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Abstract—This paper proposes a new soft-input soft-output
decoding algorithm particularly suited for low-complexity high-
radix turbo decoding, called local soft-output Viterbi algorithm
(local SOVA). The local SOVA uses the forward and back-
ward state metric recursions just as the conventional Max-
Log MAP (MLM) algorithm does, and produces soft outputs
using the SOVA update rules. The proposed local SOVA exhibits
a lower computational complexity than the MLM algorithm
when employed for high-radix decoding in order to increase
throughput, while having the same error correction performance
even when used in a turbo decoding process. Furthermore, with
some simplifications, it offers various trade-offs between error
correction performance and computational complexity. Actually,
employing the local SOVA algorithm for radix-8 decoding of the
LTE turbo code reduces the complexity by 33% without any
performance degradation and by 36% with a slight penalty of
only 0.05 dB. Moreover, the local SOVA algorithm opens the door
for the practical implementation of turbo decoders for radix-16
and higher.

Index Terms—convolutional codes, soft-input soft-ouput de-
coding, soft-ouput Viterbi algorithm, high-radix decoding, turbo
codes, high throughput.

I. INTRODUCTION

URBO codes were first proposed by Berrou et al. in

1993 [1]. A turbo encoder consists of two binary re-
cursive systematic convolutional (RSC) encoders separated
by an interleaver. At the receiver, each component decoder
uses a soft-input soft-output (SISO) decoding algorithm to
compute extrinsic estimates for every systematic bit. Extrinsic
information is exchanged between the component decoders
through an iterative process, until convergence is achieved.
The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [2] is usu-
ally employed to compute the maximum a posteriori (MAP)
estimate of the bits. However, in practice, applying the BCJR
algorithm in the logarithmic domain (Log-MAP algorithm)
and possibly simplifying it using the max-log approximation
(Max-Log-MAP or MLM algorithm), makes it more suitable
for hardware implementations [3].

For the past two decades, binary turbo codes have been
adopted as forward error correcting (FEC) codes in several
wireless communication standards, such as the third and fourth
generations (3G and 4G) of wireless mobile telecommuni-
cations and WiMAX, but also in digital video broadcasting
standards such as DVB-RCS/RCS2 and DVB-SH [4]. In the
near future, the evolutions of LTE Advanced Pro will require
turbo codes able to achieve throughputs as high as several

tens of Gbit/s, so as to complement the 5G New Radio
deployments. To this end, the original BCJR algorithm and its
derivatives are penalized by their inherent serial nature, thus
leading to high latency and low throughput while requiring a
large amount of memory to store the state metrics. Therefore,
a number of techniques have been proposed as potential
solutions to these issues, such as the sliding window technique
[5], shuffled parallelism [6], sub-block parallelism [7], full
parallelism [8] or high-order radix decoding [9]. In this work,
we mainly focus on how to enable high-order radix decoding
schemes for turbo decoders. Previous works in the literature,
such as [10], [11], mainly tried to increase the throughput of
BCJR-based SISO decoders, without specifically considering
the complexity reduction of the studied algorithm. Only in
[12], a low-complexity radix-16 SISO decoder for the MLM
algorithm was proposed, with the introduction of specific
processing to limit the resulting error correction degradation
at high signal-to-noise ratios.

On the other hand, the soft-output Viterbi algorithm (SOVA)
[13] has been recently reconsidered as an efficient SISO
candidate for turbo decoding [14], [15]. However, the interest
in this algorithm remains limited. This is because, first of all,
the MM algorithm outperforms the SOVA by about 0.75 dB
when used for turbo decoding [3] and, second, the serial nature
of the SOVA is even more pronounced when compared to the
MLM algorithm due to the involved traceback and the soft
output update procedures. Nevertheless, the SOVA provides
an alternative way to perform the soft output computation for
SISO decoding. More specifically, once the forward and back-
ward state metric recursions have been processed, two update
rules employed in SOVA decoding, namely the Hagenauer rule
[13] and the Battail rule [16], [17], can also be employed to
produce the same soft output estimate as the MLM algorithm.
This paper shows that using SOVA update rules allows us
to perform high-radix decoding of convolutional codes in an
efficient way, enabling implementations of high-throughput
turbo decoders.

The rest of this paper is organized as follows. Section II
recalls the MLM algorithm and analyzes it from the SOVA
perspective. Section III describes the local SOVA and shows
that the MLM algorithm is an instance of the proposed
algorithm. High-radix turbo decoders using local SOVA are
then considered with new simplifications in Section IV and
simulation results and computational complexity analysis are
provided to illustrate the advantages of the local SOVA.



Finally, Section V concludes the paper.

II. REVISITING THE MLM ALGORITHM

Let us assume a binary convolutional encoder with rate 1/m
and memory length v. Considering an input message sequence
of length K, u = (ug,...,urx—_1) € {0,1}%, the encoder
produces codeword x = (x,...,up—1) € {0,1}M, where
M = m x K. A common representation of a convolutional
code is the trellis diagram. With K message bits, the trellis
diagram consists of K + 1 time indexes, ranging from 0 to
K. At time index k, the state of the convolutional code can
take 2V values. The interval between a time index k£ and £+ 1
is considered as trellis section k. In a trellis section k, there
are branches connecting states at time index k to states at
time index k£ + 1. Since the considered convolutional code is
binary, two branches come out of any state s at time index k,
each being connected to a state at time index k£ + 1. Of the
two branches, one is associated with input bit ux = 0 and the
other with input bit u; = 1.

Assuming a transmission using BPSK modulation, the re-
ceived sequence is y = {y1,...,yn . The BCJR algorithm
and its derivatives estimate the log-likelihood ratio (LLR) for
each systematic bit as [3]:

Zs,s’\ukzl Pr{sk = 8,Sk+1 = S/,y}
s up—o {5k = 8, 8641 = 8"y}

(D

LBCJR (uk) = 111

Based on the max-log approximation, ln(Zi.V:1 ;) =~
_____ ~{ln(z;)}, (1) can be rewritten so as to derive the
MLM LLR estimate, which is the soft output of the decoder
[3]:

Lyim (ug) = rr)llax 1lnPr{sk =5,8641 = S|y}
s,8")|up=
— max InPr{sy=s,541=5y}
(s,8")|ur=0
= x| (Ak(s) + Ti(s, ') + Brya(s))
5,8")|up=
— max  (Ap(s) +Tx(s,s") + Br1(s)), )

(s,8")|urp=0

where T'(s, ') is the branch metric from state s, = s to state
sp+1 = & at trellis section k, Ag(s) is the forward state metric
for s, = s at time index k and By41(s’) is the backward state
metric for sgy1 = s’ at time index k + 1.

The forward (respectively backward) state metrics from time
index 0 to K (respectively K to 0) are recursively calculated
using (3a) (respectively (3b)):

Agi1(s) = max {Ak(s") +Tr(s',5)},
Byi(s) = max {Bi41(s") + Ti(s,s)}.

(3a)
(3b)

The procedure of recursively calculating the forward state met-
rics is referred to as forward propagation and the procedure of
recursively calculating the backward state metrics as backward
propagation.

Let us take as an example the estimation of the soft output
related to wy at trellis section k in Fig. 1, using the MLM
algorithm. The forward and backward propagations provide
all the values for Ag(s), s = 0,...,3 and Bj41(s'), s’ =

0,...,3. Then, assuming that (s, s’) = (0, 0) is the most likely
trellis branch for u; = 0 (bold, dashed line) and that (s,s’) =
(2,1) is the most likely trellis branch for u; = 1 (bold, solid
line), Lypm(ug) can be written as:

Lyvim (ur) =(Ar(2) +Tx(2,1) + By (1)) —
(Ax(0,0) +T%(0,0) + By+1(0)).

On the other hand, the LLR provided by the MLM algorithm
can also be seen in a different way, involving paths in the trellis
diagram. Assuming that the trellis begins and ends at known
states so and sk, then there are 2% possible state sequences
connecting so and sk . Each state sequence corresponds to a
distinct input bit sequence and is associated with a path in
the trellis. Given the received codeword y, the path or state
sequence s has a path metric equal to

4)

K-1

In Pr(yl|s) = Z In Pr(yk|sk, Sk+1)- 3)
k=0

In other words, for a given path going through a series of
branches, the path metric is the sum of all the involved branch
metrics. The Viterbi algorithm (VA) [18] employs a recursive
selection of paths in the trellis from state sy to state sy in
order to find the state sequence with the highest path metric
and provides the associated bit sequence as the output of
the decoder. In fact, the forward propagation of the MLM
algorithm is identical to the path recursion in the VA, as
already reported in [19]. The backward propagation from state
sk to state so could equally be used for the same purpose.

For a binary convolutional code with rate » = 1/m, there
are two branches in the trellis arriving at each state s, at time
index k. In the (forward) path recursion, the VA adds each
of the two branch metrics to the path metric associated with
the preceding state at time index k — 1. It then selects the
path with the larger metric as the surviving path and stores it.
Therefore, at time index k, there are 2” surviving paths left,
one for each state. Similarly, using the backward propagation,
one can identify another set of 2¥ surviving paths at each time
index and, in particular, at time index k + 1.

Furthermore, thanks to the path convergence property of
convolutional codes [18], the surviving paths can be truncated
to some manageable length L to limit the amount of memory
necessary for their storage, without any noticeable impact on
the error correction performance. For a truncation length of
L trellis sections, the VA needs to process the trellis paths
until time index k to take the decision on the information
bit at time index (k — L). The value of L should be chosen
large enough so that the 2" surviving paths from the forward
propagation originate from a single state at time index (k— L)
with sufficiently high probability [20]. The same rule applies
if a backward propagation is carried out: in this case, the VA
needs to process the trellis paths until time index k' to take
the decision on the information bit at time index (k' + L).

Now, let us consider that both forward and backward
propagations are carried out through the trellis. Then, for
trellis section k, there are 2 surviving paths at time index &
resulting from the forward propagation and 2¥ surviving paths
at time index k + 1 resulting from the backward propagation.
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Fig. 1. Trellis representation of a convolutional code with v = 2. Dashed branches correspond to data bits equal to 0 and solid branches to data bits equal

to 1.

Connecting these two sets of paths with the 2vT! trellis
branches yields a total number of 2“1 surviving paths for
trellis section k. The path going through state s at time index
k and through state s" at time index k + 1 has its path metric
equal to Ag(s) + T'r(s,s") + Bir1(s"). Moreover, because of
the path convergence property, all 2/ paths originate from a
single state at time index &’ such that max(0,k—L) < k' < k
in the forward propagation and from a single state at time
index k” such that kK +1 < k" < min(k+ L+ 1, K) in the
backward propagation. So, these 2! paths merge together at
times indexes &k’ and k”.

Many readers will recognize the concept of path merging
exploited in the SOVA, [13]. Therefore, for each pair of
merging paths, we can obtain the metric difference between
these two paths by subtracting the lower path metric from the
higher one. Then, we can manipulate these resulting metric
differences between paths to get the soft estimate of bit uy
for trellis section k.

Taking the example in Fig. 1, the forward propagation
and the backward propagation provide us with four forward
surviving paths at time index k£ and four backward surviving
paths at time index k + 1, respectively. So, eight paths have
to be considered for trellis section k, and as shown in Fig. 1,
these paths merge in state 2 at time index &' = k — 2 and in
state 0 at time index k" = k + 4. Furthermore, if we denote
by P, the path going through the branch (0,0) and by P; the
path going through the branch (2,1) in trellis section k, the
LLR of bit u; can be estimated as the metric difference A
between these two paths where the path metric My of Fy is
Mo = (Ak(0) + T%(0,0) + Bj+1(0)) and the path metric M
of Py is My = (Ar(2) + Tx(2,1) + Bg11(1)). The result is
equal to the LLR estimated by the MLM algorithm in (4).

Based on this equivalence, we can reformulate the MLM
algorithm. In the trellis diagram, each trellis section & involves
2v+1 paths going through 2+ branches and merging together.
If a path goes through the branch (s, s’), its path metric My
is then expressed as

M, = Ak(s) + I‘k(s, S/) + Bk+1(s/). (6)

The soft output related to bit uj is then equal to the
metric difference between the path with the largest path metric
carrying u; = 1 and the path with the largest path metric
carrying uy = 0. In the next section, we define the path merge
operation, present its properties and show how it can be used
to reformulate the MLM algorithm.

III. THE LocAL SOVA

Conventionally, a path in a trellis diagram is defined as
a sequence of states and is associated with an input bit
sequence and a path metric. From this section, we will adopt
an alternative mathematical definition of a path, with a more
local sense, that focuses on a particular trellis section k.
In the following, all the derivations focus on trellis section
k. Therefore, for sake of simplicity, we will omit k in the
notations.

We define a path P as a 3-tuple consisting of a path metric
denoted by M, a hard decision denoted by u and a reliability
value related to u, denoted by L:

P={M,u,L} €Rx{0,1} x R*, 7)

where R is the set of real numbers and R™ is the set of positive
real numbers.

As stated in the previous section, if path P goes through
branch (s, s’) at trellis section k, its path metric M is given
by (6). Moreover, the hard decision « is the data bit carried
by the corresponding branch in the trellis diagram (0 for a
dashed line or 1 for a solid line in Fig. 1). The reliability of
the hard decision, L, is initialized to +oc or to the largest
possible value achievable with the used quantization.

We further define the merge operation

M {Rx{0,1} xRT}? 5 R x {0,1} xR", (8)

taking two paths as arguments and producing one path as
output. P, = {M,, uq, L.} and P, = { My, up, Ly} being two
paths, determining path P, such that P, = M(P,, P,) involves
three procedures: finding M., u. and L.. The output path
metric M, and hard decision u. can be obtained by comparing



the path metrics M, and M. Let p = argmaxg (M, M),
then M., = M, and u, = u,. Through that mechanism, if
several paths merge at a trellis stage, the resulting output path
will be assigned the largest path metric and will be considered
as the maximum likelihood (ML) path. The hard decision
carried by the ML path is also the hard decision provided
by the decoder. Furthermore, in order to find L., we employ
two well-known reliability update rules: the Hagenauer rule
(HR) [13] and the Battail rule (BR) [16], [17]. Both rules were
proposed independently in the late 80’s for SOVA decoders.

A. Reliability Update Rules

Let P, and P, be two paths to be merged and let us define
p and p’ as

p = arg m%X(Maa M,); p =arg migl(Mm M), (9
a, a,

and the metric difference between P, and P} as A,y = M, —
M. Note that the metric difference between two paths is
always positive. Then, if P. = M(P,, F,), L. is calculated
as follows:

1) If u, # up, apply HR

Lo =min (Ly, A, ) (10)

2) If uq, = wy, apply BR

L. =min (Ly, Ay + Lyy) (11)

These two update rules can be summarized using the
following update function ¢:

L.= ¢(Lpa Ly Appr s up, up')

=min (Ly, App + 6(tup, up ) Lyy) (12)

where
1, ifup =uy

O(tp, upr ) = {

The combination of these two rules for SOVA decoding
was already proposed in [21] and the authors proved the
equivalence with the MLM algorithm. However, in [21], the
authors only considered forward propagation. To estimate the
reliability of the hardware decision at trellis section k, the
algorithm carries out a forward propagation up to trellis stage
k + L and then performs a traceback procedure. Thus, a large
number of paths should be considered, which translates into
a massive use of function ¢ and also into large memory for
storing the reliability values after each update.

We propose an alternative algorithm that uses both forward
propagation and backward propagation and hence limits the
number of paths considered for trellis section k to 2“*1, thus
reducing the use of function ¢.

0, otherwise.

B. Commutative and associative properties of the merge op-
eration

As already mentioned earlier, the merge path operation
described above involves three procedures: 1) selecting the
output path metric 2) selecting the related hard decision and
3) updating the related reliability value using function ¢ in

(12). We show in this section that the merge operation has the
commutative and associative properties.

Theorem 1. The merge operation is commutative and asso-
ciative.

o Commutative property
Let P,, P, be two merging paths:

M(Py, Py) = M(Py, Py), (13)
o Associative property
Let P,, Py, and P. be three merging paths:
M(M(Pa, By), Po) = M(Po, M(By, Fe)). (14)
The “=" operator between two paths is defined as the equality

between all the elements in their tuples.

Proof. We will prove that the three above-mentioned proce-
dures are commutative and associative.

For the commutative property, let us define p and p’ as in
(9). The path metric of the output path is then M, the hard
decision is u, and according to (12), the reliability value is
then equal to

min(Ly, §(up, up ) Ly + Ap ). (15)

Since p and p’ do not depend on the order of P, and P,, the
merge operation is commutative.

Similarly, we can easily show that selecting a path metric
and providing a hard decision are associative procedures
because they get the values of the path with the largest metric
and the maximum function is associative since

max(M,, max(My, M.)) = max(max(M,, My), M.).

Concerning the reliability update procedure, without loss of
generality, we assume that M, is the largest path metric and
we define p and p’ as in (9). The updated reliability values
of M(P,, M(Py, P.)) and M(M(P,,Py),P.) in (14) are
respectively derived in (16) and (17) using function ¢. The
proof is then divided into two parts, corresponding to two
cases: 1) u. = up and 2) u. # up.
1) 6(ue,up) =1, then (17) becomes:

min (LC, O(te, up) Ly + D¢ p, 0 (e, Up ) Ly + Ac,p/).
(18)
Since A,y = Acp + Ay, (18) coincides with (16).
2) 0(uc,up) =0, then (17) becomes:

min(L., A¢ ). (19)
Assuming p = b, (16) becomes:
min (Lm Ac,ba 6(”0; ua)La + Ac,b + Ab,a) . (20)

Since L, and A, are always positive, (20) becomes

min(L., A. ) which coincides with (19).
Therefore, the associative property is proved for both cases.
O

Remark. Based on the commutative and associative properties
of the merge operation, two important statements can be
inferred:



L(p,, m(Py,p.)) = Min (min (Lc7 0 (e, up)Lp + Ac’b),é(uc, Ug)Lg + Ac,a)

= min (Lw 5(“)03 Ub)Lb + Ac by 6(“03 ua)La + Ac.a)a
L(M(Py,Py), Py = min ( L, 8 (ue, up) min (Ly, 6(up, up ) Ly + Ap ) + Ac)p)
O(te, up)Lp + D¢ p, 6 (e, Up) 6 (Up, Upr ) Ly + (e, Up) Ap pr + Acp).

= min(L,

(16)

a7

« We can extend the merge operation to more than two
paths. For instance, for four paths P,, P, P. and Py, we
can write M(P,, Py, P., P;) to refer to the output path
obtained by merging the four paths.

o The merge operation can be processed in a dichotomous
fashion:

M(Pa;PbaPcan) :M(M(Pa,Pb),M(Pd,PC)),

where M(P,, Py) and M(P,, P;) can be processed in
parallel and then the resulting paths are merged to yield
the output path.

C. The MLM algorithm as an instance of the merge operation

Referring back to Section II, let us consider the 2/+! paths
going through trellis stage & and merging together. Among
them, n = 2¥ paths, denoted by {Ppg,Ppg,...,Pp%}, carry
hard decision u = 0 at trellis section k£ and the remaining n,
denoted by {Pp%,Ppé, .+ Pp1}, carry hard decision u = 1.
The reliability value related to bit uw provided by the MLM
algorithm is

Lvim(u) = max {M }— max {M }

max @1

Let us consider the operation merging all the paths with
hard decision u = 1: M(Pp%, -+, Pp1). The resulting output
hard decision is obviously 1 and the output path metric is
i M, 1} For the output reliability, merging
paths with the same hard decision value requires the applica-
tion of BR (11). Since the reliability values are all initialized
at +o0, applying (11) yields an output reliability also equal
to +oo. Similarly, merging together all the paths carrying
hard decision u = 0 applying M(Pyo, ..., Py ) results in
an output hard decision 0, an output path metric equal to
My = max;—1,., n{M } and an output reliability at +oo.

Then, if we merge the two resulting paths:
M(M(Pyi, ..., Py ), M(Pyo, ..., Pp)), (22)

the computation of the output reliability amounts to the
application of HR (10):

Ly = min (—i—oo,’]\/h —MOD = ‘M1 — Moy,

(23)

which is the absolute value of the expression of Ljsras in
(21). If we denote by uaq the output hard decision deriving
from (22), then Ljp;ras is equal to

Lyvim(ur) = (2upm — 1) x L. (24)

Therefore, the result of the MLM algorithm can be inter-
preted as the outcome of a merge operation applied to all the
paths.

Layer 2 Layer 3

Soft output

Fig. 2. Binary tree architecture used for the soft output computation in the
local SOVA decoder for the code of Fig.1.

On another note, thanks to the commutative and associative
properties of the merge operation stated in (13) and (14),
the operation merging all the paths (22) can be performed
in a different order for a better match with efficient software
or hardware implementations. In particular, instead of first
merging the paths with the same hard decision, one can start by
merging pairs of paths with different hard decisions (F,,1, Pjo),
i=1,...,n

M(M(By1, Py),..., M(Py, Py)).

Moreover, if P, 1 and P, o are chosen in such a way that the
correspondlng trelhs branches at trellis section k, (s, 1 s 1)

and (sy0, s o) verify spl = spo = ¢, the merge operatlon of
the pair of paths yields the following path metric:

M, = max(Mp1, Myo)
= max (Ak(s 1) + Ti(spr, ") + Brya(s'),
Ay (sp0) + Ti(s5p0,8") + Bir1(s'))
= max (Ag(sp1)+Tk(sp1,8"), Ak (sp0) 4Tk (5,0, 87))

(25)

(26)

+ Bry1(s')
27
= Apt1(s") + By (s'), (28)
and since w,: #* o, the updated reliability with HR is
Lm = min ( + 00, Ap% 717,?) = Ap% Y 29)
where
gt g = [Myy = My
- ’(Ak(sp}) + Fk(szﬂv‘s/»_
(Ar(sy0) + sy, s ))’ (30)



The output hard decision uy, is provided by the path, Py or
Py1, with the higher path metric.

We can see from (27) and (28) that, with the proposed merge
ordering, the calculation of the output path metric for this
scheduling proposal M(Ppll,Ppg) includes the derivation of
the forward state metric Ak+1(8/ ) as in the forward recursion
(3a). Therefore, there is no need to perform a preliminary
calculation of the forward state metrics. Only the backward
state metrics need to be computed in advance. Similarly, one
can show that if the paths P, ! and P, o are chosen in such a
way that the corresponding trelhs branches at trellis section
k are stemming from the same state (s, L= S0 = s),
the calculation of the output path metric mcludes the same
derivation of the backward state metric Bj(s) as in the
backward recursion (3b). Then, there is no need to perform a
preliminary calculation of the backward state metrics and only
the forward state metrics need to be computed in advance.

For a convolutional code with memory length v, the overall
merge operation for the computation of the soft output for
the decoder can be carried out in a dichotomous fashion :
the merge operation then requires a binary tree of 2¥+1 — 1
elementary merge operators organized in v + 1 layers. Taking
Fig. 1 as an example, ¥ = 2 and the soft output related to bit
uy, is obtained by a binary tree consisting of v + 1 = 3 layers
of merge operators, as shown in Fig. 2.

The next section describes the overall algorithm implement-
ing this particular arrangement for the merge operations.

D. Soft output computation algorithm

The soft output calculation in a dichotomous fashion can be
performed according to Algorithm 1.

Note that this algorithm is a generic version that assumes
that all the forward and backward state metrics were pre-
computed and stored in a memory. In practice, different
schedules can be applied for the recursive computation of
the state metrics, including the well-known backward-forward
(BF) and butterfly schedules [7], [22]. When compared, the
former takes twice the time to decode a frame while the latter
requires twice the hardware resources. Nevertheless, both these
schedules have the same overall computational complexity.
Therefore, for the rest of the paper, we only consider the BF
schedule, the application of the results to other schedules being
straightforward.

With the BF schedule, the backward state metrics are
pre-computed and stored in a memory. Then, the algorithm
recursively calculates the forward state metric and derives
the soft output. As discussed in the previous section, specific
simplifications can be made for the local SOVA at layer | = 1.
First, at the initialization step, we can organize the set of
transitions T so that two adjacent transitions have the same
state §', i.e., sh; | = sh;, for i = 1,...,2”. Then, in line 5,
we can initialize path metrics M,(0) to be Ag(s) + T'k(s,s’)
instead of Ay (s)+ Tk (s,s")+ Br11(s,s). The resulting path
metric M, (1) at layer I = 1 is equal to Agi1(s’), thus
allowing the forward recursion to be incorporated into the soft
output computation. To compensate for omitting Byy1(s’) in

Algorithm 1 The local SOVA

1: Initalization: T = [T'(1) ... T(2""1)] is the set of 2v+!
transitions of the trellis section defined by the pairs of
states (s,');

2: for each trellis stage k =1,..., K do

3. for each path p=1,...,2""! do

4 (Sp, s;) =T(p)

5 My(0) = Auls,) + Tulsys s)) + Broa (s));

6: u,(0) = data bit on transition (s, s,);

7 L,(0) = +o0;

8: end for

9: foreachlayer/=1,...,v+1do

10: for each path p = 1,...,2*=!*1) in layer [ do

11: a = argmax;eqop—1,2p} 1 M; (1 — 1)}

12: b= arg Hlinje{gp_l,gp}{Mj(l — 1)},

13: Aa,b = Ma(l — ].) — Mb(l — 1);

14: My(l) = M, (1 —1);

15: up(l) =ug(l — 1)

16: =¢(Lq p(l— 1), Mgy,
ua(l — 1),ub(l -1));

17: end for

18:  end for

19:  Hard output: 4y = uq (v + 1);

20:  Soft output: L(ug) = (26, — 1)x Ly (v +1);
21: end for

the expression of M, (0), in line 14, the output path metric
M, (1) should be taken equal to

My (1) = Ma(1) 4 Biya(s'). 31)

Furthermore, in line 16, output reliability L,(1) can be
directly assigned A,; and the calculation of the reliability
value at the first layer can be replaced by a simple assignment
operation, making the initial assignment in line 7 unnecessary.
After layer [ = 1, the subsequent layers should be carried out
following Algorithm 1 without any modification.

To complete this algorithmic description, the next sections
provide some details about possible hardware architectures for
a local SOVA decoder. To this end, we first focus on a radix-
2 trellis in Section III-E and highlight the differences with a
conventional MLM decoder. Section IV will later describe
higher radix architectures.

E. Radix-2 local SOVA decoder architecture

Since the proposed algorithm only differs from the MLM
algorithm in the soft output calculation, its global architecture
is composed of the same blocks as the architecture of a MLM
decoder [23]: in the case of a BF decoding schedule, branch
metric units (BMU) and add-compare-select units (ACSU)
recursively compute the backward and forward state matrics,
a state metric memory stores the backward state metrics and a
soft-output unit (SOU) computes the extrinsic information and
the soft decision during the forward recursion. Fig. 3 shows
the corresponding basic architecture for the forward recursion;
the backward BMU and ACSU are not shown. If a symmetric
forward-backward scheduling is applied, the roles of forward
and backward units are just swapped.
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Fig. 3. Basic architecture considered for the local SOVA and MLM algo-
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Fig. 4. Hardware architecture of Algorithm 1 for layer [ = 1.
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Fig. 5. SOU of a MLM decoder for v = 2.

At trellis stage k, the BMU calculates all possible values
of T'x(s,s’) and forwards them to the ACSU. The ACSU
calculates Ay (s)+Tk(s,s") for each branch in the trellis stage
and computes (3a) for each state s’ at time index k + 1. For
the local SOVA architecture, the first layer of Algorithm 1,
depicted in Fig. 4, performs the forward state metric recursion
as well as it produces the hard decision, the reliability value
and the path metric for subsequent layers. Besides the right-
hand side adder, the structure shown in Fig. 4 for [ = 1 is very
close to the ACSU structure of a conventional MLM decoder.
Therefore, in order to make the local SOVA easy to compare
with the MLM algorithm, we consider this substructure as the
ACSU of the local SOVA decoder and the final adder plus the
units processing the subsequent layers as its SOU.

The main difference between both architectures comes
from the SOU. In the MLM architecture, 2¥1! intermediate
values Ay (s) + T'k(s,s’) computed in the ACSU are added
to Byr1(s’). Then, the most reliable branch for bit uy = 1
and for bit u = 0 are selected using two 2¥-input maximum
selection operators and the LLR is obtained by computing the

M2p ](l — 1)

My, (I = 1) '

uzp—1(I —1)

uz,(I — 1)

Lyl = 1)

Ly, (I =1)

Fig. 6. Generic hardware architecture of a merge operation M of two paths
indexed 2p and 2p — 1 at layer [ > 1.
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Fig. 7. SOU of a local SOVA decoder using merge operators for v = 2.

difference between the terms Ay (s)+Tx(s,s’) + Br11(s’) for
these two branches as shown in Fig. 5 for v = 2. On the other
hand, the local SOVA SOU takes the 2¥ values of Aj11(s’),
adds them to 2¥ corresponding values of Bj1(s’) to provide
the path metrics. The hard decisions and their reliability values
computed by the ACSU are forwarded to the SOU. The SOU
has then to process 2” paths using a binary tree of merge
operators. The structure of merge operators used to process
layers | > 1 is depicted in Fig. 6 and the overall structure of
the tree is shown in Fig. 7 for v = 2 (including the adders
actually part of layer [ = 1).

In terms of computational complexity, with the convention
that one adder is equivalent to one max or min operator
and is counted as one computational unit and neglecting the
multiplexers, the operator implementing function ¢ consists of
one adder and one min operator and is therefore counted as two
computational units. Consequently, the MLM SOU requires
(4 x 2 — 1) computational units while the local SOVA SOU
requires (4 x 2” —3) computational units. Since the ACSU and
the BMU of both architectures are similar, both algorithms
have roughly the same computational complexity when a
conventional radix-2 architecture is implemented. However,
the proposed algorithm is mainly of interest when higher radix
orders are considered, as explained in the following section.



IV. HIGH-RADIX DECODER ARCHITECTURES USING
LocaL SOVA

In the previous section, we have been considering the
conventional radix-2 trellis diagram. In this section, we will
concentrate on higher radix orders. In a radix-2% trellis dia-
gram, R € N*, there are 2% branches coming in and out of
a state s at time index k. This is obtained by aggregating
R consecutive radix-2 trellis stages. Hence, a branch in a
radix-27 trellis stage is now labeled with R systematic bits
and we have to reconsider the definition of a path and its
corresponding merge operation.

For a radix-27 trellis diagram, we define a radix-2% path
P going through the branch (s, s’) as

P={Mu' ... u® L' ... L} e R x {0,1} 7 x {RT} 7

(32)
where M is the path metric, u',...,u* are the R hard
decisions attached to branch (s,s’), and L',..., LT are the

reliability values for each hard decision and are initialized to
+00.

We also define the radix-2 merge operation M as in
Section III with three procedures: path metric selection, hard
decision selection and update of the reliability values. The
selection of the path metric remains unchanged. The only dif-
ference is now that we have to select I? hard decisions instead
of one, and to update R reliability values using function ¢, one
for each hard decision. Note that the merge operation for high-
radix paths is also commutative and associative, therefore, the
order of the paths in the merge operation does not affect the
output. To this end, if we arrange wisely the input paths, we
can reduce complexity when compared to a straightforward
implementation.

A. Radix-4 local SOVA decoder with minimum complexity
ACSU

A branch in a radix-4 trellis diagram is the aggregation of
two consecutive branches in a radix-2 diagram, as illustrated
in Fig. 8 for an convolutional code with v = 2. From time
index k to time index k + 2, four branches are leaving
and merging into each trellis state, corresponding to the
transmission of two systematic bits with possible values 00,
10, 01 and 11. Therefore, at time index k + 2, there are
four radix-4 paths, denoted by {Pyo, Po1, Pio, P11}, merging
into each state s’. Since these four paths have the same
By12(s") value, as in section III-D we can initialize the cor-
responding path metrics with Ag(s) + T'r—r+1(s,s’) instead
of Ag(8)+Tk—k+1(8,8")+ Brya(s'), where Ty 511(s,s) is
the sum of the two successive branch metrics at time indices
k and k41 in the equivalent radix-2 tellis diagram. Then, we
perform the radix-4 merge operation:

M (Poo, Por, Pro, Pr1). (33)

The path metric resulting from this layer-1 merge operation is
also the forward state metric of state s’ at time index k + 2,
Aj+2(s"). Hence, we can consider the operator implementing
(33) as the radix-4 ACSU of the local SOVA decoder.

‘ 00 1
A (00) ¢ ® Apia(s’)
A(01) @
Ac(10) 4 ¢
A1) )
______________________________ Loy
k k+2°

Fig. 8. A radix-4 stage for an convolutional code with v = 2.
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Fig. 9. Radix-4 local SOVA ACSU architecture implementing 2-bit merge
operators according to (34).

An important property of the radix-4 local SOVA ACSU
is that its complexity depends on the processing order of the
paths in the merge operation (33). If we implement (33) as

M(M(Poo, Por), M(Pio, P11)) (34)

with the hardware architecture shown in Fig. 9, only one ¢
operator has to be implemented. Actually, we do not need
to resort to function ¢ in the first layer since the output
reliability is 400 or the metric difference between the two
paths, depending whether BR or HR is employed. On the other
hand, if we implement (33) as

M(M(R)OvPll)aM(}D()laPl()))7 (35)

we can use HR for both bits at the first layer but have to use
a ¢ operation for each bit at the second layer since we do not
know a priori which hard decision will be selected. Therefore,
the implementation of (34) is less complex than the one of (35)
and it has minimum complexity. Note that (34) is not unique,
since other processing orders of the paths can also yield the
same complexity, such as M (M (P, Po), M(Po1, P11)).

At the output of the radix-4 ACSU, 2% radix-4 paths are
forwarded to the radix-4 SOU. First of all, each path metric is
added to the appropriate By 2(s’) since it has been omitted
in the ACSU. Then, a v-layer tree of radix-4 merge operators
is employed to produce the final hard decision along with its
reliability value. Note that the radix-4 merge operation requires
two ¢ operators for updating the reliability values, one for each
bit.



In terms of computational complexity, the radix-4 local
SOVA ACSU with minimum complexity requires one ad-
ditional ¢ operator compared to the radix-4 MLM ACSU.
Using the same convention as in Section III-E, processing the
2¥ states of the trellis then costs 2“*! extra computational
units. In return, the SOU is less complex in the case of the
local SOVA. The SOU of the MLM decoder takes 4 x 2
intermediate values of Ag(s)+Tx_x+1(s,s’) and adds them to
the Byy2(s’) values, using 4 x 2" adders. Next, two maximum
selection trees, each consisting of (2 x 2¥ — 1) max operators,
and a subtractor are needed for each systematic bit. Each LLR
value is then obtained by using one extra subtractor, leading to
a total computational complexity of (12x2¥—2) computational
units for the SOU of the radix-4 MLM algorithm. In contrast,
in a radix-4 local SOVA SOU, the values of Bjio(s') are
added to 2" path metrics using 2" adders. Then, the v-layer
tree of radix-4 merge operators consists of (2 — 1) max
operators and 2 x (2¥ — 1) ¢ operators. Therefore, the total
complexity of the radix-4 Local SOVA SOU is (6 x 2 — 5)
computational units, which is less than half the complexity
of the MLM algorithm SOU. All taken into account, the
complexity of the local SOVA is reduced by approximately
4 x 2¥ computational units compared to the MLM algorithm.

When radix orders higher than 4 are considered, techniques
for further reducing complexity can be considered, as ex-
plained in the following section.

B. Radix-8 local SOVA decoder using a simplified reliability
update operator and application to the LTE turbo code

In this section, we introduce a sub-optimal but less complex
version of the function ¢, called w. Consequently, by combin-
ing the corresponding operator with the minimum complexity
ACSU previously described in Section III-E, we propose a
number of local SOVA architectures with different complexity-
performance tradeoffs.

A radix-8 trellis stage aggregates three consecutive radix-2
trellis stages. Each path is now composed of a path metric,
three hard decisions and their three reliability values. From
time index k to time index k + 3, eight radix-8 branches
are leaving and merging into each trellis state. Therefore, at
time index k + 3, there are eight radix-8 paths merging into
each state s’, denoted by {Pooo, Poo1,---, Pi11}, where the
indices represent the hard decisions associated with each path.
Similarly to the previous cases, when applying the radix-8
merge operation to this set of paths

M (Pooo, Poots - - - Pr11),

the resulting path metric is also the forward state metric of
state s’ at time index k + 3, Ag43(s’). This merging step
can therefore be considered as the ACSU of the radix-8 local
SOVA decoder. Then the output path is processed by the SOU
to produce the soft decision.

The minimum complexity radix-8 ACSU can be obtained
by implementing (36) as

M(M (M(Pooo, Poor), M(Poto, Po1)),
M(M(Proo, Pro1), M(Prio, P111)))~

(36)

(37
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Fig. 10. Generic hardware architecture of path merging operation using
function w.

We can see from (37) that the first bit in
M(M(Pooo, POOI), M(P()lo, POll)) is always Zero, hCIlCC,
we can resort to a radix-4 merge operation for the last two
bits using only one ¢ operator. Similarly, the first bit in
M(M(Pl()(), Pl()l),M(PH(), Plll)) is always one, then
again, only one ¢ operator is necessary. In the second stage,
the first bit is always different in the two input paths, thus only
the second and the third bits require the implementation of a
¢ operator. In total, four ¢ operators have to be implemented
in a minimum complexity radix-8 ACSU.

However, employing ¢ operators has two main drawbacks.
First of all, they consist of one adder and one min operator,
therefore prohibitively increasing the complexity of the de-
coder if used excessively. Second and more importantly, the
adder and the min operators are connected serially. This is
not desirable since the ACSU dictates the critical path of the
decoder [23]. Therefore, we propose a lower complexity, lower
latency, sub-optimal update operator, based on new update
function, called function w.

1) The function w: motivated by the the possibility of using
only HR as in [13], one can substitute a simplified function w
for function ¢. Assuming that paths P,,_; and P, are to be
merged at layer [ — 1, the output reliability is then computed
as:

Lp(l) = W(La, Aa,b7u2p—1(l — 1), ng(l — 1))

- min(Lm Aa,b), lf Uprl(l — 1) 75 U2p(l — ].)
Ly, if ugp 1 (1 — 1) = ugy(l — 1)
(38)

where a, b and A,; are defined at lines 11, 12 and 13,
respectively, in Algorithm 1. Fig. 10 shows the architecture
of the elementary path merging operator using function w.
The w operator is less complex than the ¢ operator since
it uses only a min operation and a multiplexer resulting in
a computational complexity of about one unit. However, the
price to pay is a degradation of error correction performance.
Indeed, a performance degradation of 0.5 dB is observed
between the conventional SOVA that uses only functions ¢
[21] and the one that uses functions w [13].

Unlike the conventional SOVA, local SOVA can mix both
types of functions. Therefore, this provides the flexibility of
several complexity/correction performance trade-offs. How-
ever, care must be taken in making substitutions so that paths



with high metrics are not eliminated from the selection process
due to simplification. This is less likely to happen if the
simplifications are made in the first layers of the tree, where
the number of paths to be processed is high. Consequently,
we observed that if we only substitute the w operators for
the ¢ operators in the first layers, we can significantly reduce
complexity without degrading the performance of the decoder.

2) Radix-8 ACSU and SOU using w operators: for a binary
convolutional code with v = 3, the first 3 layers of the path
merge binary tree are in the ACSU while the last 3 layers are
processed by the SOU.

As already mentioned above, the radix-8 ACSU requires 4
¢ operators to update the reliability values. Substituting the
w operators for the ¢ operators reduces the complexity by 4
computational units. For v = 3, the use of 2V = 8 ACSUs
saves 32 computation units.

For the 3 layers of the binary tree implementing the radix-8
SOU, 7 radix-8 merge operations are required, resulting in the
use of 21 ¢ operators (3 per merge operation). Replacing ¢
operators with w operators would reduce complexity but would
certainly penalize the performance of the decoder.

3) Simulation results with the LTE turbo code: we per-
formed simulations to assess the error correcting performance
of the radix-8 local SOVA and its variants for a LTE turbo
decoder and compare them with the radix-8 MLM algorithm.
We use the notations ACSU-(%, 5) and SOU-(z, ) to represent
the different configurations, where ¢ and j are the number of
layers where w and ¢ operators are employed, respectively.
For example, ACSU-(2,1) means that w operators and imple-
mented in the two first layers of the ACSU and that ¢ operators
are used in the last layer.

We simulated the following seven configurations for the
SISO decoding algorithms, where L-SOVA is an abbreviation
for local SOVA:

o DEC 1: MLM algorithm.

e DEC 2: L-SOVA with ACSU-(0,3) and SOU-(0,3).

o DEC 3: L-SOVA with ACSU-(3,0) and SOU-(0,3).

o DEC 4: L-SOVA with ACSU-(3,0) and SOU-(1,2).

e DEC 5: L-SOVA with ACSU-(3,0) and SOU-(2,1).

e DEC 6: L-SOVA with ACSU-(3,0) and SOU-(3,0).

e DEC 7: conventional SOVA.

Our first motivation is to validate the equivalence between the
local SOVA with only ¢ operators and the MLM algorithm.
Second, we gradually substitute w operators for ¢ operators
to observe the impact on error correction behavior.

The simulations were carried out with information frames
of K = 1056 bits, encoded with the non-punctured r» = 1/3
LTE turbo code, modulated by BPSK and transmitted over
the AWGN channel. A floating point representation of data
is used in the decoder. The resulting bit error rate (BER) is
measured after 5.5 decoding iterations. Fig. 11 shows that, as
expected, the local SOVA with only ¢ operators has the same
performance as the MLM algorithm. Moreover, by substituting
w operators for ¢ operators in the ACSUs, i. e. in the first three
layers, the simulated curves confirm that the error correction
performance of the decoder is not degraded, thus providing
a low complexity alternative to the original local SOVA
decoder. By gradually replacing the ¢ operators in the SOU,
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Fig. 11. BER performance of a LTE decoder using radix-8 MLM algorithm,
local SOVA and its variant with K = 1056, » = 1/3 after 5.5 iterations.
AWGN channel, BPSK modulation.

the performance is degraded by 0.05 dB at BER = 1076
when w operators are used in the first two layers and by
about 0.3 dB when only w operators are implemented. Fig.
11 also shows that the conventional SOVA (DEC 7) performs
0.1 dB worse than the local SOVA with only w operators
(DEC 6). According to [21], using ¢ operators instead of w
operators in the both the conventional and local SOVAs would
be equivalent to apply the MLM algorithm (DEC 1). However,
contrary to the conventional SOVA, the operations in the local
SOVA are arranged so as to minimize the number of used
¢ operators. Therefore the performance gap between DEC 6
and DEC 7 could be explained by the fact that the number of
sub-optimal w operators needed in DEC 7 is greater than in
DEC 6.

4) Computational complexity analysis: The complexity of
the considered decoding algorithm variants is shown in Table
I. In this table, the decoding complexity (denoted by C) is
reported for one radix-8 trellis stage consisting of a backward
ACSU, a forward ACSU and an SOU. For the MLM algorithm,
the backward and forward ACSUs have same computational
complexity. For the local SOVA and its variants, since we
are considering the BF schedule, the backward ACSU is the
same as in the MLM algorithm, but the forward ACSU is the
newly developed one with ¢ and/or w operators. Furthermore,
we take the MLM decoding complexity as a reference for
normalization. Since the RSC code of the LTE turbo code has
memory length v = 3 , the complexity of one radix-8 trellis
stage can be approximated as

C = 8 X Cpackward acsU + 8 X Crorward acsu +Csou  (39)

We can observe that using local SOVA with only ¢ operators
only amounts to 73% of the reference complexity while we
can further reduce the cost to 67% without noticeable impact
on the performance if we use w instead of ¢ operators in
the ACSUs. If a lower complexity is desired, the local SOVA
with ACSU-(3,0) and SOU-(2,1) can be employed to reach



TABLE I
COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF VARIOUS RADIX-8 ALGORITHMS (CS: COMPARE-SELECT).

Fig. 12. A radix-16 trellis stage consisting of two radix-4 trellis stages.

63% of the reference complexity. This reduced complexity is
then traded for a performance degradation of 0.05 dB. Table
I also shows that using only w operators further reduces the
complexity by 1% but the resulting 0.3 dB performance loss
makes this configuration less attractive.

C. Radix-16 local SOVA decoder for convolutional codes with
memory length v = 3: breaking the ACSU bottleneck

In this section, we only consider more practical convolu-
tional codes with v = 3 (8 states) to show the advantage of
the local SOVA compared to the conventional MLM algorithm.
A section of a radix-16 trellis diagram is the aggregation
of four consecutive sections in a radix-2 trellis diagram or,
equivalently, of two consecutive sections in a radix-4 trellis
diagram. With the latter representation, two branches are
connecting any pair of states s and s’ between time indices k
and k + 4, as illustrated in Fig. 12 between s = 2 and s’ = 4.

Intuitively, one could decode the radix-16 turbo code with
a radix-16 ACSU using 16-input max-select operations. How-
ever, increasing the number of inputs of the max-select oper-
ations results in a longer propagation path in the ACSU thus
lengthening the critical path of the decoder. To get around
this problem, the authors of [12] suggested that we can select
the branch with larger branch metric among the two branches
connecting two states at time indices k and k + 4, and discard
the other one. Since this task could be done in the BMU to
reduce by half the number of branches, we can then use radix-
8 ACSUs instead for calculating the state metrics.

However, the main drawback of this approach when applied
to the MLM algorithm is that the branches selected after
the BMU might carry either u; = 1 or u; = 0, for

X 8 x backward ACSU | 8 x forward ACSU SOuU Computational L
Algorithm Normalization
Adder CS Adder CS Adder | CS complexity C
MLM 64 56 64 56 67 186 493 1
L-SOVA ACSU-(0,3), SOU-(0,3) 64 56 96 88 29 28 361 0.73
L-SOVA ACSU-(3,0), SOU-(0,3) 64 56 64 88 29 28 329 0.67
L-SOVA ACSU-(3,0), SOU-(1,2) 64 56 64 88 17 28 317 0.64
L-SOVA ACSU-(3,0), SOU-(2,1) 64 56 64 88 11 28 311 0.63
L-SOVA ACSU-(3,0), SOU-(3,0) 64 56 64 88 8 28 308 0.62
si+4(0) j=k,...,k+ 3. This creates a non-static ratio between the
sk+4(1) number of branches having u; = 1 and the number of branches
Sk+4(2) having u; = 0, consequently causing a major problem for the
Sk+43) MLM SOU since it naturally employs max-select operations
Sk+4() with a constant number of inputs referring to hard decisions
® si+4(5) 1and O
® Skr(©) On the other hand, from the local SOVA tive, th
o sera(l) n the other hand, from the loca perspective, the

two branches processed by the BMU can be considered as two
paths merging at time index k+ 4. Hence, we can use the path
merging operation to produce one path carrying the selected
hard decision and the updated reliability value. The BMU can
then forward 64 paths into the radix-8 ACSUs and then the 8
output paths are sent to the SOU to finally compute the soft
output. So, the BMU, the ACSU and the SOU constitute a path
merging binary tree with 7 layers: the first layer is in the BMU,
and thus not in the critical path, the three next layers are in
the ACSU and the last three layers in the SOU. Also, because
the order of the path inputs does not affect the result of the
merge operation, the local SOVA is immune to the problem
of the non-static ratio of hard decision value mentioned above
for the MLM algorithm.

Extensive simulations for radix-16 local SOVA were also
carried out. Similarly to the radix-8 case, we gradually sub-
stituted w operators for ¢ operators in order to observe the
behavior of the decoder. The results are shown in Fig. 13.
We can observe that the performance equivalence between the
MLM algorithm and the local SOVA with only ¢ operators
still holds for the radix-16 case. Moreover, it is shown that
we can still replace ¢ operators by w operators in the ACSU
and in the first layer of the SOU with a negligible degra-
dation in performance. However, further substitutions are not
recommended since a penalty of 0.4 dB at 10~* BER can be
observed if we use solely w operators.

D. Convolutional codes with radix orders higher than 16

Similarly, for convolutional codes with 8 states, by em-
ploying higher radix orders such as 32 and 64, there are
respectively 4 and 8 branches in parallel connecting two states
in a trellis section. In this case, the BMU will select the
path with the largest path metric among the 4 or 8 paths.
Moreover, since the BMU does not have the recursive loop
as in the ACSU, it could be pipelined to ensure that the
critical path always resides in the ACSU. However, since the
complexity of the decoder increases exponentially with the
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Fig. 13. BER performance of a LTE decoder using radix-16 MLM algorithm,
local SOVA and its variant with K = 1056, r = 1/3 after 5.5 iterations.
AWGN channel, BPSK modulation.

number of bits decoded simultaneously, it is necessary to find
the processing order of the paths with the best compromise
between throughput and complexity. Nonetheless, using local
SOVA with high radix orders provides an ultra high throughput
solution for turbo codes since the critical path of the decoder
remains in the radix-8 ACSU while decoding an increasing
number of systematic bits in a single clock cycle.

V. CONCLUSION

In this paper, we introduced a new SISO decoding algo-
rithm for convolutional codes: local SOVA. The local SOVA
architecture is shown to exhibit a more hierarchical structure
and a lower computational complexity than the conventional
Max-Log-MAP algorithm. We observed that using local SOVA
in radix-8 LTE turbo decoders significantly reduces the com-
plexity of the decoder compared to the respective radix-8
Max-Log-MAP architecture. Moreover, local SOVA makes it
possible to increase the radix order without penalizing the error
correction performance or the critical path of the decoder,
at the price of added complexity. These advantages make
local SOVA a first-choice algorithm for ultra-high throughput
turbo decoders. Future work will include the investigation of
very high radix orders, as well as implementations of merge
operations for different radix orders.
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