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Abstract—Augmented Reality (AR) superimposes digital con-
tent on top of the real world, to enhance it and provide a
new generation of media experiences. To provide a realistic AR
experience, objects in the scene should be delivered with both
high photorealism and low latency. Current AR experiences are
mostly delivered with a download-and-play strategy, where the
whole scene is considered a monolithic entity for delivery. This
approach results in high start-up latencies and therefore a poor
user experience. A similar problem in the video domain has
already been tackled with the HTTP Adaptive Streaming (HAS)
principle, where the video is split into segments, and a rate
adaptation heuristic dynamically adapts the video quality based
on the available network resources. In this paper, we apply the
adaptive streaming principle from the video to the AR domain,
and propose a streaming framework for AR applications. In our
proposed framework, the AR objects are available at different
Levels-Of-Detail (LODs) and can be streamed independently
from each other. An LOD adaptation heuristic is in charge
of dynamically deciding what object should be fetched from
the server and at what LOD level. Our proposed heuristic
prioritizes content that is more likely to be viewed by the user and
selects the best LOD to maximize the object’s perceived visual
quality. Moreover, the adaptation takes into account the available
bandwidth resources to ensure a timely delivery of the AR
objects. Experiments carried out over the Internet using an AR
streaming prototype developed on an iOS device allow us to show
the gains brought by the proposed framework. Particularly, our
approach can decrease start-up latency up to 90% with respect
to a download-and-play baseline, and decrease the amount of
data needed to deliver the AR experience up to 79%, without
sacrificing on the visual quality of the AR objects.

Index Terms—Augmented Reality; HTTP Adaptive Streaming;
LOD Adaptation Heuristic; AR Streaming

I. INTRODUCTION

Augmented Reality (AR) represents the blending of digital
content with the real world. The release of software devel-
opment kits such as ARKit and ARCore [1J2] has enabled
more than 500 million devices to feature AR capabilities as of
2019 [3[]. As headsets become cheaper and more widespread,
business studies forecast an increased demand for AR content
in the near future [3]|

To provide an immersive experience that resembles (as
closely as possible) our interaction with the real world, AR
applications should ideally feature both the highest possible
visual quality and the lowest possible start-up latency. A
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Fig. 1: An AR object at two different Levels-Of-Detail (LOD);
on the left, a high level; on the right, a low level.

visual quality up to photorealism is extremely bandwidth-
consuming, with data sizes ranging from ten to hundred of
megabytes, for a single AR object. To put things in perspective,
this roughly corresponds to the amount of data needed to
stream 20 minutes of Netflix content at standard resolution [4]].
Current AR experiences are mostly delivered with a simple
download-and-play strategy, which results in high start-up
latency. High latency is well known for having a negative
impact on user experience for both web-browsing and video
streaming applications. Even though such an impact has yet
to be investigated in AR, it is plausible to anticipate a similar
negative influence in this domain as well.

A similar challenge has been successfully tackled for deliv-
ering videos over the Internet, which has evolved from simple
download-and-play to streaming. Particularly, HTTP Adaptive
Streaming (HAS) has emerged as one of the main principles
to deliver videos over the best-effort Internet. In adaptive
video streaming, the video quality can dynamically change
to accommodate for the varying bandwidth conditions of the
network, which minimizes re-buffering events. The client is
equipped with a rate adaptation heuristic, which decides the
optimal quality to download based on information such as the
available bandwidth, the status of the video buffer, and the
available video bitrates, among others.

Our contributions. We address the latency issues that cur-
rently affect AR applications by leveraging similar adaptation
principles as those used in the video domain. We deal with
an AR scene composed of multiple AR objects, which are
available at the server at multiple Levels-Of-Detail (LODs),
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each of them providing a representation of the AR object at
different resolutiond’| (see Figure [1). Instead of downloading
the whole AR scene before displaying it, we propose the client
to stream the scene by fetching each object independently.
We design an LOD adaptation heuristic, which dynamically
decides which object and LOD level should be downloaded
to minimize the user waiting time, while still guaranteeing
a good visual quality. Particularly, the goal of the heuristic
is to prioritize the delivery of the objects that are the most
likely to be viewed by the user, and to select the best LOD
level with respect to the available bandwidth and the relative
position of the object. Intuitively, objects further from the
viewer can be retrieved at a lower LOD, since the viewer
cannot appreciate fine-grained details. As in regular adaptive
video streaming, the objects are retrieved from the server using
the HTTP protocol.

The main contributions of this article are therefore twofold.
First, we present a client-based framework for the low-latency
streaming of AR scenes. The streaming client periodically
computes the priority of each object in the scene, based on
the size and the position of the object. Moreover, for each
object LOD, a utility value is computed, representing the
contribution of the analyzed LOD to the visual quality of the
scene. Second, we present an LOD adaptation heuristic for AR
scenes, whose goal is to schedule the download of the different
objects in the scene and decide on the particular LOD level
to request. This decision is based on the available bandwidth
estimated at the client and the aforementioned priority and
utility values. Detailed experimental results collected using a
streaming prototype developed on an iOS device showcase the
gains of the proposed system, which is able to provide a low-
latency delivery of the AR scene without sacrificing visual
quality.

The remainder of this paper is organized as follows. Sec-
tion [II| presents related work on delivery optimizations for
3D and immersive media. Section details the proposed
streaming framework and LOD adaptation algorithm, while
Section reports the results obtained using the developed
streaming prototype. The main conclusions and an outline
for future improvements and research opportunities in the AR
streaming domain are described in Section

II. RELATED WORK

A large body of literature addresses the problem of stream-
ing large-scale 3D/AR environments. One of the main solu-
tions is based on a view-dependent approach; a representative
example is provided by popular services such as Google
Earth and Google Maps. Most of the works in this area
have focused on streaming for large-terrain and 3D remote
walkthrough. Rusinkiewicz et al. propose the QSplat rendering
system for streaming dense polygon meshes [5]]. The authors
propose an optimized file format structure, which allows
progressive streaming and refinement of object LOD. The

3In this paper, we extend the LOD terminology to refer to both the geometry
and the texture component of an AR object.

object is divided into a hierarchical set of nodes, each node
providing a more fine-grained representation of the object. A
prioritization mechanism aims at deciding what node should
be retrieved, based on the distance of the user from the object.
A hierarchical representation for 3D objects has also been
proposed by Hoppe et al. [6], which enables the reduction
of visual artifacts (the so-called popping effect) during LOD
changes. This is achieved by anticipating the viewer position
in the 3D environment and adjusting the visual quality of
the objects accordingly. Several other works have focused on
novel adaptation and prefetching strategies for 3D walkthrough
systems. In Meng at al. [[7], the LOD refinement process is
driven by the gaze position of the user. Particularly, the portion
of the object visualized in the fovea region of the human eye is
fetched at a higher quality. This mechanism prioritizes portions
of the object whose quality can be better appreciated by the
viewer. To optimize the streaming of 3D terrains data, 3D tiles
can also be employed [8]. An importance score is computed
for each tile based on its distance from the viewpoint. A tile
management algorithm maintains the largest squared area of
content around the user, subject to the available memory on
the device. A priority mechanism that decides the quality of
3D objects in remote walkthrough applications is proposed
by Chim et al. and Zach et al. [9/10]. The priority of an
object is computed based on its euclidean and angular distance
from the viewer. To limit the amount of memory used by the
client, a cache is employed whose replacement strategy strives
to maintain content that has the highest probability of being
viewed. Zhou et al. propose a prefetching system that leverages
a prediction algorithm to anticipate the users’ movements
in the 3D environment [11]. The prediction algorithm is
generated by exploiting the similarities between users’ access
patterns for the same scene. The prefetching mechanism can
also be based on the position of the object in the scene [12].
The authors divide the scene in different zones, with the zone
in front of the viewer associated to the highest priority. Based
on the zone they belong to, objects are placed in different
request queues, with objects in high priority queues being
prefetched before the others. These works usually rely on real-
time streaming protocols to ensure a timely delivery of the 3D
content, which are less scalable and more expensive that the
streaming systems based on HTTP adaptive streaming. These
techniques have been successfully applied to the streaming
of immersive video content, as 360-degree and volumetric
videos [1314]. A tiling mechanism is employed to divide the
video content, being it 2D or 3D, into smaller regions, which
can be individually streamed. This mechanism allocates more
quality to content that is more likely to be watched by the
user and, therefore, saves bandwidth. Particularly, Chou et al.
introduce a utility metric to drive the tile adaptation algorithm
with respect to the visual quality contribution of a particular
quality level and the viewing probability of a tile [|13]].

The literature presented in this section shares similar objec-
tives and principles with the framework proposed in this paper.
Particularly, we propose to expand the successful techniques
adopted in 3D remote walkthrough systems and in adaptive



video streaming domain to the context of AR streaming. In our
framework, the LOD heuristic leverages an adaptation strategy
formulated as a rate adaptation heuristic from HAS, while
being based on metrics as the priority of the objects in the
scene and the visual quality contribution of the LODs, which
are typical from 3D scene delivery systems. By combining
these different techniques we showcase how it is possible to
enable low-latency and yet high-quality AR experiences, using
a prototype implemented on a mobile device.

III. AR STREAMING FRAMEWORK

We detail in this section the proposed framework for the
low-latency streaming of AR experiences. Rather than consid-
ering the whole AR scene as a monolithic entity to deliver,
we consider each object as an atomic component, which
can be streamed independently from the others. Using this
approach, it is possible to lower the scene start-up latency
by first fetching content that is most likely to be viewed by
the user. Moreover, adapting the LOD level of each object
provides an additional lever to prioritize more relevant content
and guarantee a timely delivery despite varying bandwidth
conditions. This task is accomplished by an LOD adaptation
heuristic, which decides the object and LOD to request from
the server. This adaptation is performed every time an object at
the chosen LOD has been download, similar to the adaptation
carried out at video segment boundaries in HAS. The inputs
of the heuristic are threefold:

o The available bandwidth estimated by the client during
the download of an object;

« A priority value indicating the importance of the object in
the scene, which depends on factors such as the distance
from the viewer, the position in the scene, and the size
of the object;

o The utility of a specific LOD level of a given object,
to account for the fact that increasing the quality of an
object might result in marginal gains in terms of visual
quality, especially when the object is far from the viewer.

The design choice to keep the adaptation heuristic agnos-

tic of the underlying AR scene allows potential re-use of
the existing heuristics developed for the video domain in
an AR context. The remainder of this section details the
object priority (Section [[II-A)), the LOD utility computation
module (Section [II-B), and the LOD adaptation heuristic
(Section [II-C).

A. Object Priority

An AR scene can be composed of a multitude of different
objects, each positioned at different locations and with differ-
ent characteristics in terms of physical size and appearance.
Given this information on the scene structure and the position
in six degrees-of-freedom of the user, which unequivocally
defines the Field-Of-View (FOV), the first module of the
proposed framework determines which object is more impor-
tant for the viewer. This information is crucial to correctly
prioritize relevant objects and to allocate more bandwidth
to objects that are more likely to be viewed by the user.

Particularly, the priority value of object ¢ at time ¢ (omitted
for clarity) is given in the following equation, which is an
extension of the priority calculation from Chim et al. [9]:

Pr=(1+A4;) x A; x e KO (1)

A; represents the area of the user’s FOV occupied by the
object 7, equal to 1 when the object occupies the entire FOV.
This value depends both on the distance and the physical
size of the object and is computed as the area of the convex
hull of the object bounding box, as also proposed by van der
Hooft et al. [|15]. Despite being an approximation of the real
percentage of FOV occupied by the object, A; nevertheless
indicates which objects are bigger and/or closer to the user, and
therefore sets priority on objects with regards to their impact
on user’s visual perception. A; is the potential area of object
1 in the FOV, i.e., the area that would result if the user would
turn and point directly towards ¢. This term is introduced to
take into account that rotational changes of the FOV can be
much faster than translational ones. The viewer can indeed
explore a large portion of the (closer) scene by simply rotating
her head, which may happen in less than a second [16]. A;
increases priority for objects that could be relevant for the
user in the near future, despite being currently outside the
FOV. Finally, the third term of Equation (I takes into account
the angular distance between the user’s viewing direction and
the center of the object’s bounding box, represented by 6.
Intuitively, the more a user would need to rotate to have a
specific object in FOV, the lesser the importance of the object,
as its probability of being in view diminishes. In the remainder
of the paper, we set K = 1.309 (i.e., 75°).

It is worth mentioning that the priority value for each object
is updated periodically by the client as the user moves and
interacts with the AR scene, and is fed to the adaptation
heuristic together with the LOD utility values.

B. LOD Urtility

In our AR streaming system, each object is available at
the server at multiple LODs. Depending on the complexity of
the object and distance to the viewer, a higher LOD might
only marginally contribute to an increase in visual quality
with respect to a lower one. This well-known concept in
computer graphics has been successfully exploited for the
remote rendering of 3D worlds and video games. We propose
in this paper to extend this concept to the context of AR
streaming. Particularly, we introduce an LOD utility value,
which represents the quality improvement the viewer would
gain by using a specific LOD, weighted by the time necessary
to download it. While the priority value presented in the
previous section is an inter-object metric, which indicates the
relative importance between objects in the scene, the utility
value is an intra-object metric indicating the utility of the
available LODs for a specific object.

A widely used metric in computer graphics to define the
objective visual contribution of a particular LOD is the Screen-
Space Error (SSE) [17]], which is defined as the difference



in pixels p between rendering on screen a lower LOD rather
than a higher one. The SSE p depends on factors such as
the distance to the object, the resolution and field-of-view of
the screen, and the LOD geometric error, which expresses the
absolute distance between the vertices of the original high-
quality object and its LOD representation (obtained through
a process of decimation). Lower values of the SSE indicate
higher-quality LODs. In this paper, we compute p as proposed
by Cozzi et al. [[17]]. We first compute the quality contribution
g;j of each LOD j of object ¢ at time ¢ (omitted for clarity),
as in Equation ()

4ii = {[1 +(piy — P piy >t @)
Y 1 otherwise

where p;; is the SSE of the analyzed LOD j, and p* is a
configurable target SSE value, which indicates the minimum
screen space error below which any LOD refinement would not
be perceivable by the user. The quality contribution decreases
when the LOD improves, until it reaches a value where the
SSE of the analyzed LOD is equal or smaller than the target
SSE. Next, the utility value is computed as in Equation (3):

(pi <p* or pi < pij)

U, = {0 o )
¢ij/ (1 +6;5) otherwise

where p; is the SSE of the LOD currently in view for
object 4, and 0;; is the estimated downloading time in seconds,
computed as the ratio between the size of the LOD and the
estimated available bandwidth. If the LOD in view already
satisfies the target SSE, it is not necessary to further upgrade
the quality of the object at the current time, and the utility
value of all LODs is set to zero. We also set the utility value
of LOD j to zero if the SSE of the LOD in view is smaller
than that of LOD j, i.e., downloading LOD j would reduce the
object visual quality. Otherwise, the quality contribution g;; is
weighted by the downloading time to fetch the specific LOD,
which incorporates the trade-off between increasing quality
and ensuring a timely delivery.

It is worth stressing that all the values in Equation (2)) and
Equation (3)), at the exception of p*, are dynamic. Both p;;
and p; can change due to user movements in the AR scene,
while J;; depends on the available network resources.

C. LOD Adaptation Heuristic

In the adaptive streaming context, several heuristics have
been proposed to address the dynamic video adaptation prob-
lem [18]]. The fundamental rationale behind these heuristics
is to balance the trade-off between increasing video quality
and avoiding re-buffering events. Particularly, the video buffer
status at the time of the request provides an explicit deadline
for the download of the next segment. The goal of the
heuristic is to request the segment at the highest possible
video quality, such that the probability of meeting the next
and future deadlines is maximized. Different from video, such

Algorithm 1: Proposed LOD adaptation heuristic

Inputs : P;, objects’ priority values
Uij, objects’ LOD utility values
Output: ), queue of LODs requests

L + LODSelection(P, U) (Equation ()
if L is empty then

| @ < LOD with max P;U;;
else

| Q< L.sort()

a temporal aspect is missing in the AR domain, as an AR
scene is composed of objects that, albeit potentially animated,
are static. Despite this, a virtual delivery deadline can be
introduced in the AR domain as well. Indeed, the decision
taken at a certain instant on what object and LOD to request is
only going to be relevant for a limited amount of time, because
the user can freely move in the AR scene. We define this
quantity as the minimum reaction time to changes in the AR
scene. Any LOD delivered after this deadline has high chances
to not be optimal anymore because the user likely changed her
position in the scene. From this perspective, the goal of an
LOD adaptation heuristic is to request one or multiple objects
at the highest possible LODs, such that the probability of
downloading the objects within the reaction time deadline is
maximized, which is indeed similar to the optimization goal
of standard rate adaptation heuristic for video.

In light of the above, we formulate the LOD adaptation
problem as a multi-choice knapsack problem, presented in
Equation (@):

m(?.XZZOéijV;;j with  Vi; = PUy;
i g
ZO(U < 1 Vi
J
Z Zaijézj < AT

z J

“4)

where a;; represents the decision variable of the problem,
equal to 1 when LOD j of object i is selected for download,
and O otherwise. The objective is to maximize the cumulative
value of the LODs to request, where the value is given by the
product of the priority and utility values. The first constraint
restricts the selection of only one LOD per object to download.
The second constraint indicates that the download of the
selected LODs should be completed in A* seconds, with A*
representing the aforementioned minimum reaction time to
changes, which has a similar role as the buffer level in adaptive
video streaming.

The complete LOD adaptation heuristic is presented in
Algorithm [I] We first obtain a list of LODs to request based on
the formulation in Equation (). The list L can be empty when



Fig. 2: The AR scene used for the experiments is composed
of four different objects.

the optimization problem has no solution. This can happen if
no LODs can be retrieved within A* seconds (e.g, because
the estimated available bandwidth is low). In this corner case,
we simply request the LOD of the object with the highest
value V. Otherwise, we sort the list of selected LODs based
on decreasing value of V. Given the produced sequence of
LOD requests (), the AR client can request the first element
in the queue only, or use any existing prefetching mechanism
as HTTP/2 push or multiplexing to request multiple LODs at
the same time [14]. In the remainder of the paper, we set p*
and A* to 1 pixel and 2 seconds, respectively.

IV. PERFORMANCE EVALUATION
A. Experimental Setup

We present in this section the experimental setup that is
used to assess the performance of the proposed AR streaming
framework, which was implemented on an iOS device using
ARKit.

We designed a simple AR scene composed of four different
objects located at different positions with respect to the initial
position of the viewer (Figure [2). Each object is available at
four different LODs. A full description of the objects and the
scene is provided in Table [ The geometric error of lower
LODs is computed with respect to the highest available LOD,
which therefore has geometric error equal to 0. The width,
height, and depth of the object’s bounding box are used as
proxies for the object’s dimensions. All position coordinates
are expressed with respect to a right hand coordinate system
whose positive z-axis points towards the viewer. As an ex-
ample, Object #3 is positioned three meters on the left with
respect to the viewer and is rotated by 90° around the y-axis to
face the viewer, at the start of the AR session. It is worth noting
that we do not consider any semantic relationship among the
objects in the scene (e.g., two objects interacting among each
others). This simplification makes the gains and drawbacks of
the proposed solution easier to get. We discuss in Section [V]
how animations, triggers, and interactions between objects can
play an important role in the context of AR streaming.

The web server hosting the AR content is located on the
US east coast (North Virginia), while the streaming client
is located on the US west coast (North California), and is

10

Start-up latency [s]

AR session #

Fig. 3: The start-up latency for the download-and-play ap-
proach ranges from 7.70s to 9.79s.

connected to the Internet through a corporate Wi-Fi network.
This configuration allowed us to test the performance of the
proposed approach under realistic conditions.

We compare the proposed streaming framework with a
download-and-play scenario, where the whole scene is down-
loaded at the highest LOD before being displayed to the user.
Even though this approach results in a high start-up latency, it
provides the scene with the highest level of photorealism. As
far as the performance metrics are concerned, we compute:

o The scene start-up latency, calculated as the time elapsed
between the start of the AR session and the moment the
first object is displayed on screen;

o The screen-space error of the object in view, as a measure
of visual quality;

o The missing object events, which occur when a user
misses an opportunity to watch an object because it has
not been delivered yet, and is therefore not present in the
scene;

o The amount of data used to deliver the AR scene.

For the streaming scenario, ten user traces have been
collected using the developed prototype to ensure a realistic
interaction with the AR scene.

B. Results

We first report the results for the start-up latency for
both the download-and-play (Figure [3) and the proposed
streaming approach (Figure ] top graph). On average, across
experiments, the start-up latency for the download approach
is (8.68 =0.56)s, which decreases to only (0.78 +0.03)s
in the streaming case. This behavior is expected, as our
streaming client starts fetching the content that is most likely
to be watched by the user, and upgrades the quality of the
objects over time. The improvement in start-up latency comes
with minor negative effects on the overall user experience.
Particularly, we report the missing object events time (middle
graph in Figure [, i.e., the amount of time the user is not
able to experience an object in the scene because it has yet
to be delivered. This value should be as close as possible to
zero to ensure the user is not missing any important part of
the AR scene. Next, we report the amount of time an object
in view is watched at an acceptable visual quality (bottom
graph in Figure ), i.e., when the SSE of the object in view is



| Object #1 (19

Object #2 [20]

Object #3 [21] Object #4 [22]

Geometric error 0.00119 - 0 0.00153 - 0 0.001179 - 0 0.002271 - 0
Size [MBytes] 0.5-11 03-10 02-9 03-8
Dimension [m] | (0.35, 0.84, 0.34)  (1.34, 1.36, 0.67)  (1.49, 2.34, 1.10)  (1.08, 1.35, 0.48)

Position [m] 0, 0, -1) (2.0, -0.5, -2.0) (-3.0, 0.0, 0.0) (0.0, 0.0, 2.0)
Rotation [deg] 0, 0, 0) (0, -45, 0) (0, 90, 0) (0, 180, 0)

TABLE I: The characteristics of the four objects used for the experiments.
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Fig. 4: Our streaming approach reduces start-up latency
to 0.78s on average (top graph). This improvement only
marginally affects the overall user experience, in terms of
missing object events (middle graph) and time spent watching
an object at sub-optimal quality (bottom graph).

below the target SSE. As discussed in Section [[lI-C| we use
the SSE metric to quantify the visual quality of an AR object,
and chose the target SSE equal to 1 pixel. Both metrics are
expressed as a percentage of the total AR session duration.
We report the results for the streaming scenario only, as in
the download-and-play case all the objects are available in the
scene (once they have been retrieved by the server), and at the
highest possible LOD. In the streaming case, missing object
events occur for less than 4 % of the AR session viewing time
in the worst case scenario, while the time spent at an optimal
visual quality level is (79 & 6) % of the total session time.

Figure [5 reports the evolution over time of the SSE, for
all the AR sessions. The SSE of the object in view tends
to decrease quickly thanks to the adaptation proposed in
Section |III-C| and to fall below the target SSE threshold.
This comes with a consistent advantage in terms of start-up
latency, as previously discussed. The proposed client tends to
retrieve lower LODs first to guarantee a timely start-up of the

w
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Fig. 5: Using the proposed LOD adaptation heuristic, the SSE

of the object(s) in view quickly decreases below the target

value.
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Fig. 6: For each object, the graph depicts the evolution of
the SSE in view (bars above gray line) and LOD streaming
events (bars below gray line). Green colors represent lower
SSE values in view and higher quality LODs streamed from
the server, respectively.

experience and avoid missing object events, and to refine the
quality of the objects later to improve user experience. Figure 6]
provides an example of such adaptation, for a selected AR
session. For each object, bars above the gray line indicate the
evolution of the SSE over time. A dark green color corresponds
to an SSE equal or below the target SSE of 1 pixel. Bars below
the gray line indicate the streaming of a particular LOD level,
with the length of the bar indicating the amount of time needed
to fetch the LOD from the server. A red color indicates a low
quality level, while a dark green color represents a high quality
LOD streamed from the server. The streaming session starts
by downloading Object #1, which is positioned in front of
the viewer at the beginning of the session (see Figure [2] and
Table |I[), at the lowest available LOD. Object #1 is viewed for
a short period of time before the user moves to Objects #3 and
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Fig. 7: Streaming the AR scene can reduce the amount of data

retrieved from the server by 43 % on average, with respect to
a download-and-play approach.

#4. The adaptation heuristic follows the movements of the user
by downloading the lowest and second lowest LOD for Objects
#3 and #4. This actions prevents a missing object event to
happen, while still providing the objects at good visual quality,
as the green bars indicate. Next, the user shifts focus back to
Object #1, by getting closer to it around second 5 (indicated
by the SSE bar going from green to yellow, which indicates a
decrease in quality). This triggers the download of the highest
available LOD for Object #1. After this event, the client does
not request any additional content, as the LODs of the objects
in the scene are high enough to guarantee an acceptable visual
quality to the user. An additional LOD increase is triggered at
second 15, once the user gets closer to Object #3.

To conclude this section, we report the amount of data used
by the streaming client during the AR session (Figure [J).
In the download-and-play approach, all the objects in the
scene are downloaded at the highest LOD level, for a total
of 38 MBytes of data downloaded from the server. Streaming
the AR scene can consistently reduce this amount, from a
minimum of 14 % to a maximum of 79 %. The utility value
proposed in Section [[II-B] effectively captures when the quality
of an object would need to be increased. Therefore, a higher
LOD is requested only if it would result in an actual increase
in perceived quality. Sessions with fewer data fetched from
the server correspond to cases where the user did not get
close enough to an object to trigger an LOD increase. We also
measure the amount of unused data, e.g., LODs that have been
downloaded but never displayed to the user. This can happen
because the user can quickly switch her focus to a different
object, making the old LOD request not relevant anymore. As
we discuss in Section FOV prediction algorithms can be
used to reduce this behavior and also to ensure the user can
always visualize the AR content at the highest possible visual
quality, by anticipating the user’s movements.

V. CONCLUSION

A. Summary of our Contributions

We presented in this paper a novel framework for the low-
latency delivery of AR applications, where we propose to
apply the adaptation principles that are successfully used in the

adaptive video streaming domain to the AR delivery domain.
The main component of this framework is an LOD adaptation
heuristic with the goal of dynamically deciding which AR
object to request and at which LOD level. This decision is
based on the priority (i.e., importance) of the object in the
AR scene and the utility of the object’s LODs. Both metrics
are computed based on the relative position of the object with
respect to the viewer and the perceived visual quality of the
LODs, calculated via the screen-space error. Our proposed
heuristic prioritizes objects that are more likely to be in the
FOV of the user and LODs that provide the highest gain
in terms of visual quality. We model this adaptation as in
the HAS domain by replacing the playout deadline, naturally
provided for videos by the buffer level status, with the concept
of minimum reaction time to changes in the AR scene. To
ensure the relevance of the adaptation decision for the viewer
in terms of selected object and LOD, the heuristic aims to
fetch content that can be delivered within this time window.
We showcased the benefits of the proposed approach using
a prototype implemented on an iOS device, which streams
an AR scene composed of four objects over the Internet.
Compared to a download-and-play approach, our framework
can greatly reduce the start-up latency without sacrificing on
the visual quality of the AR objects. The work presented in this
paper represents the first step in the broader domain of delivery
optimization strategies for large-scale AR experiences. To
conclude, here we identify a number of research challenges
and areas for improvements that will be pursued as future
work in this area.

B. Open Research Questions

6-DOF prediction. Being able to accurately predict the
position of the user is a crucial task to provide the viewer
with the most relevant content at all times. This problem
has been extensively investigated in the 360° video and 3D
graphics domains [23)24]. In the AR domain, this problem is
further complicated because the user can move in six degrees-
of-freedom (both head rotations and position translation in
the scene). Moreover, an AR scene is composed of a set of
discrete, separated objects, which are super-imposed to and
could potentially interact with the real world.

Animations and triggers. The AR scene used for the
experiments in this paper was composed of four static objects.
Albeit simple, this configuration allowed us to clearly assess
the performance of the proposed framework. In reality though,
an AR scene can be much more complex, as the AR objects
can be animated and therefore move and interact among each
other. Moreover, objects can be associated with triggers, e.g.,
a particular set of behaviors that occur when the user interacts
with the scene. As an example, a proximity trigger would
cause an object to appear (or disappear) when the user would
come close enough to it. Understanding the complex dynamics
that can arise in an AR scene is an important task to anticipate
the content the user would need in the near future.

Minimum reaction time to changes. The reaction time



A* is an important parameter of the proposed framework,
and it has to be carefully selected. A conservative choice can
unnecessarily constrain the LOD adaptation heuristic, while
an overestimation can result in a sub-optimal user experience.
We plan to investigate in future work how to optimally set this
value based on the scene content and the exploration behavior
of the user.

Texture compression and streaming. An AR object is
usually composed of multiple types of textures, each encoding
a given characteristic of the object (color, reflection to light,
roughness, etc.). Textures can account for a large portion of the
AR object’s size and their efficient compression and delivery
is an important research area to guarantee an effective AR
delivery strategy [25/26].

File format and compatibility. In the 3D/AR domain, a
large amount of file format specifications have been proposed
to represent and store 3D content, with no solution clearly
outperforming the others, which clearly complicates interoper-
ability. As an example, Sketchfab supports over fifty different
3D file format The ngFE] and USDZE] formats are gaining
traction as industry standards, but how well these formats are
suitable for streaming is still an open research question.

Visual quality assessment. While the screen-space error
provides an objective way to asses the visual quality of an
object, it is only computed based on the geometry of the object.
It is therefore required to develop new visual quality metrics
for the 3D domain that can take into account the trade-off
between texture quality and mesh LOD.

Caching and novel LOD adaptation heuristics. In this
paper, we proposed to model the LOD adaptation problem
similar to a video rate adaptation problem, which opens up
the possibility to re-factor existing adaptive video heuristics for
the AR domain. Differently from video though, an AR client
can be equipped with a local, limited memory cache where
the objects are temporarily stored [[11]. This caching policy
should be designed in conjunction with the LOD adaptation
heuristic to minimize expensive re-transmissions of the same
content.
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