
HAL Id: hal-02363431
https://imt-atlantique.hal.science/hal-02363431v1

Submitted on 14 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discovering Correlations: A Formal Definition of Causal
Dependency Among Heterogeneous Events

Charles Xosanavongsa, Eric Totel, Olivier Bettan

To cite this version:
Charles Xosanavongsa, Eric Totel, Olivier Bettan. Discovering Correlations: A Formal Definition of
Causal Dependency Among Heterogeneous Events. EuroS&P 2019 : 4th IEEE European Symposium
on Security and Privacy, Jun 2019, Stockholm, Sweden. pp.340-355, �10.1109/EuroSP.2019.00033�.
�hal-02363431�

https://imt-atlantique.hal.science/hal-02363431v1
https://hal.archives-ouvertes.fr

Discovering Correlations: A Formal Definition of
Causal Dependency Among Heterogeneous Events

Charles Xosanavongsa
CentraleSupélec, Inria, Univ Rennes,
CNRS, IRISA, Thales Six GTS France

charles.xosanavongsa@supelec.fr

Eric Totel
CentraleSupélec, Inria, Univ Rennes,

CNRS, IRISA
eric.totel@centralesupelec.fr

Olivier Bettan
Thales Six GTS France

olivier.bettan@thalesgroup.com

Abstract—In order to supervise the security of a large infras-
tructure, the administrator deploys multiple sensors and intru-
sion detection systems on several critical places in the system. It
is easier to explain and detect attacks if more events are logged.
Starting from a suspicious event (appearing as a log entry), the
administrator can start his investigation by manually building
the set of previous events that are linked to this event of interest.
Accordingly, the administrator attempts to identify links among
the logged events in order to retrieve those that correspond to the
traces of the attacker’s actions in the supervised system; previous
work is aimed at building these connections. In practice, however,
this type of link is not trivial to define and discover. Hence, there
is a real necessity to describe and define formally the semantics
of these links in literature. In this paper, a clear definition of
this relationship, called contextual event causal dependency, is
introduced and proposed. The work presented in this paper aims
at defining a formal model that would ideally unify previous
work on causal dependencies among heterogeneous events. We
define a relationship among events that enables the discovery
of all events, which can be considered as the cause (in the
past) or the effect (in the future) of an event of interest (e.g.,
an indicator of compromise, produced by an attacker action).
This model is gradually introduced and defined by merging
two previously defined causality models from the distributed
system and operating system research areas (i.e., Lamport’s and
d’Ausbourg’s). Our model takes into consideration heterogeneous
events that emanate from different abstraction layers (e.g.,
network, system, and application) with the main objective of
formally defining a causal relationship among logged events.
Thereafter, we show how existing implementations separately
allow the computation of parts of the model. Finally, we describe
the implementation and assessment of the model according to real
attacks on distributed environments and its accuracy to extract
all causally linked events related to a given attack event trace.

Index Terms—alert and event correlation, multi-step attack dis-
covery, formal model, causal dependencies, distributed systems,
forensic

I. INTRODUCTION

Competitive and complex enterprise environments are prone
to industrial spying, sabotage, intrusion, and data theft. The
alarming number of vulnerabilities that has been reported
over the last year [2] highlights the reality of the threats
of targeted attacks and their consequences relative to the
financial aspects and reputation of the enterprise. To achieve
their goals, it is generally necessary for attackers to perform
several consecutive actions. Such attacks are known as multi-
step attacks and can potentially remain undetected because
each step can typically be considered normal until the ultimate

intrusion objective is realized; at that point, hopefully, it can
be detected. A typical attacker usually succeeds in gaining
a foothold inside the target system using social engineering
techniques, such as phishing email, watering hole, or Trojan
software. Thereafter, he maintains his foothold through the
deployment of command and control channels, explores the
network, and attempts to elevate his privileges by exploiting
vulnerabilities or stealing passwords. The final stage, i.e., the
attack objective, often consists of sensitive data leakage or
sabotage.

The current intrusion prevention techniques are not suffi-
cient to repel targeted attacks that use authorized communi-
cation channels to reach the targeted machine. Hence, it is
necessary to deploy sensors inside the supervised system to
be able to thwart any action performed by the attacker. Un-
fortunately, logged events1 related to his actions are typically
scattered across different machines, log files, and databases
of the intrusion detection system (IDS) alerts. Moreover, the
various steps of the attack can occur over a large time window.
The alerts produced by any deployed IDS are symptomatic
of malicious activities. However, an IDS frequently relies on
the analysis of a single type of data source. A network-based
IDS (NIDS) relies on network packet analysis, whereas host-
based IDS (HIDS) solutions may supervise a given application
(e.g., the system calls it produces) or the system’s access
control policy, such as OSSEC [6]. Unfortunately, an alert
rarely explains the context of the detected attack; hence, the
correctness of an alert must be investigated. Indeed, even if
an alert is a consequence of an attack step, it only indicates a
small portion of the overall attack, which is also composed of
footprints that are not sufficiently suspicious to trigger an alert
and might even appear benign and legitimate in the system
when initially considered. Accordingly, analysts have to verify
and contextualize an alert by manual techniques to determine
whether or not it is related to a step of an attack scenario; they
manually attempt to correlate IDS alerts and events logged by
various sensors, and contextual information.

The discovery of correlations among different sources of in-
formation is the key to identify the attack steps [46]. Automatic
tools are indispensable in aiding analysts to comprehend an

1In this paper, any logged information produced by applications, sensors,
and IDSs is an event. When the event is produced by an IDS, we also refer
to it as an alert.

attack and ascertain its root causes and impacts by identifying
all the compromised assets. Such tools would enable them
to discern the attack and implement actions to avert similar
scenarios in the future. Every single instance of log may
contain valuable information in order to better comprehend an
ongoing attack or intrusion. The typical approach to correlate
events and alerts is to rely on a base of correlation rules
that explicitly describe the logged events and alerts, which
are parts of the consequence of attacks inside the supervised
system [19], [20]. This technique has been adopted for years
in security information and event management (SIEM) tools.
However, the formulation of correlation rules can be con-
siderably difficult because it necessitates precise knowledge
of the supervised system (i.e., its topology and cartography)
and deployed IDSs. Evidently, the aforementioned approach
has reached its limits and new methods must be defined
to automatically discover the relationships among the attack
traces on the supervised system. An action might be observed
by sensors in the supervised system. Thus, there is a cause–
effect relationship between the action and its observations,
i.e., the related logged events. Moreover, the order of the
attack’s actions is generally meaningful. The actions are also
linked and there are cause–effect relationships between them.
Consequently, the logged events related to each successful
attack steps are also causally dependent. In this paper, a
definition of the notion of causal dependency among entries in
heterogeneous log files is presented. With this, the objective is
to aid security analysts investigate suspicious log entries, such
as an IDS alert, by computing all log entries they causally
depend on and all entries that are causal consequences of
identified malicious events.

Computing causal dependency among events is a difficult
task and has been studied for years, especially in distributed
systems [43]. To discover causal relationships among actions
of distributed processes in these types of systems, several
methods have been introduced. Regarding security, certain
definitions have also been introduced to reflect object state
causal dependencies [11]. This is well-illustrated by methods
that track information flows between the subjects and objects
of an operating system (OS). Indeed, if an information flow
between two objects is observed, it can be defined that their
states are causally linked. Recently, it has been observed that
a considerable amount of work has been focused on causal
dependency inference but not on explicit causal dependency
computations. Such an inference is performed by attempting
to identify links [26] among events, mining data to discover
patterns (such as temporal invariant properties) [8], or by
computing a measure of similarity among event attributes.
In practice, with these types of approaches, the events are
expected to be causally dependent when they are tightly linked.

The main difficulty in finding causal dependencies among
heterogeneous events is that it aims to merge different points
of view: an application embeds the business logic, whereas an
OS only sees requests from user space applications through
system calls. Additionally, network packet analysis and alert
production, either from NIDS or HIDS, are difficult to recon-

cile. This illustrates the semantic gaps among different layers
of abstraction and among different data sources.

In order to overcome these problems, we propose a formal
definition of the causal dependency relationships among events
emanating from heterogeneous logs (i.e., logs containing
events of different natures). The relationships are deduced
from the causal dependency relationship among events that
are referred to as contextual events. By leveraging the causal
dependency among events, a graph of causally dependent
events and alerts found in heterogeneous logs that would
explain the alert can be built for each identified malicious
alert. In Section II, the state of the art in this field of research
is described. In Section III, an overview of the problematic
and approach (described in a later section) is provided. In
Section IV, a new model that features the definition of what
causal dependency is among process actions in the system
is introduced. It further explicates the extrapolation of the
proposed model after these actions have been linked to logged
events in order to deduce a causal dependency relationship
among heterogeneous events. This section describes that start-
ing from a suspicious event, i.e., an alert triggered by an IDS
or an indicator of compromise (IoC), this new model makes
it possible to build the set of logged events that cause the IoC
and the set of events that results from the IoC. The section also
presents how the set of all the events related to a given attack
can be subsequently deduced. Section V elaborates how our
proposed model can be approximated using existing works.
Thereafter, a computation technique for approximating the
model without relying on any instrumentation is proposed
in Section VI. The assessment of the model and how its
implementation would enable the discovery of logged events in
a small set of attacks is demonstrated in Section VII. This leads
to further discussions in Section VIII. Finally, the conclusions
are summarized in Section IX.

II. STATE OF THE ART

Various event correlation methods have been developed to
aid security analysts investigate alerts. Several approaches
have been proposed to enable analysts to explicitly express
a dreaded scenario according to an explicit event correlation
rule using an attack description language [44], [13], [20], [10].
These rules are then interpreted by a correlation engine that
would analyze the stream of events and obtain those described
in the correlation rules. In practice, event correlation rules are
considerably difficult to formulate because security operators
have to combine the perspective of the attacker (by building
possible attack scenarios) and that of the defender (i.e., by
having a precise knowledge of the system to defend). The
combination of these points of view enables them to project
the attack steps onto the set of observable events that the
sensors can produce; accordingly, they can explicitly write
the sequence of events that represents the attack. A recent
work [19] proposes to simplify the process of event correlation
writing by dissociating the attack scenario specification from
the knowledge of the supervised system and leveraging a
knowledge database [37]. This database contains organized

information on the supervised system, i.e., its topology, carto-
graphy, vulnerabilities, and deployed sensors. Using a similar
database, other approaches propose to automatically generate
attack graphs [23], which represent all possible attack paths
in the supervised system. These graphs rely on the knowledge
of the vulnerabilities from which explicit alert correlation
rules that describe multi-step attack scenarios can be deduced.
Nevertheless, the chance that unknown attack steps can be
missed by IDSs remains. Despite this limitation, reference [28]
proposes a correlation engine that is able to detect incomplete
attack scenarios. Unfortunately, a majority of approaches only
correlate alerts, particularly NIDS alerts. However, such events
are not sufficient to conduct an attack analysis, and attackers
attempt to be as stealthy as possible to avoid triggering alerts.
Moreover, because of the difficulty in writing correlation rules,
the development of automatic event correlation tools becomes
necessary.

Information flow tracking (IFT) techniques are also em-
ployed to compute explicit causal dependencies. Applied to
the OS layer, information flows are deduced from system
calls to build information flow graphs [25], [31], where
nodes represent kernel objects, and directed edges represent
information flow from one node to another. Because every
application requires the use of system call interface to use
kernel services, it is a good observation point to log the
behavior of applications. It has been widely used for decades,
e.g., in the work of Forrest [16]. The provenance research
field [36], [17] is also closely related to causality analysis
as it aims to answer the two following questions. Where
does a given object come from? What are the objects that it
influences? Applied to the OS, provenance can be represented
as a branch of the IFT research field. Using backward and for-
ward tracking, all these approaches make it possible to locate
potential entry points and identify potential consequences of
the attack. These methods can be applied using commercial
off-the-shelf kernel logging frameworks, such as auditd [4] or
event tracing windows [3], which allow the logging of system
calls. Some works propose the alternative instrumentation of
the kernel with an optimized design that includes security
considerations [34], [7], [40]; other approaches couple the
IFT with tag propagation policies [22] [18]. Tag propagation-
based policies can be coupled to access control policies or
attack detection policies; these may make it possible to achieve
a finer-grained causality tracking. However, the cost of tag
propagation and tracking is high because the number of tags
that follows constantly increases.

To our knowledge, few approaches offer finding causality
links among heterogeneous events. Because multi-step attack
scenarios potentially involve several applications, machines,
and network communications, we argue that different types
of logs have to be taken into consideration to better com-
prehend an incident. In [41], the authors propose to model
the discovery of multi-step attack scenarios as a community
discovery problem inspired from the social network domain to
infer causality among heterogeneous events. The provenance
layering approach [38] provides a means to build the value

causality links among some object states of a supervised
system. These states could be used in our approach to compute
a part and an approximation of our model. However, we
advance the idea by defining the implication of the causality
links among object states on the logged event causality link
definition; this aspect is not provided by the provenance work.

As a conclusion, methods for discovering correlations be-
tween events and alerts generated by an attacker’s activity
in several heterogeneous log remain necessary. The solution
we propose is to formally define a causal dependency rela-
tionship between logged events and alerts. As described in
Section IV, this model provides a unified understanding of
the causality relationships that can be defined between active
entities, passive entities, and logged events. Once this model
is defined, it is shown in Section V that previous works can
be used conjointly to provide sufficient information and build
an approximation of the model. Thereafter, in Section VI,
it is shown that it is possible to build an approximation of
the model that does not rely on any system instrumentation;
moreover, it permits the obtainment of causal dependency
relationships among heterogeneous logged events using only
existing and available logging facilities to record events.

III. ILLUSTRATION OF THE PROBLEMATIC AND PROPOSED
MODEL

In this section, the concept of causality analysis in het-
erogeneous and distributed event logs via a motivating attack
scenario example is introduced. In a later section, this example
is used to further illustrate how each type of logged event is
treated in our model.

The web server architecture is composed of two machines,
which host the Apache server and a MySQL database. The
administrator deploys several sensors to collect data and
perform intrusion detection on the servers. Specifically, the
servers are equipped with the Linux audit framework au-
ditd [4]. The Apache and MySQL logging modules are ac-
tivated for the web server and database server, respectively.
Moreover, the database server is equipped with Bro NIDS [1];
auditd and netfilter [5] are particularly configured to record
system calls of interest and established connections, respec-
tively.

Attacker
Web Server

bro_ids.log

system_call.log

mysql.log

(1) SQL Injection
" ' UNION ALL SELECT table_schema,
table_name FROM information
_schema.tables ; "

(3) SQL Query Response

MySQL Server

system_call.log

apache_access.log

(2) SQL
Query

netfilter.log

netfilter.log

Fig. 1. SQL injection attack scenario on a vulnerable web server.

The attack scenario, illustrated in Fig. 1, is described as
follows. After a discovery step, a malicious user performs an
SQL injection via the POST parameters on an HTTP request

in order to obtain the database table scheme. The analyst
is alerted by a Bro alert, which describes an SQL injection
attempt. Because this behavior is considerably suspicious, the
analyst decides to investigate the alert.

Because the SQL query is initiated by the web server,
the analyst immediately checks the events logged by the
Apache server. However, because the Apache web server is not
configured to record POST parameters, the analyst is unable to
identify the web request related to the SQL query; hence, he
cannot determine the requests issued by the attacker. Finding
no other clues in the Apache logs, he decides to perform an
analysis of the recorded system call logs produced by auditd in
both machines by manually backtracking the sequence of sys-
tem calls that led to the SQL query observed over the network.
With such an analysis, he eventually retrieves the socket from
which the SQL query originated. The information contained
in this network entry point allows the analyst to identify the
attacker’s IP address. Finally, the investigation of the Apache
and system call logs reveals the rest of the traces related to the
attacker’s IP. This simple example illustrates the fact that the
attacker’s footprints are scattered across different types and
formats of event logs. Evidently, the network, applications,
and system events emanating from different machines must
be investigated to understand the full picture of the attack.

netwext
apa tapa

eNet
http eNet

http

saccept tapa

eSys
accepte

Sys
read eSys

write

apache tapa
eSys
connect

eSys
write eSys

read
eApp
Req eSys

accept

sconnect tapa

eNet
conn

netwint
apa tapa

eNet
conn eNet

conn

netwint
bro tbro

eNet
conn,alert

netwint
sql tsql

eNet
conn eNet

conn eNet
conn

saccept tsql

eSys
accepte

Sys
recvfrom eSys

sendto

mysqld tsql
eSys
sendto eSys

read
eSys
read

eSys
accept

movies.db

tab schem.db tsql

Fig. 2. Visualization of logged events, alerts, and information flows on a
space–time diagram.

If the analyst could automate this task, then he would have
to specify that he intends to retrieve the different logged events
that capture the attacker’s activity. These events are scattered
in various heterogeneous logs. For simplicity, he can draw a
space-time diagram, such as that illustrated in Fig. 2, which
captures the semantics of different logs of interest. In this
figure, the timelines of all active and passive entities that
are part of the attack can be observed. Each logged event
is interpreted as representing the relationship among these
entities and is placed on the timeline of the entity it describes.
The different types of logged events are also indicated using
the following: (1) eNet for log entries deduced from network
packet flow analysis, e.g., eNet

conn,alert, which represents an

alert raised by the Bro NIDS; (2) eSys for system call log
entries, e.g., eSys

accept, which represents the invocation of an
accept() system call; (3) eApp for application log entries, e.g.,
eApp
Req , which represents the Apache application logged event

for the HTTP request. In most cases, the logged events pertain
to relationships between two entities. In reading this space
diagram by backtracking starting from the alert or the IoC, it
can be deduced that several process activities can explain the
attacker’s steps. In the following sections, we formally present
these relationships as causal dependencies among log entries
and define a model that permits the generation of causality
links among logged events.

In this paper, all concepts are illustrated in Section VI using
the example used in this section. For clarity, only the principal
events of interest that allow the comprehension of the segment
of the attack scenario related to the raised alert are presented.

IV. DEFINING A CAUSAL DEPENDENCY RELATIONSHIP
AMONG LOGGED EVENTS

The purpose of this section is to explicate the concept of
causal dependency among logged events. Starting from the
definitions of contextual actions and the causal dependency
that links them, we gradually define the notions that are
necessary to link the contextual actions to their corresponding
logged events and finally be able to describe causal dependen-
cies among logged events.

The notion of causal dependency is not new; it has been
the subject of numerous works [43] particularly in the field
of distributed computations. However, these works focus on
the dependence of distributed application process actions2, i.e.,
actions deduced from application logs and message exchanges
among them. These dependence computations frequently rely
on logical clocks [15], [35]. Consequently, the relationship
captured among different actions is one that is temporal (e.g.,
the happened-before relationship defined by Lamport [27]).
However, in the security field, certain extended relationships
have been defined according to the fact that information
flows exist among system entities; thus, their states are inter-
dependent. This is particularly the case of the dependency
relationship defined by d’Ausbourg [11]. In the two following
subsections, our attempt to emphasize the particularities of
these two types of models is presented. Thereafter, the merging
of these two approaches in order to exploit them and define
a new causality dependency notion, called contextual action
causal dependency relationship, is explained.

A. Defining Causal Dependency among Contextual Actions

1) Lamport’s Happened-Before Relationship among
Events: In [27], Lamport emphasizes that it is impossible
to capture a total ordering of actions in a distributed
computation. Indeed, most actions that arise in distributed
systems cannot be ordered because we cannot rely on a global
clock. In practice, the relationship defined by Lamport, called
happened-before, is a partial order relationship on the set of

2An action is different from a logged event. An action can occur without
being logged.

actions that are performed by concurrently executed processes.
More precisely, a distributed computation is considered as
a collection of processes that can communicate through
message exchanges. Each process produces a sequence
of totally ordered events that are process actions, such as
function calls and sending–receiving messages.

The happened-before relationship, denoted by “≺” on the
set of actions of a distributed computation, is a partial ordering
relationship defined as follows. Given two logged application
actions, a and b, a ≺ b is true

1) if a and b are actions produced by the same process,
and a comes before b;

2) or if a is the sending of a message m by a process, and
b is the receipt of the same message by another process;

3) or if ∃ c / a ≺ c and c ≺ b.
Two distinct actions, a and b, are regarded as concurrent
(denoted a||b) if a 6≺ b and b 6≺ a. The advantage of the
happened-before relationship is that it does not rely on a global
clock to order the actions; this is particularly important in
the context of distributed systems where having local clocks
synchronized is particularly difficult.

In his paper, Lamport states that a ≺ b means that it
is possible that action a causally affects action b; evidently,
this is not always true. In practice, given an action b for
all actions a so that a ≺ b, it is typically assumed that b
is causally dependent on a; this is an over-approximation of
the set of actions that actually causally influence b. This is
because Lamport’s relationship is one that is temporal and
does not take into consideration the context value dependency
in which the actions are produced. Moreover, in this model,
only application level actions that are produced by concurrent
processes are covered. Consequently, not all system-level
actions or network actions can be taken into account by the
model; thus, causal dependencies among heterogeneous event
logs cannot be explicitly computed.

2) D’Ausbourg’s Causal Dependency Relationship among
Object States: In [11], d’Ausbourg describes the relationship
of causal dependency, denoted by “→,” among the states of the
system. A state (o, t) is the value of an object o at a given time
t. Formally, by stating that the state (o, t′) causally depends
on the state (o, t), i.e., (o, t)→ (o, t′), means that the value of
o at time t, denoted (o, t), is used to generate the value of o at
time t′, denoted (o, t′). Actions performed on the system can
imply the evolution of a state, producing a new state that is
considered as causally dependent on the previous state of the
same object. In fact, states are causally dependent if and only
if an information flow occurs among these states. The concept
of an object is considerably flexible; it can be a variable in a
program execution or a system process, file, socket, etc.

As opposed to Lamport’s model, the claim that all ac-
tions of a process are causally dependent across time is
false in the d’Ausbourg’s model. The following is an il-
lustrative example. Consider a variable a as an object. The
code “(action 1, 1) a := 1; (action 2, 2) a := a +
1; (action 3, 3) a := 0” yields three states of a, with
(a, 1) = 1, (a, 2) = 2, and (a, 3) = 0, respectively. As a

result, (a, 1) → (a, 2), and (a, 2) 6→ (a, 3) because the value
of a at line 3 is independent of the value of a at line 2. In the
Lamport model, we would state that action 1 ≺ action 2 and
action 2 ≺ action 3, which involve the causal dependency
between action 2 and action 3, simply because these actions
are consecutive. This is of course meaningless if the context
values (in this case, the value of variable a) of different actions
are to be taken into consideration.

The d’Ausbourg causal dependency relationship is applied
to object states and not on events produced by applications,
systems, network captures, etc. Thus, it is extremely difficult
to use this model because the states are not easily captured
by applications or system executions, where only logged
events are the actions and information captured by supervision
mechanisms. Accordingly, we must define a model that takes
into account both the action causal dependencies in time
(similar to Lamport’s model) and the contextual states in which
these actions are produced (similar to d’Ausbourg’s model).
The purpose of the contextual action causal dependency model
that is presented in this section is to capture the advantages of
both Lamport and d’Ausbourg models. To this end, we have
to consider not only the actions performed by processes, but
also the context of the process at the moment the action is
executed. This leads to the definition of what we refer to as a
contextual action.

3) Contextual Action Definition: A contextual action is
composed of (1) the action performed by an object, and (2)
the value of the context of the object at the time at which
the action is performed. In order to resolve the problem of
dependency among heterogeneous objects, the objects between
active objects (processes or network that produce actions) and
passive objects (information containers, such as files, sockets,
memory, and pipes that do not produce any action) must be
distinguished. An active object is supposed to produce actions
that can be linked to a context of the object. For a passive
object, only its context can be observed and no action is
produced. In order to have a unique notation for both types of
objects, an action a is that performed by a process if the object
is active and ∅ if an object is passive (i.e., no action is produced
by a passive object). Note that if we consider the state of an
active object at a given time without running an action, ∅ is the
precise notation used to indicate that no action is performed
in this context. The set of actions produced by an active or
passive object, o, is defined as the set ObjectActions(o).

Definition 1: ObjectActions(o) = {ai} ∪ {∅} with ai are
the actions that can be performed by the object, o, and the
absence of action, ∅.
As an example, a process p has to call a function in a library
to invoke a system call to request a kernel service. We then
consider that all library function invocations are actions of
ObjectActions(p). We now formally introduce the concept of
contextual action:

Definition 2: A contextual action is a couple (a, (o, t))
where a ∈ ObjectActions(o), and (o, t) is the state of object
o at time t.

Lamport supposes that for two actions, a and b are produced

by a given process such that a ≺ b, b is causally dependent on
a. As previously noted, it is desired to realize a more precise
model that can define that at a given moment, the causality
relationship between a and b inside a given object evolution
can be broken if the state of the object is independent from its
previous state. In practice, numerous server processes keep no
memory in their sequenced request executions. For instance,
a network file server process can access any file without
the knowledge of the previous access. This means that a
given process execution can be divided into temporal intervals,
where executions are partially or completely “independent”
from each other. In our model, such an interval in the execution
of a process is called a session. The concept of session is not
new. In particular, in [29], actions that delimit sessions inside
long-running processes have been thoroughly studied to reduce
the number of false causal dependencies among actions. The
definition of the notion of session is as follows.

Definition 3: Given an object o, a session Sessionn(o)
is a sequence of contextual actions (ai, (o, ti)), where
ai ∈ ObjectActions(o) and Sessionn(o) = {(ai, (o, ti)) /
(o, ti) → (o, ti+1) and (o, tendn−1) 6→ (o, tstartn) and
(o, tendn

) 6→ (o, tstartn+1
)}; tstartn is the time of the first

contextual action of Sessionn(o), and tendn
is the time of the

last contextual action in Sessionn(o).

too
(a

1
, (
o,
t 1
))

(a
2
, (
o,
t 2
))

(a
3
, (
o,
t 3
))

(a
4
, (
o,
t 4
))

(a
5
, (
o,
t 5
))

(a
6
, (
o,
t 6
))

(a
7
, (
o,
t 7
))

(a
8
, (
o,
t 8
))

Session1(o) Session2(o) Session3(o)

Fig. 3. Sequence of contextual actions and sessions.

An execution of an object o is the union of all Sessions(o),
as shown in Fig. 3. The figure also illustrates how different
sessions of an object are built on its timeline. In this example,
the actions, a4 and a7, start new sessions. Thus, (o, t4) and
(o, t7) are independent of their temporally previous states. In
practice, such actions can be identified with expert knowledge
or the use of underlying mechanisms of applications. The
concept of sessions applies to any object type, e.g., a file that
is emptied or an Apache process that has no memory between
two execution requests. An action that starts a new session can
actually be performed by an application or the OS. This can
be illustrated for passive objects with a shared memory that
can be cleared by the system or another process and whose
state becomes independent from its previous states.

4) Definition of Contextual Action Causal Dependency Re-
lationship: The concept of contextual action takes into con-
sideration the actions performed by the objects and their states
involved in these actions. It allows us to exploit both models
and define a more precise dependency relationship among
heterogeneous actions. This new dependency relationship is
called contextual action causal dependency, denoted “7→,” and
is defined on the set of all contextual actions produced by all
objects in the system.

to1o1
(a1, (o1, t1)) (a5, (o1, t5)) (a6, (o1, t)) (a4, (o1, t4))

to2o2
(a2, (o2, t2)) (a3, (o2, t3))

Session1(o1) Session2(o1)

Session1(o2)

Fig. 4. Contextual action causal dependency in different sessions.

Definition 4: Given two contextual actions, (a1, (o1, t1))
and (a2, (o2, t2)), the latter being causally dependent on the
former, written as (a1, (o1, t1)) 7→ (a2, (o2, t2)), is true

1) if o1 and o2 are the same object o, ∃ n so that
(a1, (o, t1)) ∈ Sessionn(o),
(a2, (o, t2)) ∈ Sessionn(o), and t1 < t2;

2) or if o1 6= o2, (o1, t1)→ (o2, t2), i.e., they are causally
dependent in the sense of d’Ausbourg, indicating that
there is an information flow from the state (o1, t1) to
the state (o2, t2);

3) or if o1 6= o2, action a1 corresponds to the sending
of a message, m, and the action a2 corresponds to the
reception of m, implying that a1 ≺ a2 using case (2) of
Lamport’s happened-before relationship;

4) or ∃ (c, (o, t)) so that (a1, (o1, t1)) 7→ (c, (o, t)) and
(c, (o, t)) 7→ (a2, (o2, t2)).

In practice, for a given object, o, two contextual actions,
(a1, (o, t1)) and (a2, (o, t2)), are causally dependent if their
states are causally dependent in the sense of d’Ausbourg
causality definition, i.e., if (o, t1)→ (o, t2). This implies that
if (a1, (o, t1)) and (a2, (o, t2)) are part of the same session,
then they are causally dependent. However, if (a1, (o, t1))
and (a2, (o, t2)) are not in the same session, then they can
either be causally dependent or independent. This is clearly
different from the Lamport causality definition, where all
actions performed by object o are considered as causally
dependent even if they belong to different sessions.

Figure 4 illustrates the use of our model. Given two objects,
o1 and o2, we have the following relationships among the
different contextual actions: (a1, (o1, t1)) 7→ (a2, (o2, t2)) 7→
(a3, (o2, t3)) 7→ (a4, (o1, t4)); (a1, (o1, t1)) 7→ (a5, (o1, t5));
(a6, (o1, t)) 7→ (a4, (o1, t4)). Because the relationship “ 7→”
is transitive, we have (a1, (o1, t1)) 7→ (a4, (o1, t4)) even if
these two contextual actions belong to two different sessions.
Moreover, as action a6 starts a new session, it is implied that
(a5, (o1, t5)) 67→ (a6, (o1, t)). Note that objects o1 and o2 have
their own clocks, i.e., to1 and to2 , respectively; they are not
necessary to synchronize our model.

B. From Contextual Actions to Contextual Events and Times-
tamped Logged Events

The previous subsection describes the notions of contextual
actions and the causal dependencies among them. In practice,
the actions can be recorded or unrecorded as logged events
produced either by an application or a sensor (e.g., at the OS

level or network level). The objective of our model is to define
a causal relationship among these events.

1) Contextual Event Definition: As in [14], an event is
defined as “an identifiable action that happens on a device and
is recorded in a log entry.” Note that an action might not be
recorded in a log entry (e.g., it is not observed by any sensor);
consequently, an action can be missed by an analyst. Several
sensors can be deployed in a supervised system; thus, an action
might be observed by different sensors and be recorded as
several log entries in heterogeneous logs.

Given the set of the system’s logged events, denoted E, each
logged event is produced at a given time (e.g., its timestamp)
by observing a given contextual action performed by an object.
This leads to the definition of a contextual event.

Definition 5: A contextual event is a triplet (e, o, te), where
e ∈ E; o represents the observed object, and te is the
timestamp of event e.

According to definition 2, action a of a given contextual
action, (a, (o, ta)), might represent a real action or the lack
of action; hence, a might not be observable. We thus extend
the previous definition by introducing the contextual event,
(∅, o, ta), corresponding to the lack of observation of a at time
ta.

We can now introduce a function, Obs, which maps a con-
textual action into a set of contextual events corresponding to
the observations of this single contextual action. The function
Obs can be defined as follows.

Definition 6: Given an action a ∈ ObjectActions(o)
occurring at time ta, the observation of a contextual action is
Obs

(
(a, (o, ta))

)
= {(ei, o, tei)} ∪ {(∅, o, ta)}, where ei ∈ E

and is an observation of a; (∅, o, ta) corresponds to the lack
of an observation of a and thus to the lack of an event.

It must be noted that in definition 6, the timestamp of event
tei might be different from time ta at which the related action
is actually executed. We have no clue whether ta < tei or not
because the action can be recorded before it occurs, during,
or after its execution. Moreover, the type of an action and its
observations are the same as that of the observed object (i.e.,
for active objects, process or network type).

2) Definition of the Contextual Event Causal Dependency
Relationship: Recall that the goal of this model is to define the
causal dependency relationship among events. To accomplish
this, it is first necessary to define the contextual event causal
dependency relationship, denoted as “⇀.”

Definition 7: Given two contextual events (e1, o1, tei) and
(e2, o2, tej), the latter is causally dependent on the former,
written as (e1, o1, tei) ⇀ (e2, o2, tej), if and only if there
exist two contextual actions, (a1, (o1, t1)) and (a2, (o2, t2)),
such that (a1, (o1, t1)) 7→ (a2, (o2, t2)) and (e1, o1, tei) ∈
Obs

(
(a1, (o1, t1))

)
and (e2, o2, tej) ∈ Obs

(
(a2, (o2, t2))

)
.

3) Definition of Event Causal Dependency: At this point,
the core result of this model is obtained, i.e., the definition of
what we call the event causal dependency relationship, denoted
“..”

Definition 8: Given two events, e1 and e2, the latter is
causally dependent on the former, written as e1 . e2, if and

only if (e1, o1, te1) ⇀ (e2, o2, te2), where o1 and o2 are the
observed objects, and t1 and t2 are the timestamps of events,
respectively.

The relationships “7→,” “⇀,” and “.” define partial orders
on the set of contextual actions, the set of contextual events,
and the set of events, respectively.

C. Cause and Dependence Graphs for Events

The relationships defined in this section are transitive. This
property allows us to build the cause graph and dependence
graph of a given event, e, of interest. The cause and depen-
dence graphs represent all events that contribute to and depend
on a given event, respectively.

Definition 9: The cause graph is defined as cause(e) = {e′/
e′ . e}

Definition 10: The dependence graph is defined as dep(e) =
{e′/e . e′}

Alert/IoC

eAlert

Cause
Graph

eNet11

eSys
31

.

eN
et

12

e
Sys

22

.

eSys
21 .

.
eApp
32

.

Dependence
Graph

eN
et

101

eSys
111.

eSys
112

.

eNet102
eSys
201

.

eApp
301

.

eSys
202.

.

.

.

.

.

Fig. 5. Cause and dependence graphs of an event of interest.

Figure 5 illustrates the cause and dependence graphs of a
given event of interest, i.e., an alert recorded by an IDS.

The following sections present how the contextual event
causal dependency model can be computed based on logged
events.

V. MODEL IMPLEMENTATION

In this section, we present how existing work permits the
computation of the parts of our contextual event causal depen-
dency model. The computation of causal dependencies among
events has been especially studied in the operating system
research field and distributed system field. All these methods
and implementations allow the observation and recording of a
subset of actions performed by active objects in the supervised
system. Each implementation permits observations at a given
level of the system and thus provides partial information of
what really transpires in the system. For example, a system
call is recorded at a time that is different from the library call
occurrence time in the application. Accordingly, it is important
to note that the existing work only enables an approximation
of the correct model. However, the most advanced implemen-
tation of our model would involve merging all technologies
that are described in the following subsections.

A. Computing an Approximation of Causal Dependencies
among Actions using Information Flow Monitoring

Numerous existing works propose the observation and
recording of information flows performed by kernel level

objects. Usually, in all these works, an active object can be
a process, a thread, or an execution unit as that in [29];
moreover, a passive object might be a file, socket, pipe,
memory, or finer-grained data unit as that in [30]. An event is
logged each time an information flow is observed between two
object states; however, the object states are not known. Thus,
all these information flow monitoring implementations permit
the approximation of the contextual action causal dependency
model.

1) Information Flow Monitoring inside Kernel Space:
Although information flows can be deduced from system call
monitoring [17], [31], considerable work has been performed
to instrument the Linux kernel by leveraging the Linux Secu-
rity Module framework and netfilter modules to enable a finer-
grained observation of information flows produced by system
call invocations [39], [42], [40]. In particular, RfBlare [18]
proposes a solution to handle information flow monitoring
evasions that leverage race conditions among system calls.
In [7], the authors propose the insertion of new dedicated
hooks to record information flows into the provenance model.

Some implementations [21], [42], [7], [40] also consider
message-passing among the different nodes of the supervised
system using the IP option field of packets to transmit addi-
tional information, such as the identifier of the sender. Hence,
the packet-related part of these methods permits the capture of
an approximation of our model using case (3) (cf. definition 4)
at the OS level, i.e., inside the netfilter module of the kernel.

2) Application Behavior Analysis—Enabling Finer-Grained
Causal Dependency Computation: Different from the kernel
abstraction level, memory I/O operations can be observed at
the application level. Application instrumentation methodolo-
gies at the source code level or binary level can be leveraged
to enable the observation of more actions. An example to
achieve this is the libc instrumented with hooks to enable
the recording of more actions (e.g., the action of writing to
a memory cell) [29], [24]. Consequently, this approach is
able to compute more precisely the contextual action causal
dependencies in the application. Moreover, program behavior
analysis techniques can be leveraged to discover the notion of
sessions as defined in our model. In [29], [34], binaries are
instrumented to make them invoke specially crafted system
calls that delimit execution units, which can be considered
as sessions, of long-running processes. The insight is that
these applications mainly rely on the external event loop
processing paradigm, and each iteration of the loop is causally
independent of the previous and subsequent iterations. A
training phase is then conducted using dynamic analysis to
determine inter-unit dependencies through memory accesses.
The notion of data units has also been proposed in [30], [47]
to enable finer-grained dependency observation pertaining to
passive object states. However, data unit discovery requires
the instrumentation of the application’s source code.

Unfortunately, these works are constrained by the fact that
execution and data units are extremely low-level to be practical
and do not perform high-level tasks well. With the insight
that these tasks are typically represented by data structures

in the source code, the MPI [33] proposes a framework to
annotate the source code and perform program analysis to
identify execution partitioning, i.e., sessions.

As instrumentation is not always possible or desirable, and
it is frequently difficult to maintain; other techniques [26], [32]
infer program behavior by dynamically identifying implicit
sessions and their related system calls.

B. Object State Snapshots

The existing work presented in the previous subsection only
records events by observing active object actions. They do
not provide a means to record object states at any given
time and only focus on information flow monitoring (e.g.,
this is attributable to the known semantics of system calls).
Hence, only the contextual event causal dependency part of our
model can be computed. To completely compute our model,
from contextual action causal dependency to contextual event
causal dependency, the supervision system has to be able to
capture objects states at any moment during the observed
system execution. Such memory captures are performed in
debugging and replaying tools, where an action can be stopped
and its context captured, i.e., the value of the object state. Such
memory capture mechanisms can be embedded in processors,
virtual machine hypervisors, or emulators, such as QEMU, as
that in [9]. In [12], the authors define a state-aware system
as an eidetic system. As opposed to the whole system, their
implementation is embedded in the Linux kernel and allows
the recording of process states and their evolution in order to
replay subsets of processes. These principles can also apply
at the application level. In [45], the authors instrument the
Chrome web browser to enable the logging and replay of
the user action contexts, i.e., the document object model that
contains web page objects and Javascript source code. By
enabling the finer-grained logging of action contexts, these
methodologies also allow the approximation of the contextual
action causal dependency model.

C. Message Passing Systems

Every work in this distributed system research field imple-
ments various means to deduce causal dependencies among
distributed process actions. One of the first approaches to
obtain partial ordering of actions in distributed systems was
introduced by [15]. Numerous articles have been published to
propose various means of capturing temporal causal depen-
dencies [35], [43]. Evidently, any of these technical solutions
is relevant for computing contextual action dependencies of
different processes.

D. Implementation Conclusion

We can thus leverage previous work to obtain an approxima-
tion of our model that could ultimately lead to the computation
of causal dependencies among logged events. As far as we
know, no system provides the sum of all notions required
by our model. The purpose of the next section is to propose
another type of model approximation without any instrumen-
tation or OS modification, message passing technology, or

application. The entire approximated model is deduced from
the heterogeneous logs of the distributed system.

VI. APPROXIMATION OF CONTEXTUAL ACTION CAUSAL
DEPENDENCY MODEL—A LIGHTWEIGHT APPROACH

In this section, an implementation of our contextual event
causal dependency model using only existing logging facilities
to record events is proposed; thus, our implementation does not
rely on any instrumentation of the supervised system. Herein,
it is shown that the use of existing logs generated by various
sensors, such as auditd, netfilter, application logging systems,
and Bro NIDS, already yield a good approximation of the
model.

We describe how each type of log is treated depending on
its data source to deduce causality relationships among hetero-
geneous logged events. Section VI-B describes how contextual
events issued from the analysis of application-related sources
are deduced, i.e., from application logs and application level
HIDS alerts. Section VI-C is related to the analysis of system
call logs and HIDS alerts. Finally, Section VI-D is related to
the events deduced from network traces or NIDS alerts.

A. From Contextual Events to Contextual Actions

In Section IV, three different notions are introduced: con-
textual actions, contextual events, and events. These objects
are assembled in a top-down approach, from the top layer
of contextual actions to the bottom layer of events. In order
to produce such an approach, inspection mechanisms must
be implemented (Section V). Actually, the lightweight imple-
mentation that is proposed in this section involves taking the
perspective of an analyst who only has events and alerts. This
approach does not permit the generation of real contextual
actions from the system observation (e.g., there is no system
implementation that enables the observation of object states
and computation of causal dependencies among them). Thus,
the approach we propose involves building layers from events
to contextual actions in a bottom-up manner. As stated in
Section IV, it is known that two contextual events are causally
dependent if and only if two corresponding contextual actions
are causally dependent as well. We virtually produce (1) ap-
proximations of contextual events from heterogeneous logged
events and (2) an approximation of contextual actions from
contextual events. For each contextual event, there exists a
single contextual action (the event is produced by observing
this action). A contextual action is surmised from a set of
events that are the results of observations of several sensors of
this single action. This contextual action is an approximation
of the real action: (1) the time at which it occurs is supposed to
be in the time interval of the timestamps of contextual events,
and (2) the action is the set of events that is produced by
the observation of the action of several sensors. To build this
set, it is necessary to preprocess contextual events in order to
aggregate them into a single set. Aggregation is a common
part of a correlation process; it consists of merging several
events or alerts into a single meta-alert [46].

B. Application Data Source

1) Contextual Events from Application Level Logged
Events: A process, p, running an application produces a se-
quence of contextual application events, {(eApp

i , p, ti)}, where
the event eApp

i describes an action executed by the observed
process, p, at time ti. Note that the observed object has to
be identified to enable the computation of our model. For
instance, these information can be retrieved from the event
semantics or from an external knowledge base. Depending
on the deployed supervision system, these contextual events
can be analyzed by an application level HIDS to detect
suspicious program behavior, e.g., an abnormal sequence of
events. The HIDS analysis is performed in the context of the
supervised application; any alert raised can be defined as part
of the application context. An application level alert is then
recorded as an application contextual event (eApp

alert, p, talert)

with eApp
alert ∈ Obs

(
(eApp

alert, (p, talert))
)
; (eApp

alert, (p, talert)) is
the approximation of the contextual action that triggered the
alert.

Example 1: eApp
Req = [04/Nov/2018:21:50:54 +0000] 1566 10.0.2.15

80 10.0.2.2 56582 “POST /bWAPP/sqli 6.php HTTP/1.1” 200 6799

“http://10.0.2.15:80/bWAPP/sqli 6.php” “Mozilla/5.0 (X11; Ubuntu; Linux x86 64;

rv:61.0) Gecko/20100101 Firefox/61.0”

Let the processing of application events in our attack
scenario example be illustrated using the Apache application
events. The application event, eApp

Req , illustrated with Exam-
ple 1, corresponds to the Apache log entry that records the
fact that the request has been treated. The second attribute,
i.e., 1566, represents the process identifier (PID) of the pro-
cess that treated the request. This information allows us to
identify precisely the process that recorded the logged event.
Thus, a contextual event can be computed by identifying the
corresponding Apache active object using the PID information
and place it on its timeline using the timestamp, teApp

Req
. Note

that this unique application event is actually a fusion of two
events: the POST request and its result; however, we only
have one timestamp for the two. Thus, an approximation
that the two events happened at the same time (i.e., the
timestamp) is necessary. Moreover, these two events could also
be considered as the reception of a message: the POST request
and sending of request result.

apache tapa

(eApp
Reqn

, apa, t
e
App
Reqn

)(eApp
Reqn−1

, apa, t
e
App
Reqn−1

)

Sessionn−1(apa) Sessionn(apa) Sessionn+1(apa)

Fig. 6. Apache application contextual event computed from access.log.

2) Sessions in Application Contextual Events: Figure 6
shows the placement of the contextual application event on
the Apache object timeline. Considering that Apache is a web
server with no memory, each request processing is independent
of the others. In other words, each request would be executed

in an independent session, as defined in Section IV-A3. Thus, a
session can be deduced for each contextual event correspond-
ing to a request. Note that the Apache application could be
further instrumented for the accurate determination of sessions
at the application level. With two logged events shown in the
example, three sessions are illustrated. How to identify the
sessions more precisely using system calls is illustrated in
Subsection VI-C.

tp1
p1

(e
App

1
, p1,

t1)

(e
App

sen
dMsg(p2,m

)
, p1,

ts)

(e
App

2
, p1,

t2)

tp2
p2

(e
App

3
, p2,

t3)

(e
App

recv
Msg(p1,m

)
, p2,

tr)

(e
App

4
, p2,

t4)

Fig. 7. Message exchange between two applications.

3) Message Exchanges in Application Contextual Events:
In our attack scenario example, messages are exchanged
among different processes at different nodes; for instance,
the apache and mysqld processes exchange messages. With
further instrumentation of the applications, these messages
could be recorded in the application level logged events.
Figure 7 illustrates the use of application level contextual
events (when they are available) to compute causal depen-
dencies between the two process active objects. Note that the
clocks of the two processes, tp1 and tp2 , are not necessarily
synchronized. Process p1 records in its log a contextual event,
(eApp

sendMsg(p2,m), p1, ts), indicating that it sends a message m
to p2 at time ts with the sendMsg function. Process p2 records
(eApp

recvMsg(p1,m), p2, tr), which indicates that it receives mes-
sage m from p1 at time tr with the recvMsg function. The
foregoing implies that both contextual events are causally de-
pendent: (eApp

sendMsg(p2,m), p1, ts) ⇀ (eApp
recvMsg(p1,m), p2, tr).

Accordingly, we also have eApp
sendMsg(p2,m) .e

App
recvMsg(p1,m). If

it is supposed that all contextual events of an object are part of
the same session, then we can deduce the following as partial
ordering of events using the event causality relationship:
eApp
1 . eApp

sendMsg(p2,m) . eApp
2 ; eApp

3 . eApp
recvMsg(p1,m) . eApp

4 ;
eApp
1 . eApp

sendMsg(p2,m) . e
App
recvMsg(p1,m) . e

App
4 . In practice, if

the processes are communicating on a single node, then we
would be able to build this causal dependency using the OS
level system call traces. However, if the two processes are
communicating through the network via message exchanges,
causality relationships can be deduced from their application
level logs.

C. System Call Data Source

1) Contextual Events from System Call Level Logged
Events: System call invocations can be recorded inside the
kernel or by a dedicated module in the kernel space that
uses hooks to intercept system calls and produce a trace
for each process. To avoid the instrumentation of the kernel,
an already existing tool, auditd, is utilized to record system

call events. In this trace, contextual events are recorded in
the form (eSys, p, t); this means that each recorded event
indicates which system call is invoked by process p at a given
timestamp. The event eSys is a system call that is executed
in the context of process p at time t. Note that this time is
defined as the timestamp of the contextual event, which is an
approximation, as previously detailed. In that sense, the event
eSys is not produced by process p but is part of the set of
contextual events of p, i.e., the system call is executed in the
context of the process state.

Example 2: eSys
accept4 =

type=SYSCALL msg=audit(1541366508.539:47875): arch=c000003e syscall=288

success=yes exit=10 a0=3 a1=7ffce59a1100 a2=7ffce59a10e0 a3=80000 items=0

ppid=1106 pid=1566 auid=4294967295 uid=33 gid=33 euid=33 suid=33

fsuid=33 egid=33 sgid=33 fsgid=33 tty=(none) ses=4294967295 comm=“apache2”

exe=“/usr/sbin/apache2” key=(null)

type=SOCKADDR msg=audit(1541366508.539:47875): saddr=0200DD060A0002

020000000000000000 (saddr= (AF INET) 10.0.2.2 : 56582)

type=PROCTITLE msg=audit(1541366508.539:47875): proctitle=2F7573722F7362

696E2F61706163686532002D6B007374617274 (proctitle=/usr/sbin/apache2 -k start)

Among the invoked system calls, some produce information
flows (e.g., read(), write(), send(), and recv()) and others
do not (e.g., wait(), mprotect(), and futex()). Each time an
information flow is produced, two objects are involved: an
active object (e.g., a process or the network) and a passive
object (e.g., shared memory, sockets, files, and pipes). Recall
that only active objects can produce events; accordingly, the
information flow implies a causal dependency between two
contextual events: (1) if the information flows from process
p to the passive object, o, (e.g., system calls from the write()
family), then (eSys, p, t) ⇀ (∅, o, t); (2) if the information
flows from the passive object, o, to process p (e.g., system
calls from the read() family), then (∅, o, t) ⇀ (eSys, p, t); (3)
if the information flows from a parent process, pparent, to a
child process, pchild (e.g., system calls from the fork() family),
then (eSys, pparent, t) ⇀ (∅, pchild, t).

Processes communicate using the interprocess communica-
tion (IPC) mechanism, which always involves passive objects,
such as pipes, sockets, message queues, or shared memory.
The access to these passive objects may or may not involve
system calls (e.g., shared memory and memory mapped files).
In the latter case, communications cannot be intercepted by
the kernel because they are produced at the hardware level.
Consequently, the log files available in the system do not
exhibit all information flows. Thus, we can only compute
a part of the causal dependencies among contextual events.
Example 2 illustrates an accept() system call that produces two
contextual events: one for the Apache process and another for
the created socket.

Following the illustration of application event processing
in our attack scenario example, we now illustrate system call
event processing. As can be observed in Fig. 8, system call
contextual events are not sufficient to link the Apache and
MySQL hosts. For the purpose of making them readable, the

saccept tapa
∅

eSys
accept

∅

eSys
read

∅

eSys
write

apache tapa
eSys
connect

∅

eSys
write

∅

eSys
read

∅

eSys
accept

sconnect tapa

saccept tsql
∅

eSys
accept

∅

eSys
recvfrom

∅

eSys
sendto

mysqld tsql
eSys
sendto eSys

read

∅

eSys
read

∅

eSys
accept

movies.db

tab schem.db tsql

Fig. 8. System call contextual events computed from audit logs.

contextual events are not written in figures, but are replaced
by their corresponding logged events. In Fig. 8, it can be seen
that system call events already allow the linking of several
objects that are involved in the attack scenario. A system call
event contains the required information to causally link active
objects, i.e., a process identified by its PID and a passive
object. Because system call events are produced on a single
node, they can be temporally ordered and easily placed on
the timelines of their related objects. Note that the Apache
and MySQL host clocks might not be synchronized. Thus, the
system call contextual events from the two nodes cannot be
totally ordered; moreover, at this point, they cannot be partially
ordered.

Similar to the application level HIDS, a system call level
HIDS analysis is also performed in the context of a process,
and any alert raised is also considered to be part of the
application context. Accordingly, a system call level alert is
recorded as a contextual event, (eSys

alert, p, talert), where the
alert eSys

alert is raised in the context of p at time talert with
eSys
alert ∈ Obs

(
(a, (p, t))

)
and (a, (p, t)) being the contex-

tual action that triggered the alert. Because auditd can be
configured to observe directories or files of interest using
dedicated rules, it can also be used as a HIDS. Such an alert
contains the same information as a classic system call event
and can also be easily placed on the timeline of the related
object.

2) Sessions in System Call Contextual Events: As men-
tioned in the application data source subsection, system calls
can be used to determine sessions. In the case of Apache, it is
known that request handling delimits sessions. At the kernel
level, a request is read from the network that used the accept()
system call. Thus, it is considered that accept() system calls
start new sessions for the apache process.

D. Network Data Source

1) Contextual Events from Network Level Logged Events:
Network events3, specifically packet flows, can be recorded
by network sniffing tools. Even though communications over
the network are produced by processes, network traces do not
have any information concerning the processes and cannot be

3We refer to log entries deduced from network traces as network events.

directly related to their contexts. Therefore, in this trace, con-
textual events are recorded in the form (eNet

conn, netw, t), which
means that a network event, eNet

conn, i.e., a raw or analyzed
packet flow, related to the connection, conn, is observed in the
context of the network interface, netw, at time t. In that sense,
netw is modeled as an active object that can observe, analyze,
and record packet flows. Moreover, a network active object,
netw, is considered as stateless; that is, considering the context
of netw, a contextual event is independent of other contextual
events. Note that a given network interface belongs to a unique
host, and a host can have multiple network interfaces. A
network event, eNet

conn, observed on a given network interface,
netw, always involves communication between two objects,
i.e., a network socket that uses netw to read from or write to
the network. The network interface of the source or destination
of the message is (1) (∅, socketsrcconn, t) ⇀ (eNet

conn, netw, t)
if the information flows from the passive object (the socket)
to the active object (the network interface, netw), or (2)
(eNet

conn, netw, t) ⇀ (∅, socketdstconn, t) if the information flows
from the active object (the network interface, netw) to the
passive object (the socket).

Packet flows, as previous data sources, can also be ana-
lyzed by a NIDS, such as Bro NIDS, which generates event
logs from the protocol dissection. A NIDS alert is mod-
eled as any other network event, i.e., a contextual event
in the form of (eNet

conn,alert, netw, talert) with eNet
conn,alert ∈

Obs
(
(a, (netw, t))

)
; (a, (netw, t)) being the contextual action

that triggered the alert. Because Bro can generate several
events from the same connection, it well illustrates the fact
that an action can be observed as several logged events,
i.e., the set Obs

(
(a, (netw, t))

)
of its related contextual ac-

tion, (a, (netw, t)), can contain several contextual events:
Obs

(
(a, (netw, t))

)
=

{
(ei

Net
conn, netw, tei)

}
. Moreover, these

logged events can even be aggregated using event fusion
techniques. Note that a NIDS typically observes network
activities using a network tap; thus, it relies on its own network
interface to observe network activities.

Example 3: eNet
conn,alert = 2018-11-04T21:50:55.001600Z

CgGkAp4P6ThQzD2Wg 192.168.1.2 48218 192.168.1.3 3306 tcp MySQL::Sqli

SELECT * FROM movies WHERE title LIKE ‘%%’ UNION ALL SELECT

table schema,table name, null, null, null, null, null from information schema.tables;–

%’ SQLi Attempt : Suspect syntax detected. [‘Notice::ACTION LOG’]

sconnect tapa
∅

eNet
conn

∅ ∅

netint
apa tapa

eNet
conn eNet

conn

netwint
bro tbro

eNet
conn,alert

netwint
sql tsql

eNet
conn eNet

conn eNet
conn

saccept tsql
∅ ∅ ∅

Fig. 9. Network contextual events computed from netfilter and Bro logs.

Figure 9 illustrates the use of events deduced from network

traces in our motivating example. Only the internal network
side, i.e., netwint

apa, netwint
sql , and netwint

bro network interface
active objects, has been shown in this example. The event,
eNet
conn,alert, illustrated by Example 3, represents a Bro alert

triggered by an SQL injection detection rule. It has been
deduced from the network packet capture by dissecting the
MySQL application protocol level; it represents the MySQL
query crafted by the attacker and requested by the Apache web
server.

2) Network Socket Object Identification: Because sockets
are mechanisms of the IPC, they are involved in the sys-
tem call layer of our model. Thus, sockets are the means
to bridge contextual network events and contextual kernel
events. Concerning Linux and its socket handling, only the
pair {remoteip, remotep} is available in the system calls
of the network family (i.e., socket(), connect(), and ac-
cept()). In our model, a socket is identified by the quadruplet
{hostip, hostp, remoteip, remotep}. Thus, system calls alone
are not sufficient to identify a socket object in our model. To
completely identify the socket objects, we leverage netfilter,
the embedded Linux firewall, to record any established con-
nection. Netfilter events allow us to easily link a socket to its
corresponding connection by matching {remoteip, remotep}
with the connection information: (1) for incoming connec-
tions, i.e., sockets created by the accept() system call fam-
ily, {remoteip, remotep} = {srcip, srcp}; (2) for outgoing
connections, i.e., sockets created by the connect() system call
family, {remoteip, remotep} = {dstip, dstp}. This matching
allows the acquisition of all information necessary to describe
a network socket. Note that this matching does not rely
on precise timestamp matching, i.e., it is sufficient that the
timestamps are close.

3) Message Exchanges in Network Contextual Events:
Network contextual events can typically be considered as mes-
sage exchange events among several network interfaces. By
leveraging network socket object information and connection
information, i.e., {srcip, srcp, dstip, dstp}, the nature of the
message can easily be identified: whether it corresponds to a
sending or a reception.

netint
apa tapa

(eNet
out(conn), netwapa, ts)

netwint
bro tbro

(eNet
conn,alert, netwbro, talert)

(eNet
in(conn), netwsql, tr)

netwint
sql tsql

Fig. 10. Message exchange among network objects.

The example in Fig. 10 illustrates the use of network level
contextual events to compute causal dependencies utilizing the
message exchange part of definition 4. Note that the clocks
of the three objects (tapa, tbro, and tsql) are not necessarily
synchronized because they potentially belong to three different
hosts. The network active object, netwapa, records in its
log a contextual event, (eNet

out(conn), netwapa, ts), indicating
that it sends data (i.e., the SQL query via the connection

conn at time ts). The network active object, netwsql, records
(eNet

in(conn), netwsql, tr); this indicates that it receives data from
conn at time tr. The above implies that both contextual
events are causally dependent: (eNet

out(conn), netwapa, ts) ⇀

(eNet
in(conn), netwsql, tr). Because the Bro NIDS observes and

analyzes the network using a network tap, it detects a
suspicious behavior and raises an alert. This alert cor-
responds to the same connection, conn; hence, we also
have (eNet

out(conn), netwapa, ts) ⇀ (eNet
in(conn), netwsql, tr) and

(eNet
out(conn), netwapa, ts) ⇀ (eNet

in(conn), netwsql, tr).

E. Cause Graph Illustration

Having described the processing of each type of logged
events, the heterogeneous contextual event causal dependency
model can be computed as shown in Fig. 2. Moreover, with
all contextual events set on their related object timelines,
we can build the cause and dependency graph for alert
(eNet

conn,alert, netwbro, talert). As defined in Section IV-C, these
graphs contain all contextual events that contribute to or
depend on the contextual event (eNet

conn,alert, netwbro, talert).
Starting from the alert, these graphs are computed using the
backward and forward traversal of timelines according to the
“⇀” relationship. Thus, objects and contextual events that do
not contribute to the alert according to the “⇀” relationship
are not contained in the graphs.

Cause
Graph

Dependence
Graph

eNet
http . eSys

accept . eSys
read . eSys

connect . eSys
write . eNet

conn. eNet
alert,conn

eNet
alert,conn .eNet

conn . eSys
recvfrom . eSys

read . eSys
read . eSys

sendto . eNet
conn

.

eNet
conn . eSys

read . eApp
Req . eSys

write . eNet
http

Fig. 11. Cause and dependence graphs of NIDS alert.

Event causal dependencies can finally be deduced using
Definition 8. The result involves the event cause and depen-
dence graphs illustrated in Fig. 11. The administrator would
have all the events that causally contribute to or causally
depend on the raised NIDS alert according to the causal
dependency relationship that we defined. The SQL injection
attack scenario on the web and database servers makes it
possible to completely illustrate our causal dependency com-
putation methodology among heterogeneous events using an
intermediary model (the contextual event causal dependency
model).

VII. APPROACH ASSESSMENT

The purpose of this section is to demonstrate that the
model described above is useful to detect real attack cases. In
particular, the model makes it possible to explain an attack and
allows the analyst to easily understand an attacker’s activity.
This section is organized as follows. Subsection VII-A dis-
cusses the services and supervision sensors that are deployed;
Subsection VII-B describes the attacks that are performed;
Subsection VII-D depicts the model obtained from the event
logs and shows the graphs deduced from these logs.

A. Test Environment Description

Internal Subnet (Clients)

Internet DMZ Subnet (Servers)

Targeted
Web Server

Targeted Endpoint
Auditd

Apache
PHP 5
Auditd

Netfilter
Bro

NIDS

audit.log

access.log

audit.log

conn.log

http.log

mysql.log

alert.log

MySQL 14
Auditd

Netfilter

netfiltert.log

netfilter.log

MySQL
Server

mysql.log

audit.log

netfilter.log

Fig. 12. Network architecture of test environment.

In initial tests, the target machines are three single virtual
machines in an OpenStack environment. As shown in Fig. 12,
the network architecture is composed of a demilitarized zone
(DMZ) and an internal network. Inside the internal network, a
end-user machine running on the Ubuntu desktop environment
with a Firefox browser is considered. The DMZ is composed
of two machines: an Apache server and MySQL server. The
Apache server runs a Linux OS 17.10, PHP 5.6 execution
environment, and Bash 4.2; and is vulnerable to a ShellShock
attack. The MySQL server runs MySQL version 14.14 with
the same OS as the Apache server. For supervision, the admin-
istrator (1) deploys an auditd daemon on the web server host
and MySQL host and configures netfilter to log connections;
(2) deploys an auditd daemon on the end-user machine and
configures netfilter to log connections; (3) deploys a network
supervision machine that runs Bro NIDS. In practice, we can
have several virtual machines in the two subnetworks. For
the demonstration, the tests are limited to one supervision
and three functional machines. Auditd is configured in a
particular manner so that (a) it allows monitoring of system
calls that produce information flows and (b) produces alerts on
specifically known attack signatures. For instance, if a known
system executable is launched, an alert is produced.

B. Attack Scenario Description

These experiments are performed using three different at-
tacks. Two of these target the Apache server and one attacks
the end-user machine. These three can be described as follows.

– Attack 1: The first attack against the Apache web server
primarily involves the exploitation of the ShellShock
bash vulnerability (also referenced as CVE-2014-6271).
It consists of the execution of bash environment variables
when they contain some bash codes. Apache executes a
bash script via the cgi-bin interface. The attack includes
forging a request that will be executed by bash and
contains environment variables with the injected code;

– Attack 2: The second attack again targets the Apache
web server; it mainly exploits the command injection
vulnerability in a PHP script. The attacker gathers in-
formation pertaining to the system and copies the list of
users from /etc/passwd.

– Attack 3: This last attack is performed against the Ubuntu
end-user machine. The attacker is assumed to have previ-
ously succeeded in obtaining the target’s sudo credentials.
The victim user downloads a Debian package containing
a malicious payload from the Internet. This payload
contains a crafted Trojan; once launched, this malware
installs a reverse transmission control protocol (TCP)
backdoor in interaction with the attacker’s machine via
the Metasploit framework. The attacker then leverages
this connection and previously obtained credentials to
further compromise the machine and obtain sensitive data
that are sent to a server controlled by the attacker using
shell scripts.

C. Generated Logs

1) Log Description: The logs generated on the supervised
system, as described in Fig. 12, are as follows. (1) On the
network supervision machine, we have Bro Logs (http.log,
dns.log, conn.log, and mysql.log). (2) On the Apache server
machine, we obtain application level logs (access.log) gen-
erated by the Apache application. Moreover, we have the
auditd log (audit.log) and netfilter log (nfconn.log). (3) On
the MySQL server machine and end-user machine, we only
generated the auditd log (audit.log) and the netfilter log
(nfconn.log). (4) On the end-user machine, only auditd log
(audit.log) is generated. Thus, four types of logs (effectively
treated as heterogeneous logs) are obtained: network logs
(Bro), application level logs (Apache), system call logs (au-
ditd), and netfilter logs.

TABLE I
NUMBER OF EVENTS IN LOGS

audit.log access.log nfconn.log Bro logs
Attack 1 19 877 5 85 131
Attack 2 8888 35 24 78
Attack 3 82 679 0 345 347

2) Logs Generated During Attacks: The three attacks are
sequentially performed; they are run on a fresh configuration
and generate the logs that are summarized in Table I. This ex-
perimentation does not exhibit the scalability of the approach
because only the validity of the model on a small set of logged
events is demonstrated. The current implementation seems
to scale to a large set of events; however, the performance
assessment remains as a work in progress because it relies on
several technological choices (e.g., type of databases, scaling
of log collectors, and optimization of requests for data).

D. Results

In order to apply our approach, we have to populate the
graph database with contextual events and their links, which
are deduced from the log files; these contextual events are
actually nodes in the graph database. As described in our
model in Definition 7, a contextual event node can have
several incoming and outgoing edges. These edges indicate
the ⇀ causal dependency relationship derived from sessions,
information flows, and message exchanges.

_id:dc9129dc25a3474da
type:network socket

host:192.168.2.16:80
remote:192.168.2.5:43864

2018-08-02
09:33:55
.352473()∅, ,

_id:8518eac8879c4d55b
type:network socket

host:192.168.2.16:80
remote:192.168.2.5:43864

2018-08-02
09:33:55
.353000()∅, ,

_id:15872aac9a4547db89
type:network socket

host:192.168.2.16:80
remote:192.168.2.5:43864

2018-08-02
09:33:55
.353000()∅, ,

_id:82d346f4
type:network
Bro_Alerts

2018-08-02
09:33:55
.352473(), ,

_src:Bro_Alert.log
tag:['ShellShock::HIT']

user_agent:() { :; }; echo;
echo; /bin/bash -c

'whoami'

_id:489f9095
type:process

pname:apache2
pid:5817

host_id:ApacheCGI

2018-08-02
09:33:55
.353000(), ,

_src:audit.log
pid:5817
ppid:5813

exe:/usr/sbin/apache2
syscall=288

_id:a45388899197
type:process

pname:apache2
pid:5817

host_id:ApacheCGI

2018-08-02
09:33:55
.353000(), ,

_src:audit.log
pid:5817
ppid:5813

exe:/usr/sbin/apache2
syscall=0

_id:8a9e12b411ec4
type:process

pname:apache2
pid:5817

host_id:ApacheCGI

2018-08-02
09:33:55
.354000(), ,

_src:audit.log
pid:5817
ppid:5813

exe:/usr/sbin/apache2
syscall=42

_id:15872aac9a4547d
type:unix socket

file:/var/run
/apache2/cgisock.5813

2018-08-02
09:33:55
.354000()∅, ,

_id:9853f82987d741f
type:unix socket

file:/var/run
/apache2/cgisock.5813

2018-08-02
09:33:55
.354000()∅, ,

_id:74da861006fa
type:process

pname:apache2
pid:5815

host_id:ApacheCGI

2018-08-02
09:33:53
.118000(), ,

_src:audit.log
pid:5815
ppid:5813

exe:/usr/sbin/apache2
syscall=43

_id:5a347861006fa
type:process

exe:/usr/bin/whoami
pid:5901

host_id:ApacheCGI

2018-08-02
09:33:55
.375000(), ,

_src:audit.log
pid:5901

ppid:5900
exe:/usr/bin/whoami

syscall=59
key=recon_alert

Fig. 13. Contextual event cause graph of whoami alert.

TABLE II
NUMBER OF CONTEXTUAL EVENTS, CAUSAL DEPENDENCY LINKS, AND

OBJECTS

Contextual Events Links Objects
Attack 1 40 154 70 898 9316
Attack 2 5523 5432 165
Attack 3 166 375 329 947 2645

1) Contextual Event and Causal Dependency Generation:
Based on the previously described logs, the model is applied
to generate contextual events and their dependencies. Table II
lists the number of contextual events and links produced
among these nodes in the graph. The graph database contains a
reasonable number of nodes and links. For instance, in Attack
1, approximately 40 000 contextual events and 50 000 links are
generated among these nodes. The analysis of logs permits the
presentation of approximately 10 000 objects in the distributed
system (network, processes, files, sockets, pipes, and so on).

2) Dependency Graph Generation: It may be recalled that
if a contextual event that is considered an IoC is given, then the
purpose of our approach is to generate the graph of contextual
events that are the cause or consequence of this malicious
event. Thus, initially, it is necessary for the analyst to identify
a malicious contextual event. To illustrate the approach and
its subsequent results, this section focuses on the first attack.
In practice, the approach proves to be adequate in the context
of the three attacks. In Attack 1, the first step of the attacker
is to determine his privilege. To obtain this information, he
executes the whoami binary. The analyst recognizes that this
execution is probably malicious because of an alert logged in
audit.log file. Accordingly, he has to analyze the root cause
of this event. The cause graph that mainly involves obtaining
the graph of contextual events on which this event is causally
dependent is first generated; this is shown in Fig. 13. The color
representations are as follows: light green boxes are contextual
events of socket objects; blue boxes are contextual events of
active objects that emanate from system call events; yellow
boxes are contextual events of passive objects that originate

from system call events, e.g., files, pipes, or unix sockets; red
boxes correspond to alerts related to contextual events.

The foregoing indicates that the attacker’s action does not
depend on anything other than the HTTP request, as shown in
Fig. 14. The analyst then investigates the dependence graph
of the whoami HTTP request. This request is evidently found
to lead to the execution of the whoami command, whose
result would return to the attacker. The analyst can finally
comprehend the entire scenario of the first step of the attack.
It involves several events issued from heterogeneous logs:
Bro log files, auditd log file, and Apache application log file.
Accordingly, this provides a basis to write a correlation rule
(if necessary) by linking the several events produced by the
supervision system during the attack.

VIII. DISCUSSION

Section VII shows several examples in which the proposed
model makes it possible to build a dependency graph based
on the events related to a given IoC. Certain points pertaining
to the proposed approach have to be clarified.

– The analyst begins with a given event. If this event is
not a part of a real attack, then the dependence and
cause graphs will not contain traces (events) of an attack.
Accordingly, the analyst should begin with an abnormal
event that emanates from a base of threat intelligence or
an alert produced by an IDS. In this case, evidently, the
probability that the graph contains all events related to
an attack is higher.

– The initial impression on the proposed approach is that
it seems to be closely related to forensic examination.
This is evidently the case because it provides a formal
framework for event investigation. However, in our work,
the approach is aimed at being implemented in a SIEM
to aid an analyst explain why an IoC exists or to observe
an ongoing attack in real time.

– If we include the approach in a SIEM, then we must
be able to compute event causal dependencies in real
time. This implies that the computation must be saved
to an adapted database. The type of database selected

2018-08-02 09:33:55.362000
__source:audit.log

comm:status
cwd:/usr/lib/cgi-bin

exe:/bin/bash
execve_a0:/bin/bash

execve_a1:/usr/lib/cgi-bin/status
execve_argc:2

exit:0
inode0:1037415
inode1:10192
inode2:23451

path0:/usr/lib/cgi-bin/status
path1:/bin/bash

path2:/lib64/ld-linux-x86-64.so.2
pid:5900
ppid:5815

success:yes
type:SYSCALL

operation:execve
syscall:59

2018-08-02 09:33:55.352473
__source:http.log
host:192.168.2.16

id.orig_h:192.168.2.5
id.orig_p:43864

id.resp_h:192.168.2.16
id.resp_p:80
method:GET

status_code:200
tags:['ShellShock::HIT']

uri:/cgi-bin/status
user_agent:() { :; }; echo; echo;

/bin/bash -c 'whoami'

2018-08-02 09:33:55.354013
__source:access.log

pid:5817
local_ip:192.168.2.16

remote_host:192.168.2.5
server_port:80

server_port_remote:43864
request_first_line:GET /cgi-bin/status HTTP/1.1

request_header_referer:-
request_header_user_agent:[() { :; }; echo; echo;

/bin/bash -c 'whoami']
request_url_path:/cgi-bin/status

status:200

2018-08-02 09:33:55.352560
__source:conn.log

conn_state:SF
duration:0.318538

id.orig_h:192.168.2.5
id.orig_p:43864

id.resp_h:192.168.2.16
id.resp_p:80

missed_bytes:0
orig_bytes:123

orig_ip_bytes:435
orig_pkts:6
proto:tcp

resp_bytes:141
resp_ip_bytes:461

resp_pkts:6
service:http

uid:C2Y2q7DC004BDktp3

2018-08-02 09:33:53.118000
__source:audit.log

exe:/usr/sbin/apache2
exit:8

pid:5815
ppid:5813

saddr:0100
success:yes
syscall:43

type:SYSCALL
operation:accept

syscall:43

2018-08-02 09:33:55.660000
__source:audit.log

exe:/usr/sbin/apache2
exit:5

items:0
pid:5817
ppid:5813

success:yes
type:SYSCALL
operation:writev

syscall:20

2018-08-02 09:33:55.375000
__source:audit.log

comm:whoami
cwd:/usr/lib/cgi-bin

exe:/usr/bin/whoami
execve_a0:whoami

execve_argc:1
exit:0

inode0:4399
inode1:23451

path0:/usr/bin/whoami
path1:/lib64/ld-linux-x86-64.so.2

pid:5901
ppid:5900

success:yes
type:SYSCALL

operation:execve
syscall:59

audit_key:alert_recon

2018-08-02 09:33:55.353000
__source:audit.log

exe:/usr/sbin/apache2
exit:9

pid:5817
ppid:5813

saddr:[family=2
192.168.2.5:43864]

success:yes
operation:accept4

syscall:288

2018-08-02 09:33:55.354000
__source:audit.log

exe:/usr/sbin/apache2
exit:0

pid:5817
ppid:5813

inode0:517
mode0:0140700

path0:/var/run/apache2/cgisock.5813
saddr:[family=1 file=/var/run

/apache2/cgisock.5813]
success:yes

operation:connect
syscall:42

Fig. 14. Attack 1: first step event dependency graph.

is a graph database because it is efficient in recovering
graph structures (which is the case here) and is expected
to scale to a large number of events.

Another problem for the analyst is explaining the attack in
detail, i.e., not only with respect to what are observed, but
also in terms of the attacker’s actions. It could be reasonable
to explain how to deduce an attack description (e.g., an
attack tree and attack graph) from an observed event graph.
However, to the best of our knowledge, in practice, it is
practically impossible to guess the attacker actions based on
the observed events. As a result of the work of [19], it is known
that attack and observation descriptions can have identical
representations (here an attack tree and a correlation tree,
respectively). However, even if we have the knowledge of
a known vulnerability, we cannot easily and automatically
deduce how this vulnerability is to be utilized. Even if the
observed events can be guessed based on the attacker actions,
the reverse cannot be performed automatically. Accordingly,
our work intends to recover the consequences of the attacker’s
actions on the observed system (i.e., the causally dependent
events) rather than the attacker’s actions themselves.

IX. CONCLUSION

The purpose of this study is to propose a unified under-
standing of the causality relationships that can be defined
between active entities, passive entities, and event logs. More
precisely, we aim to define the notion of causal dependency
between logged events and alerts that are produced by dis-
tributed processes and are not causally linked according to
the relationship defined by Lamport. Inspired by Lamport’s
happened-before relationship in the distributed system research
field and d’Ausbourg’s causal dependency relationship among
object states in the OS research field, we start by defining the
concept of contextual actions and causal dependency, which
links them. Thereafter, the relationships between contextual
actions and logged events are gradually introduced to finally

define the notion of causal dependencies among logged events.
To the best of our knowledge, no system provides the sum of
all notions required to compute the contextual action causal
dependency model; only parts of these notions are actually
available in a single implementation. The particularity of our
implementation is that it permits the use of existing logging
facilities of the supervised system to approximate the con-
textual action causal dependency model. The attack examples
demonstrate that we can retrieve heterogeneous events that
contribute to or depend on an event of interest, i.e., an alert
or an IoC.

ACKNOWLEDGEMENTS

We would like to thank Pierre Wilke, Adam Faci and the
anonymous reviewers for their precious time, valuable sug-
gestions and comments. This work was supported by Thales
Six GTS France. This work is part of the VESTA project
sponsored by the Direction Générale des Entreprises (DGE)
under agreement No. P141560-3210888.

REFERENCES

[1] Bro network security monitor. [Online]. Available: https://www.bro.org
[2] Cve. [Online]. Available: https://www.cvedetails.com
[3] Etw. [Online]. Available: https://docs.microsoft.com/en-us/dotnet/

framework/performance/etw-events-in-the-common-language-runtime
[4] Linux audit framework. [Online]. Available: https://people.redhat.com/

sgrubb/audit/
[5] Netfilter. [Online]. Available: https://www.netfilter.org/
[6] Ossec. [Online]. Available: https://www.ossec.net
[7] A. M. Bates, D. Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-

system provenance for the linux kernel.” in Proceedings of the USENIX
Security Symposium. USENIX Association, 2015.

[8] I. Beschastnikh, Y. Brun, M. D. Ernst, A. Krishnamurthy, and T. E.
Anderson, “Mining temporal invariants from partially ordered logs,”
ACM SIGOPS Operating Systems Review, vol. 45, no. 3, 2012.

[9] J. Chow, T. Garfinkel, and P. M. Chen, “Decoupling dynamic program
analysis from execution in virtual environments,” in Proceedings of the
USENIX Annual Technical Conference (ATC). USENIX Association,
2008.

[10] F. Cuppens and R. Ortalo, “Lambda: A language to model a database
for detection of attacks,” in Proceedings of the International Workshop
on Recent Advances in Intrusion Detection (RAID). Springer, 2000.

[11] B. d’Ausbourg, “Implementing secure dependencies over a network
by designing a distributed security subsystem,” in Proceedings of the
European Symposium on Research in Computer Security (ESORICS).
Springer, 1994.

[12] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen, “Eidetic sys-
tems,” in Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), vol. 14. USENIX Association,
2014.

[13] S. T. Eckmann, G. Vigna, and R. A. Kemmerer, “Statl: An attack
language for state-based intrusion detection,” Journal of Computer
Security, vol. 10, no. 1-2, Jul. 2002.

[14] European Commission. (2010) Standard on logging and monitoring.
[Online]. Available: https://www.eba.europa.eu/documents/101
80/1449046/Annex+5+Standard+on+Logging+and+Monitoring.pdf

[15] C. J. Fidge, “Timestamps in Message-Passing Systems that Preserve the
Partial Ordering,” in Proceedings of the Australian Computer Science
Conference, University of Queensland, Australia, 1988.

[16] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for unix processes,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P). IEEE, 1996.

[17] A. Gehani and D. Tariq, “Spade: support for provenance auditing in dis-
tributed environments,” in Proceedings of the International Middleware
Conference. Springer Berlin Heidelberg, 2012.

[18] L. Georget, M. Jaume, G. Piolle, F. Tronel, and V. V. T. Tong,
“Information flow tracking for linux handling concurrent system calls
and shared memory,” in Proceedings of the International Conference on
Software Engineering and Formal Methods (SEFM). Springer, 2017.

[19] E. Godefroy, E. Totel, M. Hurfin, and F. Majorczyk, “Generation and
assessment of correlation rules to detect complex attack scenarios,” in
Proceedings of the IEEE Conference on Communications and Network
Security (CNS). IEEE, 2015.

[20] J. Goubault-Larrecq and J. Olivain, “A smell of orchids,” in International
Workshop on Runtime Verification. Springer, 2008.

[21] C. Hauser, F. Tronel, C. Fidge, and L. Mé, “Intrusion detection in
distributed systems, an approach based on taint marking,” in Proceedings
of the IEEE International Conference on Communications (ICC). IEEE,
2013.

[22] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. D. Stoller, and V. Venkatakrishnan, “Sleuth: real-time attack
scenario reconstruction from cots audit data,” in Proceedings of the
USENIX Security Symposium. USENIX Association, 2017.

[23] S. Jajodia and S. Noel, “Advanced cyber attack modeling analysis and
visualization,” 2010.

[24] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and
W. Lee, “Rain: Refinable attack investigation with on-demand inter-
process information flow tracking,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM,
2017.

[25] S. T. King and P. M. Chen, “Backtracking intrusions,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, 2003.

[26] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. Ciocarlie et al., “Mci: Modeling-based causality
inference in audit logging for attack investigation,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS). Internet
Society, 2018.

[27] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, Jul. 1978.

[28] D. Lanoë, M. Hurfin, and E. Totel, “A scalable and efficient correlation
engine to detect multi-step attacks in distributed systems,” in Pro-
ceedings of the IEEE International Symposium on Reliable Distributed
Systems (SRDS). IEEE, 2018.

[29] K. H. Lee, X. Zhang, and D. Xu, “High Accuracy Attack Provenance
via Binary-based Execution Partition,” in Proceedings of the Network
and Distributed Systems Security Symposium (NDSS). Internet Society,
2013.

[30] ——, “Loggc: garbage collecting audit log,” in Proceedings of the ACM
SIGSAC Conference on Computer & Communications Security (CCS).
ACM, 2013.

[31] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security,” in Pro-
ceedings of the Network and Distributed System Security Symposium
(NDSS). Internet Society, 2018.

[32] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate,
low cost and instrumentation-free security audit logging for windows,” in

Proceedings of the Annual Computer Security Applications Conference
(ACSAC). ACM, 2015.

[33] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “Mpi:
Multiple perspective attack investigation with semantics aware execu-
tion partitioning,” in Proceedings of the USENIX Security Symposium.
USENIX Association, 2017.

[34] S. Ma, X. Zhang, and D. Xu, “ProTracer: towards practical provenance
tracing by alternating between logging and tainting,” in Proceedings
of the Network and Distributed Systems Security Symposium (NDSS).
Internet Society, 2016.

[35] F. Mattern et al., Virtual time and global states of distributed systems.
Citeseer, 1988.

[36] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers et al., “The open provenance
model core specification (v1. 1),” Future Generation Computer Systems,
vol. 27, no. 6, 2011.

[37] B. Morin, L. Mé, H. Debar, and M. Ducassé, “A logic-based model
to support alert correlation in intrusion detection,” Information Fusion,
vol. 10, no. 4, 2009.

[38] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko, D. L.
McLean, D. W. Margo, M. I. Seltzer, and R. Smogor, “Layering in
provenance systems.” in Proceedings of the USENIX Annual Technical
Conference (ATC). USENIX Association, 2009.

[39] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,
“Provenance-aware storage systems.” in Proceedings of the USENIX
Annual Technical Conference (ATC). USENIX Association, 2006.

[40] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical whole-system provenance capture,” in Proceedings
of the Symposium on Cloud Computing (SoCC). ACM, 2017.

[41] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si,
X. Zhang, and D. Xu, “Hercule: Attack story reconstruction via com-
munity discovery on correlated log graph,” in Proceedings of the Annual
Computer Security Applications Conference (ACSAC). ACM, 2016.

[42] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-fi:
collecting high-fidelity whole-system provenance,” in Proceedings of the
Annual Computer Security Applications Conference (ACSAC). ACM,
2012.

[43] R. Schwarz and F. Mattern, “Detecting causal relationships in distributed
computations: In search of the holy grail,” Distributed Computing, vol. 7,
no. 3, Mar. 1994.

[44] E. Totel, B. Vivinis, and L. Mé, “A language driven intrusion detection
system for event and alert correlation,” in Security and Protection in
Information Processing Systems. Springer, 2004.

[45] P. Vadrevu, J. Liu, B. Li, B. Rahbarinia, K. H. Lee, and R. Perdisci,
“Enabling Reconstruction of Attacks on Users via Efficient Browsing
Snapshots,” in Proceedings of the Network and Distributed Systems
Security Symposium (NDSS). Internet Society, 2017.

[46] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “A Comprehensive
Approach to Intrusion Detection Alert Correlation,” IEEE Transactions
on Dependable and Secure Computing (TDSC), vol. 1, no. 3, 2004.

[47] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2016.

