.
They highlighted the benefits of grouping elements related
to the same problem into equivalence classes. They also
appreciated the capacity of ARCD to identify occasional
dependencies, and the time gain provided by the statistics-
based hierarchical dependency discovering instead of manually
updating the topology every time the network is modified.

The ARCD solution is also a starting point for a series of
significant future studies. One of the first studies to conduct
concerns parameter tuning and data labeling. Typically SDRs
logs still require an expert to decide whether the logs report a
successful experience. We aim to improve ARCD by reducing
the number of parameters and finding a more efficient way to
label data. We would also like to link our root cause diagnosis
framework to an anomaly detection system within the same
monitoring platform. This way the anomaly detector would
trigger the root cause diagnosis process, ideally in real time,
this being a key missing elements towards self healing cellular
networks. Finally since some sessions matters more than other,
we would like to explore new inefficiency definitions. This
selection of open challenges and research questions paves the
way toward fully autonomous self-healing mobile networks,
having the capacity to diagnose the problem, to identify the
root cause, and to fix the problem by reallocating resources or
by updating software. We hope that reporting the choices that

have made ARCD a successful network management product
will inspire other researchers in the area.
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