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Abstract
In this paper, we propose a method for non-invasively measuring three-dimensional in vivo
kinematics of the ankle joint from a dynamic MRI acquisition of a single range-of-motion
cycle. The proposed approach relies on an intensity-based registration method to estimate
motion from multi-plane dynamic MRI data. Our approach recovers not only the movement
of the skeleton, but also the possibly non-rigid temporal deformation of the joint. First,
the rigid motion of each ankle bone is estimated. Second, a four-dimensional (3D+time)
high-resolution dynamic MRI sequence is estimated through the use of the log-euclidean
framework for the computation of temporal dense deformation fields. This approach has been
then applied and evaluated on in vivo dynamic MRI data acquired for a pilot study on six
healthy pediatric cohort in order to establish in vivo normative joint biomechanics. Results
demonstrate the robustness of the proposed pipeline and very promising high resolution
visualization of the ankle joint.
Keywords : dynamic MRI, ankle, motion estimation, high-resolution reconstruction,
intensity-based registration, locally rigid transformation

1. Introduction1

To better understand the biomechanics of the pediatric ankle joint, it is crucial to es-2

tablish in vivo normative joint biomechanics [7] before focusing on pathomechanics studies.3

This approach would likely contribute to a better long-term follow-up for childhood disabi-4

lities such as cerebral palsy.5

Conventional MRI techniques have been used for accurate diagnosis of the ankle and foot di-6

sorders given the complexity of their anatomy [5]. Dynamic MRI was originally developed to7

study cardiovascular functions towards the end of the 1980s [18]. Since then, MRI acquisition8

and reconstruction techniques have improved by leaps and bounds with current sequences9

such as Fast-PC MRI, ultrafast MRI, and Fast Field Echo FFE. These techniques have been10

successfully employed to quantify the knee joint kinematics [22, 8], and to analyze in vivo 3D11



musculoskeletal dynamics [6, 25], non-invasively. Sequences such as cine-PC MRI [17, 26] or12

fast-PC MRI [23, 19] can provide in vivo joint velocity field measurements. However, these13

data require long acquisition times with a high number of repeated cycles. Sequences such14

as ultrafast MRI [9] allow faster scan speed by exploiting spatio-temporal redundancy and15

can acquire images during a single cycle. However, they require slow motion of the joint16

making the movement quasi-static. Thus, both these types of sequences are not appropriate17

to acquire dynamic in vivo data for children especially with musculoskeletal disorders. In18

this work, we use real-time FFE sequences [20] which are less sensitive to motion artifacts19

and which reduce the scanning time to 18 seconds to acquire the dorsi-plantarflexion cycle.20

Furthermore, post-processing of acquired dynamic images remains a challenging task due21

to low resolution and motion artifacts. In [22], the displacement of specific points on each bone22

were quantified by integrating the velocity data using a three-dimensional Fourier tracking23

method [29]. Clarke et al. [9] determined in vivo muscle moment arms during ankle movement24

using a 3D mesh-based registration method. They estimated bone motions by registering25

the high-resolution joint geometry from MRI scans of the stationary joint to low-resolution26

geometries from ultrafast MRI scans of the slowly moving joint. However, in addition to27

the segmentation of the high-resolution static scan, it was needed to manually segment each28

low-resolution time-frame which was time-consuming and prone to segmentation bias.29

In this study, the spatial information of the high‐resolution static MRI data and the temporal30

information of the dynamic data were combined using a log-euclidean polyrigid framework31

(LEPF). The purpose of this study was twofold : 1) to estimate bone motion, allowing to32

derive the 3D kinematics of the joint, 2) to compute temporal dense deformation fields of the33

joint, allowing to reconstruct a high-resolution dynamic MRI sequence from a low-resolution34

dynamic MRI sequence and one high-resolution MR image.35

The use of the LEPF proposed by Arsigny et al. [4, 3, 2] has been investigated for registration36

of structures such as the hip and knee joint in mouse CT images [16], human hands from 2D37

hand radiographs [14], bones in lower-abdomen area [11], and also intra-subject mandible38

3D datasets [21].39

In this work, we adapted this framework to deal with 4-dimensional MRI data by pro-40

posing a fast and accurate algorithm to compute the dense deformation fields in regular41

grids. In fact, we propose to compute the exponential mapping of the LEPF using matrix42

eigendecomposition instead of the scaling and squaring method used in the literature [2, 11].43

2. Materials and methods44

2.1. Subject recruitment45

Six typically developing children with a mean age of 12 years and with a mean weight46

of 35.8 kg participated in this study which was approved by the regional ethics committee.47

Children were selected with no contraindications to MRI and with no history of lower limb48

musculo-skeletal injury or surgery in the past six months. MRI data were acquired in a single49

visit after parents signed informed consent forms.50
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2.2. Data Acquisition51

MRI data have been acquired using a 3T MR scanner (Achieva dStream, Philips Medical52

Systems, Best, Netherlands). An MRI-compatible orthotic fixture was used to perform dy-53

namic movements inside the scanner(Figure 1). Individual range-of-motion was checked by54

the cilnician outside the MRI scanner and stops were placed on wire guides for controlling55

the range-of-motion inside the scanner. Each dynamic scan lasted for 18 seconds and ankle56

joint was moved (actively or passively) through the range-of-motion for each subject within57

18 seconds with a rotation speed of 4◦/s to 5◦/s (depending on the range). Both passive58

and active acquisitions were standardized for all subjects as detailed in Annexe A. Dynamic59

images were acquired in the oblique axis of the ankle motion. This was done by acquiring60

axial dynamic scans first and then obliquely orienting the scanning plane for images to be61

acquired in sagittal plane.62

The scanning protocol included one high-resolution static 3D scan of the ankle joint63

with a resolution of 0.26× 0.26× 0.8mm (T1-weighted gradient-echo, flip angle 10◦, matrix64

576×576, FOV 150mm×150mm, TR/TE 7.81/2.75 ms, mean acquisition duration : 424.3265

s), and three low-resolution dynamic sequences per child : two passive sequences for repeata-66

bility measures and one active sequence, all acquired with knee angle kept at full extension67

(approximately between 0◦ to 10◦). Each sequence is composed of 15 time frames with a68

voxel size of 0.57 × 0.57 × 8mm (flip angle 15◦, matrix 352×352, FOV 200mm×200mm,69

TR/TE 20.61/1.8 ms, acquisition duration : 18.98 s).70

Figure 1 : Orthotic fixture specially designed to acquire MRI data on pediatric ankle joint. The entire
fixture is made out of MRI-compatible material. Guide wires helped the technician to control and operate
the passive plantar-dorsi flexion movements of the ankle joint while rest of the limb is fixed using straps
at foot, tibia and mid thigh locations. Position of the ankle rest can be adjusted based on the limb length.
Knee angle can be adjusted from full extension to 45° flexion. Cushioned ankle rest supports the foot to be
imaged.

2.3. Data post-processing71

Temporal tracking of the ankle bones is a challenging task because of nonlinearly articu-72

lated joint motion. Image registration is an iterative process maximizing a similarity measure73
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between two images (source and target) in order to find the optimal geometric transforma-74

tion that best align them. In this work, we used a locally-linear intensity-based registration75

method to estimate bone motion, and then we fused these local transformations to compute76

temporal dense deformation fields.77

2.3.1. Motion estimation78

The bones of interest were manually segmented in the high-resolution static image (Fi-79

gure 2) and then automatically propagated throughout the dynamic low-resolution sequence80

using intensity-based registration.81

The proposed approach for motion estimation consisted in two steps : 1) estimating a map-82

ping for each bone between static MRI data and dynamic sequences, 2) estimating the83

relative bone motions using the dynamic sequence.84

step1 : The first step was to compute the transformations from the static image to the85

dynamic images. In order to make this step robust, the multi-resolution registration was86

carried out in two steps : First, the static image was globally (and rigidly) registered to each87

low-resolution time frame {Dk}k∈1...K . This provided a set of rigid transforms {TS→Dk
}k∈1...K .88

Second, initialized with the set of global rigid transforms {TS→Dk
}k∈1...K , the temporal posi-89

tion of each bone was refined thanks to a local rigid registration using bone masks. In this90

step, the static image is registered to each dynamic image {Dk}k∈1...K using input weights on91

each of the bones separately. This provided another set of rigid transforms {T i
S→Dk

}i=1,...,3
k=1,...,K .92

To maximize the robustness of the algorithm, an image Dk∗ from the dynamic sequence whose93

the content is the closest to the static image, was automatically detected. The underlying94

assumption is that the registration process is much simpler to converge for transformations95

close to the identity. To this end, the image of the sequence for which the overlap between96

regions of interest before and after bone-dependent registration was maximum, was selected97

as the reference image which served as a starting point for the motion estimation within the98

dynamic sequence.99

(a) (b) (c)

Figure 2 : Bones of interest : calcaneus (red), talus (green) and tibia (cyan). (a) : Mid-sagittal image from
the high-resolution static scan ; (b) : Mid-coronal image from the high-resolution static scan ; (c) : Three
dimensional rendering of segmented bones.
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step2 : The second step focused on the estimation of bone motion during the dynamic100

sequence. To do this, we proposed to take advantage of the temporal regularity of the data101

by propagating the bone masks in the dynamic sequence. For each bone, a rigid transform102

was estimated between successive images. i.e. local and rigid registrations were conducted103

from the reference image Dk∗ towards first and last images of the sequence. To go forward104

and backward in time, only one interpolation was needed to propagate segmentation from105

Dk∗ to each time frame Dk by composing a set of successive rigid transforms in order to106

avoid the propagation of interpolation errors as much as possible. Temporal bone rotations107

were optimized based on their quaternion representations [15], making the segmentation108

propagation more robust.109

The overall algorithm for bone motion estimation is described in Annexe B.110

Figure 3 : Proposed pipeline for ankle motion estimation : Bones of interest are segmented in the high-
resolution static image. This high-resolution MR image is globally (and rigidly) registered to each MR image
of the dynamic sequence (1.), and the position of each bone is refined thanks to a local rigid registration
using bone segmentations (2.). This allows to identify the dynamic MR image which is closest to the high
resolution image and which will serve as a starting point for the motion estimation within the dynamic
sequence. Last, local and rigid registrations are conducted from the reference towards the sequence first and
last images.

2.3.2. Computation of temporal dense deformation fields111

A dense deformation map of the joint from the static to each time frame was obtained by112

fusing rigid transforms corresponding to the bones of interest. For each bone, a non-negative113

weighting function was computed based on a distance to the mask [10]. Each weighting114

function reflects the local influence of the rigid transform of each bone. For each voxel x, the115
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weighting functions were computed as follows :116

wi
Dk

(x) =
1

1 + dist2(x,M i
Dk

)
(1)117

where : dist(x,M i
Dk

) is the Euclidean distance between the point x and the mask of the bone118

i propagated onto the dynamic image Dk.119

Given a point x in the high-resolution static image, the target location of this point in120

the dynamic image Dk can be computed with the following equation [4] :121

TS→Dk
(x) = exp

(
N∑
i=1

w̃i
Dk

(x) log(T i
S→Dk

)

)
.x (2)122

where TS→Dk
is the dense invertible deformation field from the static image S to the dynamic123

image Dk, w̃i
Dk

is a normalized weighting function (i.e.
∑N

i=1 w̃
i
Dk

(x) = 1,∀x ∈ Dk).124

2.3.3. Fast computation of dense deformation fields125

In this section, we describe an efficient algorithm to compute deformation fields in dense126

regular grid based on the algebraic properties of the Log-Euclidean polyrigid framework.127

In [3, 2], the matrix exponential was recursively approximated with a certain level of accuracy128

using the scaling and squaring method by taking into account that the matrix exponential is129

much simpler to compute for matrices close to zero via the Padé approximant. In this work,130

we computed the exponential mapping of equation 2 exactly using eigen decomposition. As-131

suming the log-euclidean mean of linear transformations L(x) =
∑N

i=1 w̃
i
Dk

(x) log(T i
S→Dk

)132

to be diagonalizable (i.e. L(x) can be expressed in homogenous coordinates as : L(x) =133

P.D.P−1(x), where the columns of P contains the eigenvectors {vk(x)}k∈{0...4} corresponding134

to the complex eigenvalues of L(x), {λ1(x), λ2(x), λ3(x), 1}), we broadcasted the exponen-135

tiation of transformation eigenvalues over all grid points using the following Equation :136

eL(x) = PeDP−1(x) = P



eλ1 0 0 0

0 eλ2 0 0

0 0 eλ3 0

0 0 0 e


P−1(x) (3)137

2.4. Determination of ankle joint biomechanics138

2.4.1. Definition of anatomically based coordinate systems139

Anatomical coordinate systems {Ri}i=1,...,N were defined on each bone in the high-140

resolution image S following the same protocols used in [24] as illustrated in Figure 4,141
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and then mapped into the neutral position Dn using the estimated local-rigid transforms142

{T i
S→Dn

}i=1,...,N . The neutral dorsi-plantarflexion position was defined at an ankle angle of143

90° as recommended by the ISB standards committee [28]. However, the above defined neu-144

tral position cannot be always achieved during dynamic scanning. Therefore, the image in145

which the foot position was closest to a dorsi-plantarflexion position of zero degrees was146

selected as the neutral position.147

(a) (b) (c)

Figure 4 : Anatomical coordinate systems for one subject’s calcaneus (a), talus (b), and tibia(c) as per ISB.

2.4.2. Quantification of ankle joint kinematics148

In this study, the kinematics were defined through the 3D registration of the entire149

bone volume. More precisely, rotations and translations of each bone i were determined150

from estimated rigid transforms {T i
Dk→Dk+1

}i=1,...,N . Ranges of motion were estimated using151

low-resolution image data on multiple dynamic images (15 ankle positions). Kinematics152

of talocrural joint, subtalar joint, and calcaneal-tibial complex were then derived from153

{T i
Dk→Dk+1

}i=1,...,N .154

Given the image coordinate system RI = (O, x⃗, y⃗, z⃗), we defined the transformation, MRI→Rj
,155

that mapped RI to an anatomical bone-based coordinate system Rj = (Oj, x⃗j, y⃗j, z⃗j). This156

transformation changed a representation from the Rj system to the RI system.157

Individual bone transformation matrices expressed in RI were then converted into the trans-158

formation matrices expressed in the new anatomical coordinate systems Rj as follows :159

T i
j (k) = (MRI→Rj

× T i
Dk→Dk+1

×M−1
RI→Rj

)k=1,...,K−1; i=1,...,N ; j=1,...,N where :160

— T i
j (k) : 4× 4 rigid transformation matrix of the ith bone relative to the jth local bone161

coordinate system at time k.162

— MRI→Rj
: the change of basis matrix.163

2.5. Method evaluation164

To evaluate the proposed registration approach for bone motion estimation, the propa-165

gated mask of each bone through the dynamic sequence was compared with a manually166

delineated bone on each time frame. The accuracy of the estimations of the successive rigid167
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transforms was assessed by computing the DICE coefficient Dice(Bi
k, B

i
mk

) and the RMS168

error RMSE(Bi
k, B

i
mk

) where Bi
k was the propagated mask of the bone i on dynamic image169

Dk and Bi
mk

was a manually delineated mask of the same bone on the dynamic image Dk. A170

DICE value close to one indicates that the bone masks have been well propagated through171

the entire dynamic sequence.172

The RMS error was computed as follows :173

RMSE(Bi
k, B

i
mk

) =
√

1/nc.
∑nc

xc=1 dist
2(xc, ζBi

k
) where nc is the total number of voxels of174

ground-truth contours (i.e. contours of Bi
mk

) and dist(xc, ζBi
k
) is the Euclidean distance175

between xc and the contour of Bi
k.176

3. Results177

Results on bone motion estimation were reported in Figures 8-9 for the six subjects of the178

pilot study. In most of the cases, the DICE coefficient was greater than 0.8 and the RMSE was179

smaller than 0.6 indicating accurate propagations of bone masks over the dynamic sequence,180

for both passive and active motions. From the set of rigid transforms of each bone over the181

dynamic sequence, it was then possible to compute temporal dense deformation fields to182

synthesize a high-resolution dynamic MRI sequence. Using the fast computation technique183

described in Section 2.3.3, a dense deformation field was computed in 3min on an Intel®184

Xeon® Processor E3-1271 v3 3.60 GHz on a 576 × 576 × 90 regular grid and in 15min on185

a very high dimensional space (576 × 576 × 202 ≃ 67 million deformation vectors) which186

required a high capacity RAM because computations were performed in the complex domain187

for the purpose of enhancing the accuracy. Figure 10 illustrates, for one subject (A6), such188

high-resolution reconstructed data.189

Three-dimensional kinematics of the joint under both active and passive ankle dorsi-190

plantarflexion movement using the current 3D dynamic MRI method were presented in191

Figures 5 to 7. Kinematics of all ankles (expect A5) were derived from the estimated tem-192

poral rigid transforms of each bone of interest, converted into the matrices of the calcaneus193

relative to the tibia, the talus relative to the tibia, and the calcaneus relative to the talus.194

The talus mistracking for the ankle A5 was caused by the considerable missing portion from195

the bone in intermediate time frames due to the inappropriate initial placement of the flex196

coils.197

The mean rotation about the Inferior-Superior and about the Posterior-Anterior axes (ave-198

raged across time for all subjects) was close to 0 degrees for both active and passive motion.199

The mean range of passive rotation about the Medial- Lateral axis for talocrural an calcaneal-200

tibial joints was between −11 degrees of maximal dorsiflexion and +32 degrees of maximum201

plantarflexion with full extended knee. This demonstrates excellent correspondance with the202

mean range of passive rotation reported in [1] and validated for 245 healthy children between203

7 and 14 years old.204
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Figure 5 : 3D normative kinematics of the calcaneal-tibial complex using the proposed image processing
method. The kinematics of the calcaneus are represented relative to the tibial coordinate system defined in
neutral position. Average rotation and translation were computed for both passive and active motion for the
studied ankles. Standard deviation above and below the average line are shown (hatched shaded area for
passive motion and green shaded area for active motion).
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Figure 6 : 3D normative kinematics of the talocrural (talar-tibial) joint using the proposed image processing
method. The kinematics of the talus are represented relative to the tibial coordinate system in neutral
position. Average rotation and translation were computed for both passive and active motion for the studied
ankles. Standard deviation above and below the average line are shown (hatched shaded area for passive
motion and green shaded area for active motion).
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Figure 7 : 3D normative kinematics of the subtalar joint using the proposed image processing method.
The kinematics of the calcaneus are represented relative to the talar coordinate system in neutral position.
Average rotation and translation were computed for both passive and active motion for the studied ankles.
Standard deviation above and below the average line are shown (hatched shaded area for passive motion and
green shaded area for active motion).
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Figure 8 : 3D DICE coefficients between manual and automatic bone segmentation maps for the six subjects
of the pilot study taking account of the whole set of bone trajectories. Results for passive (left column) and
active motion (right column) are separated. A dice value of 1 indicates perfect geometric alignment between
automatic and ground truth segmentations.
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Figure 9 : Temporal evolution of the root-mean-square error (RMSE in voxels) between manual and auto-
matic bone segmentations for subjects of the pilot study. Errors are represented using error bars. The average
is shown with a dotted line with one standard deviation above and below this line. Results for passive (left
column) and active motion (right column) are separated.
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Figure 10 : High resolution temporal reconstruction for one subject (subject 6 : passive motion). First row :
original dynamic images, second row : corresponding high-resolution reconstructed images, downsampled to
resemble to the original low-resolution images in order to validate the reconstruction accuracy. Each column
corresponds to one time frame. Contours of the first time frame show the reconstruction accuracy (column
1) and the joint motion (columns 2 to 4).

4. Discussion205

In this study, we have presented a method to determine full 3D-kinematics of the ankle206

joint from dynamic anatomical MRI data. An intensity-based registration pipeline has been207

proposed to estimate bone motion through the dynamic sequence. The robustness of this208

approach for both passive and active motion has been evaluated on in vivo data acquired for209

a pilot control cohort study. Although based on a successive estimation of transformations,210

the proposed approach demonstrates advantages in efficiency, reliability and robustness for211

all subjects.212

The proposed algorithm is robust enough to image quality as well as motion artefacts in a213

way that it can determine kinematics even for unconstrained motion. This was evaluated214

by changing the delta-time ∆k separating each couple of source/target images during the215

successive rigid registrations and the algorithm is still robust even for ∆k = 5.216

217

Normative passive kinematics show that the subjects maintained a consistent movement218

trajectory. Three-dimensional kinematics of the joint under passive ankle movement using219

the proposed method (Figures 5 to 7) were similar to ankle joint kinematics reported in220

other studies using velocity data [24]. Normative active kinematics show that the subjects221
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were able to perform voluntary plantar-dorsiflexion between the extreme positions with the222

same temporal regularity as for passive motion. The comparison between passive and active223

kinematics shows closest temporal averages despite some temporal fluctuation of the stan-224

dard deviation across subjects.225

226

Although the fact that both our method and other motion methods tend toward the same227

goal which is bone motion tracking, there are some technical differences making it difficult228

to perform an objective comparison based on a common error parameter.229

In [9], the authors were more interested in the Achilles tendon moment arms and the accu-230

racy and precision of bone motion tracking were not reported. Clarke et al. [9] have discussed231

some limitations in their methods which can be particularly useful in adults. They have ex-232

plicitly mentioned that their protocols require some modifications to be useful in the smaller233

joints of children. To satisfy the mesh density requirements for using the ICP algorithm,234

they have recommended the reduction of the slice gap for the dynamic scanning protocol235

while increasing the number of slices per time frame so that the slices span the joint width.236

However, assuming that they have used ultrafast MRI sequences (with 8 sagittal slices/time237

frame compared to 6 slices in our work, and taking around 2 min to acquire 10 to 20 time238

frames compared to only 18 sec to acquire 15 time frames in our work), increasing the num-239

ber of slices will increase the scanning time of dynamic data to more than 2 min which will240

be uncomfortable especially for the pathological subjects. The authors have also notified241

that the rotation speed for their study was slow (mean 1◦/s compared to 4.2◦/s in our work)242

in order to reduce the effects of motion artifacts, so the motion itself is reduced to almost243

static or quasi-static nature where no real functionality can be assessed. Our choice for FFE244

sequences for dynamic data acquisition was motivated by the fact that these techniques are245

less sensitive to motion artifacts [27] and more than 5 times faster than ultrafast MRI.246

In the work of Sheehan et al. [24], the displacements of three to five points on each bone were247

calculated through Fourier integration and then converted into three-dimensional orientation248

angles. As part of the tracking process, they identified a series of vertices, defining regions249

on each bone of interest in the first time frame (i.e. three to five vertices per bone). The250

distance between these vertices in the first time frame was considered the absolute distance251

under the assumption that it should remain fixed throughout the movement because bones252

are rigid. Thus, for each bone, the difference in distance between vertices in each time frame253

relative to the absolute distance was defined as the tracking error. A potential limitation254

of this study [24] was the out of plane accuracy of the bone motion because the accuracy255

of cine-PC MRI is independent of the shape of the bone being tracked [6]. Another clinical256

limitation is that subjects with musculoskeletal disease who cannot complete a large number257

of repeated motions cannot be studied with cine-PC MRI techniques. Although the vertices258

were well-defined from 3D high-resolution adult data in previous work of Sheehan et al. [24],259

it was hard to reproduce their exact locations from developing children data for comparison260

purposes because of the differences in bone size and topology between children and adults.261

From another point of view, it was not sufficient to consider the distance between only some262

vertices as system bias and thus we have considered all the bone segmentations (i.e. all the263

15



volumetric information) for method evaluation.264

265

The proposed method remains robust as long as the field-of-view (FOV) is well adjusted266

(i.e. when the FOV covers either the full or nearly-full anatomy of the ankle bones throu-267

ghout the entire joint trajectory).268

269

We have also extended the log-euclidean framework to estimate temporal dense deforma-270

tion fields from multiple rigid transforms. The polyrigid approach provides a way to combine271

high resolution spatial information with temporal dynamics of joints. The output of this pro-272

cess is a series of high-resolution anatomical images portraying the different phases of the273

movement cycle. In this context, we proposed to compute the exponential mapping of the274

LEPF in an efficient and elegant way using matrix diagonalization-based techniques rather275

than using techniques involving approximation theory. The preservations of the bone shapes276

after the polyrigid fusion were checked by computing the Jacobian maps associated to the277

estimated deformation fields (as shown in figure 11).278

279

To conclude, our work is the first effort to track ankle joint motion and deformation280

from volumetric image data using intensity-based non-rigid image registration rather than281

using explicit mechanistic models. It therefore achieves its goals without having to per-282

form time-consuming manual segmentations. In immediate future, the proposed approach283

will be applied to compare the ankle joint dynamics of children with spastic equinus with284

age-matched healthy children. Since spastic equinus is typically defined as the inability to285

dorsiflex the foot above plantigrade, with the hindfoot in neutral position and the knee in286

extended position [13], the foot was constrained to a specific path using the fixture in this287

work. However, this set-up is problem-specific and can be changed or removed while evalua-288

ting the pathomechanics of other joint(s). We will also explore this method to extract fine289

biomechanical parameters of tendon, and cartilage contact mechanics (e.g. temporal joint290

space width) of the tibio-talar joint which is the primary joint responsible for plantarflexion291

and dorsiflexion of the ankle. Furthermore, these techniques can be applied to other joints292

and related musculoskeletal disorders. This suggests that anatomical dynamic MRI and de-293

dicated image processing techniques can open a new way to study in vivo human joints.294
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Annexe A. Supplementary Material387

An MRI safe orthotic fixture has been specifically designed in such way that it can be used388

for performing either passive plantar-dorsiflexion or voluntary active ankle joint movement389

(Figure 1). For passive acquisition, after placing the ankle joint in the fixture, each child was390

asked to relax the lower-limb musculature and then the fixture was cyclically moved by a391

technician at a rotation speed of 4◦/s to 5◦/s. The technician was given a set of headphones392
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Algorithm 1 Bone motion estimation
1 : Input : segmentation of bones of interest in S.
2 : Mapping estimation from S to {Dk} :

— Estimate rigid transforms {TS→Dk
}k=1,...,K

— Estimate rigid transform {T i
S→Dk

}k=1,...,K using bone mask M i, initialized with
{TS→Dk

}k=1,...,K

— Select Dk⋆ in {Dk}k=1,...,K such that k⋆ = argmax
k

(
∏N

i=1Dice(TS→Dk
(M i), T i

S→Dk
(M i)))

3 : Motion estimation
— Estimate forward successive rigid transforms {T i

Dk→Dk+1
}k = k⋆,...,K−1; i=1,...,N .

— Estimate backward successive rigid transforms {T i
Dk→Dk−1

}k = k⋆,...,2; i=1,...,N .
4 : Output : compute bone rigid transforms {T i

S→Dk
}k=1,...,K; i=1,...,N by combining steps 2

and 3

through which he/she could hear a metronome. Fixture was then moved in a consistent393

passive plantar-dorsiflexion by the technician at the beat of the metronome and using the394

guide wires attached to the fixture. For active movement, no technician was present and395

children were asked to perform voluntary plantar-dorsiflexion between the extreme positions396

on the beat of the metronome. Meaning, the active motion was completely voluntary with all397

the muscles dynamically taking part in the production of the plantar-dorsiflexion movement.398

Annexe B. Algorithm399

The overall algorithm for bone motion estimation is described in Algorithm 1 and in400

Figure 3, using the following notations :401

S : high-resolution static image, {Dk}k=1,...,K : set of low-resolution dynamic images, {M i}i=1,...,N :402

set of mask of bones of interest, TA→B : rigid transform from image A to image B, T i
A→B :403

rigid transform from image A to image B for the bone i, Dice(A,B) is the DICE coeffi-404

cient which measures the overlap between segmented regions (Dice(A,B) = 2|A∩B|
|A|+|B|). Rigid405

registrations were performed using FSL-flirt [12] with correlation ratio as similarity mea-406

sure. A voxel-wise weighting based on the segmentation masks was used when estimating407

bone-dependent motion.408

Code is available online at https://github.com/rousseau/dynMRI.409
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