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Temporal resolution enhancement of dynamic MRI sequences within a
motion-based framework

K. Makki1,? , B. Borotikar2, M. Garetier3, S. Brochard2, D. Ben Salem2, F. Rousseau1

Abstract— Dynamic MRI has made it possible to non-
invasively capture the moving human joints in vivo. Real-
time Fast Field Echo (FFE) sequences have the potential to
reduce the effect of motion artifacts by acquiring the image
data within a few milliseconds. However, the short acquisition
times affect the temporal resolution of the acquired sequences.
In this paper, we propose a post-processing technique to
reconstruct the missing frames of the sequence given the
reduced amount of acquired data, which leads to recover the
entire joint trajectory outside the MR scanner. To do this, we
generalize the Log-Euclidean polyrigid registration framework
to deal with dynamic three-dimensional articulated structures
by adding the time as fourth dimension : we first estimate
the rigid motion of each bone from the acquired data using
linear intensity-based registration. Then, we fuse these local
transformations to compute the non-linear joint deformations
between successive images using a spatio-temporal log-euclidean
polyrigid framework. The idea is to reconstruct the missing time
frames by interpolating the realistic joint deformation fields in
the domain of matrix logarithms assuming the motion to be
consistent over a short period of time. The algorithm has been
applied and validated using dynamic data from five children
performing passive ankle dorsi-plantar flexion.

Index Terms— Dynamic MRI, tracking, intensity-based re-
gistration, diffeomorphisms, matrix analysis, eigenvalue

I. INTRODUCTION

Dynamic MRI was originally developed for cardiovascular
imaging to quantify blood flow to study heart valve functions
towards the end of the 1980s [1]. Since then, MRI acquisition
and reconstruction techniques have improved by leaps and
bounds with current sequences like fast-PC MRI, ultra-
fast MRI, and real-time FFE. These techniques have been
successfully employed to quantify in vivo musculoskeletal
biomechanics such as the ankle kinematics during dorsi-
plantar flexion. Sequences such as Cine-PC MRI or Fast-PC
MRI [2] can provide velocity changes in the three directions
of the space. However, these sequences require repeatable
motions of the joint for up to two minutes (e.g. motion rate
= 30 cycles/minute for one dorsi plantarflexion cycle) and
the dynamic data are built using these repeatable motions.
Hence, velocity data does not meet the requirements of pe-
diatric studies. Ultrafast Contrast-Enhanced MRI is another
dynamic imaging technique which allows faster scanning
speed by exploiting spatio-temporal redundancy and can
acquire images during a single dorsi-plantar flexion cycle
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within 50 seconds [3]. However, these sequences require
slow motion of the joint (mean rotation speed of 1◦/s) as
they are sensitive to motion artifacts so the motion itself is
reduced to almost static or quasi-static nature where no real
functionality can be assessed. Real-time FFE sequences [4]
are less sensitive to motion artifacts and they can reduce the
scanning time to only 18 seconds to acquire a single cycle
of dorsi-plantar flexion. However, the short acquisition times
reduce the number of acquired time frames.To resume, ba-
lancing the trade-off between acquisition speed and temporal
resolution of dynamic sequences is still a challenging task.
In this work, we propose to use FFE sequences, allowing the
assessment of real functionalities (of muscles and tendons
for example) with more comfortable and rapid acquisitions.
The idea is to fastly acquire a reduced amount of data
and then to estimate the missing amount with the help of
image post-processing techniques. To this end, we propose
to recover the missing data by continuously interpolating the
temporal deformation field of the joint, which can be esti-
mated using diffeomorphic registrations from the acquired
data assuming the motion to be continuous and consistent
during scanning. In this context, we have extended the Log-
euclidean polyrigid framework proposed by Arsigny et al. [5]
to deal with non-stationary dynamic MRI data by adding
the time dimension into the stationary spatial framework.
In the literature [6], [7], the exponential mapping for
solving the polyrigid Ordinary Differential Equation (ODE)
is recursively computed using the scaling and squaring me-
thod involving approximation theory for which the accuracy
always remains debatable. In the work of Moler et al. [8],
the authors have synthesized a study to compare the different
existing techniques for calculating the matrix exponential
(like methods involving approximation theory, differential
equations, or matrix eigenvalues).Hence, we propose to use
matrix eigendecomposition for exactly computing the expo-
nential mapping since computations are performed in non-
dense regular grids due to the low-resolution of dynamic
data, so that all the matrices can be stored in the main
computer memory without the need of high-capacity RAM.

II. DYNAMIC MRI SCANNING

Five healthy children volunteers (between 10 and 14 years)
participated in this pilot study. Each child was laid prone
inside an Achieva dStream 3T MRI scanner (Philips Medical
System, NL) with fully-extended knee, and two flex coils
were placed on the ankle. The rate of ankle motion was stan-
dardized for all subjects using an MRI safe orthotic fixture
(i.e. mean rotation speed of 4◦/s, each sequence captured
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the motion in 15 time frames). Real-time FFE sequences
were used to acquire dynamic data during a single cycle
of ankle plantal-dorsi flexion-extension (TR/TE=20.61/1.8,
FOV=200x200, FA=15°, voxel=0.57x0.57x8mm, acquisition
time = 18 sec). For each child, two sequences during passive
joint motion were acquired for repeatability measures.

III. METHODS

A. Skeleton-tracking algorithm

In this section, we present a robust skeleton-tracking
algorithm employing intensity-based registration. For a given
joint trajectory, each data-sequence is first splitted to K 3D
time frames (352 x 352 x 6 voxels each one). Bones of inter-
est (calcaneus, talus, and tibia) are manually segmented in the
first or last time-frame and then idividually and automatically
tracked throughout the sequence, forward or backward, using
rigid registration. Our tracking method within the dynamic
sequence is composed of two distinct steps :
1) Estimating bone rigid transforms by locally maximizing
the correlation ratio between neighboring time frames using
voxel-wise weighting based on the bone segmentations.
2) Propagating the bone segmentations forward or backward
by applying the estimated rigid transforms using nearest
neighbor interpolation.
Contrary to other interpolation methods like trilinear which
induces smoothing of the bone mask, the use of nea-
rest neighbor interpolation allows for preservation of bone
shapes. To go forward in time, only one image interpolation
is needed to propagate segmentations from the first time
frame into each other. Since the composition of mappings
in the Lie group SE(3) corresponds to the multiplication of
elementary transformations (i.e., SE(3)× . . .×SE(3)), the
direct path between images is computed by composing a set
of estimated successive rigid transforms in order to avoid
the propagation of interpolation errors as much as possible.
The same for backward propagation for which the last time
frame becomes the starting point for the tracking process. To
improve the robustness of the algorithm, rotations are estima-
ted based on their quaternion representations. Quaternions or
versors are the most widely used in computer graphics and
robotics, precisely in motion interpolation algorithms [9] as
they offer a compact representation of rotations.

B. Linear interpolation of bone transformation matrices

Let Ti,k be the rigid transform from time frame Dk

to time frame Dk+1 for the bone i. Assuming that this
transformation is diagonalizable (which is the case for most
transformations in an orthonormal basis, such as the image
coordinate system), then there exist an orthogonal matrix P
and a diagonal matrix D such that Ti,k = PDP−1. The non-
zero elements of D are the eigenvalues of Ti,k (λ1, λ2, λ3,
and λ4 = 1), while the columns of P are the corresponding
eigenvectors. Based on this matrix eigendecomposition, one
can define Ti,k raised to its δkth power as follows :

Tδki,k = PDδkP−1 = P.diag(λδk1 , λ
δk
2 , λ

δk
3 , 1).P−1 (1)

Integrating δk continuously from 0 to 1 will infinitesimally
change the matrix Tδki,k from the identity to the matrix Ti,k.
This allows for interpolating between two bone poses from
a realistic transformation matrix, expressed in homogeneous
coordinates (i.e., in the Special Euclidean group SE(3)).

C. Spatio-temporal Log-euclidean polyrigid framework
The Log-euclidean polyrigid framework provides an ef-

ficient way to synthesize joint deformation fields with nice
properties like invertibility and smoothness, independently of
the way local bone rigid transformations are first estimated.
Based on the algebraic properties of this framework (the fact
that it outputs diagonalziable velocity components in the Lie
Algebra se(3)), it is then possible to add the time dimension
to the stationary framework (since log(T δk) = δk.log(T )).
Given a point x in the kth time frame Dk, the target location
of this point in the interpolated time frame Dk+δk (located
between Dk and Dk+1) can be computed as follows :

ΦDk→Dk+δk(x) = exp

(
δk

N∑
i=1

w̃iDk(x) log(Ti,k)

)
.x (2)

where Φδk=0(x) = x ; δk ∈ [0, 1] is the time-term added to
the stationary polyrigid fusion formula ; Ti,k is an element
of the Lie group SE(3) ; N is the total number of rigid com-
ponents ; ΦDk→Dk+δk is the infinitesimal deformation field
from Dk to the time frame to be interpolated Dk+δk ; w̃iDk
is a normalized weighting function (i.e.,

∑N
i=1 w̃

i
Dk

(x) =
1,∀x ∈ Dk) which defines the local influence of the bone i
on the final voxel transformation (see section III-D).

In the literature, the exponential map of (2) is approxima-
ted using the scaling and squaring method [10]. In this work,
this exponential map is computed exactly using eigendecom-
position. Similarly to the matrix power defined in (1), the
matrix exponential is obtained by exponentiating the associa-
ted eigenvalues (i.e., the non-zero elements of the diagonal
matrix D). Thus, we just needed to cast the exponentiation
of the complex eigenvalues of the transformation matrices in
regular grids leading to smooth dynamic deformation fields
that preserve the topology of the bones. Finally, the floating
image intensities are mapped to new coordinates in the target
image space by spline interpolation.

D. Definition of weighting functions
In the context of articulated registration, the choice of

weight functions is very important as the main goal is to
accurately estimate the non-linear joint deformations without
affecting bone shapes. It is important to note that the Gaus-
sian weight functions are more suitable for polyaffine fusion
than the polyrigid fusion, as they do not guarantee the rigidity
and accuracy of the transformations in the bonny skeleton (by
affecting sharp peaks particularly while smoothing). In [7],
Commowick et al. proposed an inverse-distance weighting
function that preserves bone shapes after registration (3). Ho-
wever, such weighting functions yield inaccurate deformation
outside the segmented bones.

wiDk(x) =
1

1 + αdist(x,BiDk)β
(3)



where BiDk is the binary mask of bone i in time frame Dk,
and dist(x,BiDk) is the Euclidean distance between x and
BiDk .
Experiments show that an increase in β leads to an increase
in the deformation accuracy for non-rigid structures. Thus,
we propose new weighting functions suited for articulated
registration. These new weight functions, which are inversely
proportional to a rate of the distance exponential can be used
within the log-euclidean framework in order to obtain more
realistic deformations outside the segmented bones :

wiDk(x) =
2

1 + exp(γdist(x,BiDk))
(4)

Note that these new weight functions yield more accurate
transformations especially in the case of non-large defor-
mations, which is always the case between two successive
frames. γ ∈ [0.4, 0.8] to ensure smooth interpolation.

IV. RESULTS

The proposed pipeline has been applied on five dynamic
MRI sequences. The exponential map of equation (2) is com-
puted within 3 s on an Intel® Xeon® Processor E3-1271 v3
3.60 GHz on a 352×352×6 regular grid using the proposed
eigendecomposition method. Our code is implemented in
PythonTM using the LAPACK (Linear Algebra Package)
routines for computing eigenvalues and eigenvectors. The
RMSE between Achilles tendon contours was around 2mm
when using the weigthing functions defined in in equation (3)
with β < 3. Thus, the new definition of weighting functions
played a crucial role in the enhancement of deformation ac-
curacy outside the segmented bones while protecting skeleton
edges, as reported in table I. Figure 1 illustrates, for one
subject, such high-temporal-resolution reconstructed data.
The robustness of the method and the accuracy of the
results have been evaluated using a local leave-one-out cross-
validation technique. This was done by reconstructing each
acquired time frame Dk based on the deformation field
halfway between Dk−1 and Dk+1 for k ∈ {2 . . .K − 1}.
Meaning each image Dk has been reconstructed from the
image-intensities of Dk−1, where Ti,k is the rigid transfor-
mation from time frame Dk−1 to time frame Dk+1 for the
bone i and δk is set to 0.5 in (2) (in the case of forward
tracking). This gave a set of reconstructed time frames
{D′k}k∈2...K−1. Results on bone motion interpolation are
reported in table I. The accuracy of estimated deformation
fields was then validated by computing the DICE overlap
between the manually delineated masks of bones of interest
on each acquired time frame Dk and the bone segmentations,
automatically propagated onto each reconstructed time frame
D′k. For all sequences, the DICE coefficient was greater than
0.82 indicating accurate propagations of bone masks over
each dynamic sequence. In order to provide a meaningful
information about the accuracy of estimated deformation
fields outside the segmented bones, we have computed the
RMSE (Root Mean Square Error) between contour-points of
Achilles tendon on each acquired time frame Dk and on each
reconstructed time frameD

′

k. In all cases, the mean error was

less than 1mm (using the new weighting functions), indica-
ting the accuracy of the estimated deformation fields for the
non-rigid structures. Figure 2 illustrates the importance of
the weighting functions when estimating and interpolating
the temporal joint deformation field.

The proposed design for bone motion tracking is still
robust in either direction (i.e., when going forward or ba-
ckward in time). Note that this interpolation technique is
still available in the case of polyaffine transformations, in
where local transformations are affine (i.e. include additional
degrees of freedom like the scaling and shearing parameters).

V. CONCLUSION

In this work, we have presented a motion-interpolation-
based method for increasing the temporal resolution of
anatomical dynamic MRI sequences. We have generalized
the Log-Euclidean polyrigid registration framework to dyna-
mic articulated structures and we have also proposed new
weight functions which are well adapted to our context. The
exponential map of the Log euclidean polyrigid framework
is computed in an efficient and elegant way using matrix
diagonalization-based techniques. To conclude, the proposed
post processing technique aims to overcome the physical
limitations related to real-time dynamic MR imaging algo-
rithms which are generally based on compressed sensing
theory [11], for which it is hard to fastly acquire the entire
or nearly the entire joint trajectory inside the MR scanner
because of the limited k-space sampling.
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TABLE I: 3D DICE scores (for bones) and RMSE (for Achilles tendon contours) between manual segmentations of each
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A. tendon 0.45± 0.04mm 0.7± 0.12mm 0.56± 0.08mm 0.6± 0.1mm 0.7± 0.07mm 0.8± 0.18mm 0.6± 0.1mm

Fig. 1: Interpolation of missing time frames using the proposed forward tracking method : Dk is the kth acquired time
frame ; while Dk.k+1 is the time frame half way between Dk and Dk+1 (i.e., δk = 0.5 in (2)). for k = 1...3.

Fig. 2: Effects of different weighting functions on estimated deformation fields : (a) Target image ; (b) Reconstructed image
using the weighting functions defined in (3) with α = 0.5 and β = 1 ; (c) Reconstructed image using the weighting
functions defined in (3) with α = 0.5 and β = 2 ; (d) Reconstructed image using our weighting functions defined in (4)
with γ = 0.4. The contours of bones (magenta) and of Achilles tendon (white) have been drawn in the target image to show
the reconstruction accuracies when changing the weighting functions. Despite the fact that all the used weighting functions
conserve bone topologies (this was validated by checking that the Jacobian map associated to the joint deformation field is
equal to 1 over bone segmentations), the reconstructed image is more accurate for non-rigid structures such as the Achilles
tendon especially when using our proposed weighting functions (d).
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