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ABSTRACT

Cerebral palsy is the leading cause of motor disabilities affec-
ting children. The ankle is the most common equine musculoske-
letal strain in children with cerebral palsy. Despite multiple medical
and surgical therapies, postoperative recurrence rate is still very high
(48%). A major reason for therapy failure is the lack of knowledge
of the ankle joint biomechanics. Dynamic MRI can be used to ac-
quire high resolution static data and low resolution temporal images.
However, spatial and temporal data should be combined to provide
the most comprehensive point of view to study joint motion. In this
paper, we first present an intensity-based registration method to ac-
curately estimate the rigid motion of the ankle bones. Second, we
investigate the use of the log-euclidean framework to reconstruct a
four-dimensional (3D+time) high-resolution dynamic MRI sequence
from a low-resolution dynamic sequence and one high resolution sta-
tic MR image. The proposed approach has been applied and evalua-
ted on in vivo MRI data acquired for a pilot study on child motor
disability. Results demonstrate the robustness of the proposed pipe-
line and very promising high resolution visualization of the ankle
joint.

Index Terms— High-resolution reconstruction, dynamic MRI,
intensity-based registration, locally rigid transformation

1. INTRODUCTION

Cerebral palsy is the leading cause of child motor disabilities
[1]. This is a term for permanent developmental disorders of move-
ment and posture, responsible of activity limitations caused by non-
progressive damage occurring during early brain development. Ap-
proximately 90% of the deformities caused by cerebral palsy occur
in the ankle and foot regions. The muscle contractions associated
with the defect bone growth impact directly on the posture. These
disorders are a frequent causative factor of moral distress for the pa-
tient and his/her family. Logistical and financial costs are thus added
to the psychological cost.

Management of spastic equinus deformity is still a clinical chal-
lenge. There is a general agreement that surgical intervention is the
most viable option for fixed equinus deformity with the goal to sta-
bilize the lower extremity, and improve patient walk abilities. Howe-
ver, post-surgical statistics and the long term follow-up studies show
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up to 48% of recurrence rate and shows a general lack of understan-
ding of spastic equinus deformity in children.

In this context, dynamic MRI is a non-invasive method that can
provide spatial and temporal in vivo information of the joint [2].
Acquired MRI data usually consist in a high-resolution static scan
containing very accurate anatomical information and a series of low-
resolution dynamic scans capturing slow joint motion. However, the
combined use of high resolution static data and temporal sequences
is limited. Joint analysis of these in vivo data could provide major
insights of biomechanical studies of human locomotion.

Joint analysis of high resolution static data and temporal se-
quences has been used by Gilles et al. in [3] to select of the best
dynamic imaging protocol and to track bone motion from real-time
dynamic MRI. A 2D/3D registration was used to estimate the hip
joint kinematics of healthy volunteers. Clarke et al. have described
in [4] a non-invasive 3D dynamic MRI method for measuring muscle
moment arms in vivo. In this work, which is close to our study, the
authors have proposed a 3D mesh-based registration method using
an Iterative Closest Point (ICP) algorithm. Bone motions were es-
timated by the registration of high-resolution joint geometry from
MRI scans of the stationary joint with low-resolution geometries
from ultrafast MRI scans of the slowly moving joint. The main li-
mitation is the need of manual segmentation of each low-resolution
time-frame in addition to the segmentation of the high-resolution
static scan.

In this article, we focus on the estimation of ankle joint dyna-
mics of children from MRI. Contrary to the previous work of Clarke
et al., we propose to use an automatic intensity-based registration
technique to avoid the need of dynamic MRI segmentation. Moreo-
ver, we also investigate in this work the use of log-euclidean poly-
rigid framework developed by Arsigny et al. in [5] for ankle joint
analysis. In [6], the authors prove that this type parameterization is
well-adapted to the registration of articulated structures such as the
hip and knee joint for serial x-ray CT mouse images. In [7], an ex-
tension of the Log Euclidean polyrigid registration was presented to
deal with human articulated structures from 2D radiographs. In our
study, we propose to use the log-euclidean framework to estimate
high-resolution temporal MRI data. Using a set of bone-dependent
rigid transforms, a dense temporal deformation field can be esti-
mated by fusing multiple rigid transforms through the dynamic se-
quence.



2. CLINICAL DATA

MRI data have been acquired using a 3T MR scanner (Achieva
dStream, Philips Medical Systems, Best, NL). An MRI safe ortho-
tic fixture has been specifically designed in such way that it can be
used for performing either passive plantar-dorsiflexion or voluntary
active ankle joint movements. These two cases will be called ”pas-
sive motion” and ”active motion” in the next sections. Data were
acquired as part of a pilot study for children between 7 and 14 years
old at CHRU of Brest, France, under a protocol approved by the
local ethical committee. The scanning protocol included one high-
resolution static 3D scan of the stationary ankle joint with a reso-
lution of 0.26 × 0.26 × 0.8mm, and three low-resolution dynamic
scans (two passive sequences for two knee angle positions and one
active sequence per child). Each dynamic sequence is composed of
15 time frames with a resolution of 0.57× 0.57× 8mm.

3. METHOD

The proposed approach for dynamic MRI analysis consists in
two steps : 1) rigid motion estimation of each bone from dynamic
sequence, 2) computation of dense deformation fields by fusing mul-
tiple rigid transforms.

3.1. Motion estimation

The first step of the proposed method is the motion estimation
of each bone. In the context of ankle MRI, we focus on three bones :
calcaneus, talus and tibia. In this work, bone motion is modeled with
a 3D rigid transform (i.e. rotations and translations). The objective of
this step is two-fold : 1) to estimate a mapping for each bone between
high resolution static MRI data and dynamic sequences, 2) to esti-
mate the relative motion of each bone using the dynamic sequence.

In this work, it is assumed that the bones of interest have been
segmented in the high resolution static image (see Figure 1). In order
to reduce manual interventions as much as possible, an intensity-
based registration is used to propagate the initial segmentation from
the high resolution static image through the dynamic low resolution
sequence.

(a) (b)

Fig. 1: Bones of interest : calcaneus (yellow), talus (green) and tibia
(red). (a) : Mid-sagittal image from the high-resolution static scan ;
(b) : Three dimensional rendering of segmented bones.

The first step is to estimate the transformation from the high-
resolution static image to the dynamic sequence. This leads to the
estimation of a rigid transformation for each bone between images
that undergo non-rigid deformations (due to the movement of the

joint). In order to make this step robust, the registration is carried
out in two steps. First, a rigid registration between the static image
and all the images in the dynamic sequence is performed. Then, ini-
tialized from the previous step, a rigid transformation is estimated
between the static image and each image of the dynamic sequence
for each bone. Finally, to maximize the robustness of the algorithm, a
image from the dynamic sequence whose the content is the closest to
the static image, is selected. To this end, the image of the sequence
for which the overlap between regions of interest before and after
bone-dependent registration is maximum is selected as the reference
image for dynamic motion estimation.

The second step focuses on the estimation of the motion of each
bone during the dynamic sequence. To do this, we propose to take
advantage of the temporal regularity of the data by propagating the
masks of each bone in the dynamic sequence. For each bone, a ri-
gid transform is estimated between successive images. All the regis-
trations are performed using FSL-FLIRT (FMRIB’s Linear Image
Registration Tool [8]) with correlation ratio as similarity measure. A
voxel-wise weighting based on the segmentation masks is used when
estimating bone-dependent motion.

The overall algorithm for bone motion estimation is described in
Algorithm 1, using the following notations : S is the high-resolution
static image, {Dk }k=1,...,K is the set of low resolution dynamic
images, {M i}i=1,...,N is the set of mask of bones of interest, TA→B

is the rigid transform from image A to image B, T i
A→B is the rigid

transform from image A to image B for the bone i, Dice(A,B) is the
DICE coefficient which measures the overlap between segmented
regions (Dice(A,B) = 2|A∩B|

|A|+|B| ).

Algorithm 1 Bone motion estimation

1: Input : segmentation of bones of interest in S.
2: Mapping estimation from S to {Dk} :

— Estimate rigid transforms {TS→Dk}k=1,...,K

— Estimate rigid transform {T i
S→Dk

}k=1,...,K using bone
mask M i, initialized with {TS→Dk}k=1,...,K

— Select Dk? in {Dk}k=1,...,N such that
k? = argmax

k
(
∏N

i=1Dice(TS→Dk (M
i), T i

S→Dk
(M i)))

3: Motion estimation :
— Estimate forward successive rigid transforms
{T i

Dk→Dk+1
}k = k?,...,K−1; i=1,...,N .

— Estimate backward successive rigid transforms
{T i

Dk→Dk−1
}k = k?,...,1; i=1,...,N .

3.2. Fusion of locally rigid transformations

Given a set of rigid transforms for each bone at every time frame
of the dynamic MRI sequence, a high resolution dynamic MRI se-
quence can be estimated by computing a set of dense deformation
fields corresponding to each time frame. To this end, each dense de-
formation field is obtained by fusing rigid transforms corresponding
to the bones of interest. For each bone, a weighting function is com-
puted based on a distance to the mask [9]. Each weighting function
reflects the local influence of the rigid transform of each bone of
interest. In this study, following previous work of Commowick et
al. [10], for each voxel x, the weighting functions are computed as
follows :

wi
Dk

(x) =
1

1 + α dist(x,M i
Dk

)
(1)



where dist(x,M i
Dk

) is the distance between the point x and the
mask of the bone i propagated onto the dynamic image Dk, α is set
to 0.5 according to [10] to ensure smooth interpolation.

Given a point x in the high-resolution static image, the target
location of this point in the dynamic image Dk can be computed wi-
thin the log-euclidean polyrigid framework proposed by Arsigny et
al. in [5], with the following equation :

TS→Dk (x) = exp

(
N∑
i=1

w̃i
Dk

(x) log(T i
S→Dk

)

)
.x (2)

where TS→Dk is the dense deformation field from the static image
S to the dynamic image Dk, w̃i

Dk
is a normalized weighting func-

tion (i.e.
∑N

i=1 w̃
i
Dk

(x) = 1, ∀x ∈ Dk). Figure 2 shows normalized
weighting functions for the three bones of interest and the corres-
ponding high-resolution estimated image.

(a) (b)

(c) (d)

Fig. 2: Normalized weighting functions w̃i
Dk

(x). (a) : corresponding
high resolution reconstructed image, weighting function for the cal-
caneus (b), talus (c), tibia (d) with the following color coding : blue
if greater than 0.5, red if lesser than 0.5, white if equal to 0.5. The
use of polyrigid framework leads to smooth diffeomorphic dense de-
formation fields.

4. RESULTS

Each high resolution static image of the dataset has been care-
fully manually segmented to extract accurate region of interest of
the three bones considered in this work (calcaneus, talus and tibia,
see Figure 1). In order to take into account the partial volume effect
due to anisotropy of the image resolution, a Gaussian blur with a
standard deviation set to 2 voxels has been applied onto each bone
mask.

To evaluate the proposed registration approach for bone motion
estimation, the propagated mask of each bone through the dynamic
sequence is compared with a manually delineated bone on the first
and the last dynamic image (i.e. D1 and DK ). The accuracy of the
estimations of the successive rigid transforms is assessed by com-
puting the following DICE coefficient Dice(Bi

k, B
i
mk

) where Bi
k is

the propagated mask of the bone i on dynamic imageDk andBi
mk

is
a manually delineated mask of the same bone on the dynamic mask
Dk. A DICE value close to one indicates that the bone masks have
been well propagated through the entire dynamic sequence.

Results on bone motion estimation are reported in Table 1 for six
subjects of the pilot study. Results for passive and active motion are
separated. In 33 of 36 cases, the DICE coefficient is greater than 0.8
indicating accurate propagations of bone masks over the dynamic
sequence, for both passive and active motions. Although based on
a successive estimation of transformations, the proposed approach
appears to be robust enough for almost all subjects. It can be noticed
that the proposed approach can be used for both passive and active
motion of the ankle joint.

From the set of rigid transforms of each bone over the dynamic
sequence, it is then possible to compute a temporal dense deforma-
tion field to synthesize a high resolution temporal image of the ankle
joint. Figure 3 illustrates, for two subjects, such high resolution re-
constructed data. The use of a diffeomorphic approach for polyrigid
transform fusion leads to the estimation of realistic high resolution
temporal data to study in vivo joint motion through dynamic MRI.

5. CONCLUSION

Our work focuses on dynamic MRI analysis for child ankle joint
study. An intensity-based registration pipeline have been proposed
to estimate bone motion through the dynamic sequence. The robust-
ness of this approach for both passive and active motion has been
evaluated on in vivo data acquired for a pilot study on child mo-
tor disability due to cerebral palsy. We have also investigated the
use of log-euclidean framework to estimate dense temporal defor-
mation fields from multiple rigid transforms. The polyrigid approach
provides a way to combine high resolution spatial information with
temporal dynamics of joints. Visual promising results have been pre-
sented showing the potential of this framework for detailed in vivo
biomechanical analysis of joint motion from dynamic MRI.

In future works, the proposed approach will be applied to a lar-
ger dataset to compare ankle joint dynamics of children with cerebral
palsy with age-matched healthy children. We will further explore this
scheme to extract fine biomechanical parameters of tendon and liga-
ments. Dynamic MRI and dedicated image processing techniques
can open a new way to study in vivo human joints.
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