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Summary
Myelin imaging in the central nervous system is essential for monitoring pathologies involv-

ing white matter alterations. Various quantitative MRI protocols relying on the modeling of the

interactions of water protons with myelinated tissues have shown sensitivities in case of myelin

disruption. Some extracted model parameters are more sensitive to demyelination, such as the

bound pool fraction (f) in quantitative magnetization transfer imaging (qMTI), the radial diffusivity

in diffusion tensor imaging (DTI), and the myelin water fraction (MWF) in myelin water imaging

(MWI). A 3D ultrashort echo time (UTE) sequence within an appropriate water suppression con-

dition (Diff-UTE) is also considered for the direct visualization of the myelin semi-solid matrix

(Diff-UTE normalized signal; rSPF). In this paper, we aimed at assessing the sensitivities and cor-

relations of the parameters mentioned above to an immuno-histological study of theMyelin Basic

Protein (MBP) in a murine model of demyelination at 7 T. We demonstrated a high sensitivity

of the MRI metrics to demyelination, and strong Spearman correlations in the corpus callosum

between histology, macromolecular proton fraction (ρ > 0.87) and Diff-UTE signal (ρ > 0.76),

but moderate ones with radial diffusivity and MWF (|ρ| < 0.70).
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1 INTRODUCTION

Assessment of myelin content in the brain is essential for monitoring pathologies such as multiple sclerosis. Quantitative MRI methods such as dif-
fusion tensor imaging (DTI) 1, myelin water imaging (MWI) 2 and quantitative magnetization transfer imaging (qMTI) 3 are often employed in animal
and human studies to assess demyelination processes, although analyses can be affected by other factors such as inflammation and gliosis 4,5,6.
Radial diffusivity (λ⊥) in DTI is sensitive to myelin changes 7,8, in addition to other factors such as axon diameter and crossing fiber bundles 9. qMTI
probes macromolecular content by indirectly assessing exchanges between bound and free proton pools 10. The bound pool fraction (f), a metric
derived from qMT, is sensitive to myelin content, but is also influenced by sequence-dependent parameters 11. MWI evaluates the proton fraction
attributed to the trapped water between the myelin bilayers (MWF) which demonstrates shorter T2 values than intra/extra-axonal water 12. The

0Abbreviations:UTE, ultrashort echo time; qMTI, quantitative magnetization transfer imaging;MWI, myelin water imaging; DTI, diffusion tensor imaging;
MBP, Myelin Basic Protein; rSPF, relative Semi-solid Proton Fraction
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original technique (multi-spin-echo based) has been improved by compensating for the stimulated echo effects during the post-processing esti-
mation 13,14. Alternatively, multi-gradient echo MWI techniques were proposed to compensate for spin-echo based issues 15,16,17. Deoni et al. 18

proposed a quantification of the three main water pools using a more sophisticated biophysical model taking into account inter-compartments
exchanges. However, regardless of the model, the MWI techniques still suffer from a lack of consensus and precision 19,20,21. Additionally, a
preclinical study demonstrated the moderate specificity of the method in case of inflammation using a histological analysis 22.

All of these state of the art methods for myelin imaging and quantification exploit chemical or magnetic interactions of the water with the myelin
semi-solid part. Hence, the specificity and the selectivity of these techniques may vary with their respective models and hypotheses. Other related
issues may occur with various clinical MRI considerations (e.g. protocol duration or specific absorption rate).

Protons from themacromolecular matrix ofmyelin (lipids and proteins) in the central nervous system demonstrate rather shortT2 values because
of intense and unaveraged dipolar coupling in these solid-like structures 23. Several studies suggest that myelin can be directly visualized with
ultrashort echo time (UTE) sequences, hence potentially overcoming the lack of specificity of other indirect methods. Horch et al. 24 andWilhelm et
al. 25 spectroscopically explored myelinated tissue samples, demonstrating the presence of a wide distribution of sub-millisecond T2 values, as well
as a high correlation between the myelin concentration and corresponding integrated 1H spectra. UTE techniques remain somehow challenging as
they require an appropriate suppression of long-T2 components (T2 > 10 ms) in order to generate a selective short-T2 (T2 < 1 ms) contrast. Many
efforts were led in human studies using an Inversion-Recovery (IR) based UTE sequence, although in a single slice 2D fashion 26,27,28. Additionally,
the use of an adiabatic inversion pulse in the IR module for homogeneous long-T2 suppression purpose involves a short-T2 signal attenuation 29,30.
A 3D UTE sequence performing an appropriate water suppression condition through diffusion weighting (Diff-UTE) was previously proposed to
compensate for these limitations 31, providing high contrast in myelinated areas of an ex vivo healthy mouse brain 32.

Several MRI quantitative metrics extracted from the techniques mentioned above are often employed as biomarkers of demyelination, but their
respective specificities vary according to the investigated myelin disorder. In this study, we assess the specificity to demyelination of several quan-
titative MRI parameters at 7T by comparison to the fluorescence yield of a myelin marker (myelin basic protein —MBP) in normal and demyelinized
ex vivo mouse brains 4,5,33.

2 MATERIALS ANDMETHODS

2.1 Animal experiments
Animal studies were conducted in agreement with the European Council Directive 2010/63/EU and the French Guidelines for Animal Care from
the FrenchDepartment of Agriculture (Animal Rights Division), and approved by our institutional committee on ethics in animal research (CREMEAS
AL/41/48/02/13). Female C57BL/6 mice (8 healthy vs. 7 cuprizone-fed with a respective mean weight of 20.9±1.8 g and 16.4±1.2 g) were
sacrificed at 13 weeks of age. Demyelination was induced by cuprizone administration in standard chow (0.2%) for 5 consecutive weeks prior
to sacrifice. Mice were transcardially perfused (2.0 mL/min) with 4% paraformaldehyde (PFA; nominal duration: 10 min) under deep anesthesia,
preceded by heparinized physiological serum and followed by phosphate buffered saline solution (PBS) flushing (nominal durations: 4 min). Samples
were stored at 4◦C in PBS for at least 15 days for tissue stabilization. Perfusion durations were adapted to the respective weight of the mouse,
with a nominal duration of 10 min for 20 g. For scanning, fixed mouse heads were soaked into PFPE (Galden, Solvay) before scanning at room
temperature (≈ 20◦C).

2.2 Quantitative MRI protocols and analyses
All mice were scanned on a 7T preclinical scanner (Bruker BioSpec, Ettlingen, Germany), using a 23-mm volume Tx/Rx coil in order to provide an
homogeneous B1 field in the slab of interest. All 3D MRI datasets were acquired using the same axial volume with 0.750-mm thick slices.

2.2.1 DTI, qMTI and MWI quantitative protocols
DTI, qMTI and MWI protocols shared the same slice geometry (100x100x750 µm3).

The relevant parameters were: 1) DTI (Pulsed Gradient Spin-Echo): matrix size = 128x128x24, TR/TE = 750/27 ms, single-shell 7-directions
with a low b-value 18.9 s/mm2 and a high one of about 1000.0 s/mm2, δ/∆ = 6/14 ms (Tacq = 307 min); 2) MWI (Multi Spin-Echo): matrix
size = 128x128x24, TR/TE/ESP = 2000/10/10 ms (Tacq = 102 min); 3) qMTI (MT-SPGR): matrix size = 128x128x32, TR/TE = 70/3 ms,
frequency offsets = 1/2/4/6/10/30 kHz, 267-Hz wide gaussian saturation pulse (τsat = 10.25 ms) with Bpeak

1 = 5/10/20 µT, excitation flip
angle = 22◦, rBW = 50 kHz, 2 signal acquisitions for MT0 (Tacq = 215 min). Additionally, B1, B0 and T1 corrections were provided in the qMTI
protocol, using the following parameters: 4) B1 (Actual Flip angle Imaging (AFI) SPGR): matrix size = 48x48x48 (voxel size = 250x250x750 µm3),
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FIGURE 1 3D sub-volume positioning based on a high-resolution T2-weighted sagittal image (a), and corresponding ROIs selected in the somato-
sensory cortex (CTX) and corpus callosum (lCC andmCC) in a caudal (b) and rostral (c) MPB immuno-histological views, as well as on a representative
fractional anisotropy map (d-e). Mice heads were positioned so that the corpus callosumwas perpendicular to the slice plane in order to limit partial
volume effects.

TR1/TR2/TE = 15/60/2 ms and nominal flip angle = 60◦, rBW = 50 kHz, 4 signal acquisitions (Tacq = 11 min) 34; 5) B0 (dual-echo SPGR): matrix
size = 48x48x48 (voxel size = 250x250x750 µm3), TR/TE1/TE2 = 20/1.65/3.55 ms, flip angle = 30◦, rBW = 119 kHz, 2 signal acquisitions,
acquired prior to each Bpeak

1 series (Tacq = 24 min); 6) T1 (Variable Flip Angle SPGR): matrix size = 128x128x32 (voxel size = 100x100x750 µm3),
TR/TE = 100/2.7 ms, flip angles = 10/25/40/80◦, 3 signal acquisitions (Tacq = 82 min).

The total acquisition duration amounted to 12 h 37 min. In SPGR-like sequences, a strong gradient spoiling was systematically included to
crush the remaining transverse magnetization through diffusion effects, along with an appropriate RF spoiling (SPGR: φ0 = 117◦ 35; AFI-SPGR:
φ0 = 129.3◦ using Nehrke’s spoiling scheme 36).
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FIGURE 2 Diff-UTE pulse sequence. The gradients inducing diffusion weighting in Diff-UTE correspond respectively to the short one after the
preparation pulse (relative area Gδ), and to the long one after the readout gradients refocusing (relative area Gδ′).

2.2.2 Diff-UTE protocol
The Diff-UTE sequence (depicted in Figure 2 ) was previously proposed as a 3D-UTE method allowing an efficient long-T2 suppression condition
in biological tissues while maximizing the signal of a short-T2 component 32,31. This hard-pulse prepared sequence takes advantage of the particular
magnetization steady-state condition to generate a signal cancellation of a diffusive and long-relaxing component through a diffusion weighting
induced by spoiling gradients. After generation of the optimized parameters maximizing the short-T2 component through the Bloch equations
given priors about the myelin relaxing times (T1/T2 ≈ 230/0.1 ms), the areas of the spoiling gradients are tuned to provide an appropriate signal
nulling of the diffusive long-T2 component of the white matter of an ex vivo healthy mouse (T1/T2 ≈ 1300/67 ms using respectively an inversion-
recovery spin-echo sequence and a multi-spin echo sequence, and ADC ≈ 0.328 µm2/ms using a pulse gradient spin echo sequence with diffusion
weighting along the same spoiling direction in Diff-UTE). Previous studies demonstrated the efficiency of signal cancellation through this process 32.

In this sequence, the following optimized parameters were used: matrix size = 84x84x84 (21938 radial projections, 50 points/spoke), voxel
size = 152x152x750 µm3, TR1/TR2 = 5/25 ms, τ1/τ2 = 1.0/0.01 ms, α1/α2 = 90/50◦, Gδ = 198.9 mT/m.ms, RF phase increment φ0 = 0◦,
receiver bandwidth (rBW) = 150 kHz, 12 signal acquisitions (Tacq = 136 min). The Diff-UTE signal was normalized to that estimated in a piece of
rubber (T1/T∗2 ≈ 182/0.3 ms at 3 T 27) spatially localized in the same rostral position throughout the scans. The signals ratio is referred hereafter
to as relative semi-solid proton fraction (rSPF).

2.2.3 MR quantitative image analysis
Before parameters estimations, and to compensate for potential B0-drift effects inducing FOV shifting, all volumes were rigidly registered onto
the lowest b-value image from the DTI protocol using the Advanced Normalization Tools (ANTS) registration package 37,38, followed by a denoising
step using Block-matching and 3D filtering (BM4D) 39. Due to its unconventional contrast, the automatic registration of the Diff-UTE volume could
not be performed. Hence, it was manually achieved using the registration tool from ITK-Snap onto the highly-contrasted Fractional Anisotropy (FA)
map from DTI.

For quantitative purpose, B0 maps were estimated using the manufacturer algorithm in PV6.0.1, and all other maps were reconstructed using a
home-made pipeline, implemented on Matlab 2016a (The MathWorks, Inc., Natick, MA, USA). B1 map was estimated using the AFI method 34. In
DTI, FA and λ⊥ were estimated using a constrained non-linear least-square fitting process with a Cholesky decomposition correction 4. In qMTI, f

was estimated using Sled and Pike’s rectangular pulse (RP) model implemented in the qMTLab toolbox 40, with equal relaxation rates between the
restricted and free pools R1,r = R1,f . B1, B0 and T1 values were provided, and the transverse relaxation constant of the restricted pool was fixed
to 10 µs for the entire dataset as it demonstrates a narrow range in tissues 41,4. MWF was estimated based on a home-made Non-Negative Least
Square (NNLS) framework 2, taking account of potential stimulated echoes effects 13. The T2 spectra comprised 40 T2 values logarithmically spaced
from 15 to 1500 ms. To overcome the ill-conditioned issues of this inverse problem, a Tikhonov regularization was performed (rNNLS), and results
were further smoothed by introducing a spatial prior (srNNLS) in the optimization process based on the spectra estimated in the rNNLS maps 42.
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For MWF maps computation, the cutoff of the estimated spectra was empirically set to 35 ms based on prior analyses in regions of interest in the
corpus callosum of the healthy mice.

2.2.4 Immuno-histological MBP staining and fluorescence quantification
After ex vivo imaging, mice brains were extracted and soaked into a 20% w/v sucrose solution between 24 and 48 hours, prior to freezing and
storage at -20◦C. Following overnight thawing at 4◦C, 60-µm coronal sections were collected within a 3 mm-thick volume starting at the optic
chiasm. The size of the histological initial block was chosen to encompass the slices used for MRI analyses. Sections were then soaked into 20%
sucrose solution prior to freezing and storing at −20◦C.

After thawing, two sections were selected for MPB staining. The first section was localized 1 mm rostral to the bregma, the second one 1 mm
caudal to the bregma, in order to account for the different susceptibility to demyelination along the corpus callosum 43,44. The following staining
protocol was used: i) washing in PBS at 4◦C for 12 h; ii) washing in PBS-Triton (0.1%) at room temperature for 15 min; iii) incubation with a home-
made mouse antibody anti-MBP at room temperature for 24 h under agitation; iv) washing in PBS-Triton (0.1%) at room temperature for 15 min; v)
incubation with an anti-mouse Alexa-594 antibody (1/500; Thermo Fisher Scientific, Waltham, MA) at room temperature for 24 h under agitation;
vi) washing in PBS-Triton (0.1%) at room temperature for 15 min; vii) washing in PBS at room temperature for 15 min.

Sections were then mounted on glass slides (Dako; Agilent Technologies, Santa Clara, CA) and examined using an epifluorescence microscope
(DP70, magnification x2; Olympus, Tokyo, Japan). Photographs were taken under constant gain and exposure duration (1.1 s) parameters. For
quantitative, theMean Fluorescent Intensities (MFI) of the red channel were estimated from the same regions of interest (ROI) as theMRI ones. The
mean background intensity estimated from a ROI far from tissues was subtracted from the signal to compensate for any non-signal contribution.

2.2.5 Regions of interest selection
The ROIs were drawn twice: in histology over the MPB views, and in MRI over the high-contrast fractional anisotropy map estimated in DTI. To
limit potential user-dependent selection of out-of-ROI voxels during delineation, parameter maps were linearly interpolated onto a 384x384x3
grid. The regions of interest were drawn by one of the authors (MCA), developmental pathologist, expert in mouse histology, specialized in brain
histology, and comprised the corpus callosum (medial (mCC) and lateral (lCC)) as well as the somato-sensory cortex (CTX; layer 2/3 to 6a) according
to the Allen Mouse Brain Atlas (available from: http://atlas.brain-map.org/), as shown in Figure 1 . Representative rSPF and fractional anisotropy
views with overlayed ROIs from four mice from each group are given in Figure S2 in Supporting Information.

2.2.6 Statistics
A ROI-based analysis was made, assuming that these regions are homogeneous in order to allow for a group comparison. Means and standard
deviations in the averaged ROIs from the three slices were used to assess the sensitivity of each parameter. A Shapiro-Wilk test was performed
on each group and each parameter to test for the normality of the distributions. The mean difference between the two groups of each parameter
were tested using either a bilateral Student or a bilateral Welsh test, depending on the result of a Fisher test. Additionally, Spearman correlations in
both corpus callosum subregions as well as in the cortex were estimated betweenMRI and histological metrics. This analysis involved three distinct
groups: joint control and cuprizone groups, and separated control and cuprizone groups. Adjusted p-values of the correlations were computed
using Holm-Bonferroni’s correction in each group.

3 RESULTS

Representative quantitative maps selected from amouse in each group are shown in Figure 3 . The impact of the cuprizone diet on corpus callosum
myelination is straightforward as shown by the decrease of the MBP fluorescent signal in treated mice.

Numerical mean and sensitivity values of the two groups computed from the various regions are presented in Table 1 . Every metric followed
a normal distribution according to the Shapiro-Wilk test (p > 0.05), and showed systematically a significant mean difference between the two
groups in the corpus callosum regions (p < 0.05). rSPF, λ⊥ andMWFwere the only scores that did not show a significant mean difference between
the two groups in the cortical region. A mean difference was estimated between mCC and lCC in both groups for f , and only in the Control group
for rSPF and λ⊥. MRI metrics demonstrated a fairly good sensitivity to demyelination with an absolute difference higher than 40% in the corpus
callosum, while MBP fluorescent intensity decreased by 23.6% and 30.1% in the lCC and mCC, respectively. In contrast, the difference was lower
in the cortical regions with an absolute difference lower than 18.5% for rSPF, f , and λ⊥, while MWF and MBP scores were higher than 31.8%.
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FIGURE 3 Representative quantitative maps of a Control (top) and Cuprizone (bottom) mouse. Scales are given between each map.

TABLE 1 Summary of MRI and histological metrics (mean ± standard deviation) in the selected regions of interest, as well as the respective
sensitivity (percent difference of the mean of a metric) induced by the cuprizone diet. All metrics follow a normal distribution according to the
Shapiro-Wilk test (p > 0.05).

Medial corpus callosum (mCC) Lateral corpus callosum (lCC)

Metric Control Cuprizone Sensitivity Control Cuprizone Sensitivity

rSPF 0.052 ± 0.008χ 0.027 ± 0.006 -48.7% 0.061 ± 0.010 0.033 ± 0.011 -46.7%
f 0.081 ± 0.008χ 0.041 ± 0.006χ -49.2% 0.092 ± 0.007 0.055 ± 0.010 -40.6%
λ⊥ (µm2/ms) 0.140 ± 0.014α,χ 0.227 ± 0.033 +62.5% 0.157 ± 0.012 0.240 ± 0.023 +53.9%
MWF (%) 12.72 ± 3.09 5.20 ± 2.86 -59.1% 14.55 ± 2.09 5.83 ± 2.94 -60.3%
MBP (MFI) 186.8 ± 4.1α 131.1 ± 33.7 -30.1% 180.3 ± 8.6α 138.1 ± 25.0 -23.6%

Cortex (CTX)

Metric Control Cuprizone Sensitivity

rSPF 0.050 ± 0.009† 0.042 ± 0.011 -15.2%
f 0.069 ± 0.005 0.056 ± 0.003 -18.5%
λ⊥ (µm2/ms) 0.288 ± 0.013† 0.308 ± 0.024 +7.3%
MWF (%) 2.32 ± 1.13† 1.58 ± 1.21 -31.8%
MBP (MFI) 93.7 ± 9.5 45.5 ± 9.6 -52.1%

α: unequal variances between Control and Cuprizone groups (Fisher test; p < 0.05)
χ: significant mean difference between lCC and mCC within the same group (Student or Welsh test; p < 0.05)
†: non-significant mean difference between both groups (Student test; p > 0.05)

Spearman correlations between MRI metrics and MBP for each regions are shown in Table 2 , along with the corresponding scatter plots in
Figure 4 . Themacromolecular proton fraction (MPF), MWF and rSPF demonstrated significant correlations to demyelination assessed by immuno-
histology in both corpus callosum subregions for the joint group (|ρ| > 0.68), while radial diffusivity was found to be significant exclusively in
the medial subregion. In the cortex, MPF was the sole metric that presented a significant correlation (ρ = 0.89) in the joint group. No metric
demonstrated a significant correlation to myelination for both separated groups.

4 DISCUSSION

The objective of this study was to verify whether the variation of quantitative MRI metrics following demyelination at the level of large structures
(i.e., the whole corpus callosum and large cortical areas) mirrored the histological demyelination. Quantitative parameters from various protocols
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TABLE 2 Summary of the Spearman correlations for rSPF, f , λ⊥ and MWF versus MBP in the corpus callosum subregions and in the cortex.
Spearman correlation coefficients are reported as {CTL ∪ CPZ — CTL/CPZ}.

MBP vs. rSPF f λ⊥ MWF
Medial CC 0.86∗ — 0.43/0.50 0.87∗ — 0.36/0.64 -0.70∗ — 0.38/-0.07 0.68∗ — -0.62/0.21
Lateral CC 0.76∗ — 0.17/0.04 0.91∗ — 0.55/0.82 -0.63 — 0.40/0.14 0.69∗ — -0.05/-0.07

CTX 0.52 — 0.69/-0.03 0.89∗ — 0.86/0.25 -0.21 — 0.45/0.79 0.20 — 0.12/-0.64

∗: significant correlations (pcorr < 0.05)

FIGURE 4 Scatter plots of MBP mean fluorescent intensity versus rSPF (first column), f (second column), MWF (third column) and λ⊥ (fourth
column) in the medial corpus callosum (top row), lateral corpus callosum (middle row) and cortex (bottom row). Control and cuprizone data are
depicted in filled and open circles, respectively. Spearman correlation coefficients (ρ) are reported from the joined groups, where "∗" denotes
significant scores.

were investigated ex vivo on mice brains, using two groups of mice, one healthy and one demyelinated by the myelin toxicant cuprizone. We
demonstrated expected high sensitivities to demyelination of various quantitative MRI metrics, including the macromolecular proton fraction,
myelin water fraction, relative semi-solid proton fraction and radial diffusivity. The results were compared to the mean fluorescence intensity of
the Myelin Basic Protein following immuno-staining of histological sections. The rSPF and MPF showed to be highly sensitive to demyelination,
and shared a strong affinity to the MBP MFI, which is consistent with the biophysical model 24,25. Among the investigated MRI metrics and in
terms of demyelination process assessed byMBP immuno-staining, theMPF remains the most indicative metric, followed by rSPF. MWF and radial
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diffusivity, respective markers of myelin sheath and axonal integrity, showed reduced significance in correlations; this may however be attributed
to the histology marker, highly specific to the myelin macromolecular content.

The results regarding the high correlations of rSPF andMPF to theMBPMFI support the hypothesis of a direct acquisition of signals arising from
the semi-solid matrix of myelinin UTE, and also further validate the quantitative magnetization transfer model since proteins constitute a major
media for the phenomenon. Nonetheless, the lower correlations in the cortex of rSPF versus f and MBP may be attributed to a different signal
source between these modalities: both techniques rely upon the presence of a short-T2 pool, although the respective contrasts are generated
differently. The qMT method requires a media for the magnetization transfer mechanisms (e.g. labile protons and solvation layer typically found in
proteins), whereas UTE signals supposedly arise from the entire available 1H spectrum (i.e. static and labile protons) 24,25. Under the assumption of a
unique T2 value of about 10 µs regarding the restricted pool in qMTI, the Diff-UTE sequence may only acquire a minor part of the macromolecular
content responsible for the magnetization transfer phenomenon under our sequence parameters (TE/τ2 = 10/10 µs). Consequently, both metrics
could be complementary since the majority of the Diff-UTE contrast most likely takes its origin in the more slowly relaxing macromolecular spectra
(T2 ∈ [10; 1000] µs).

The signal normalization in Diff-UTE assumes an invariant T1 value of the biological structures of interest although these structures might be
changed by the cuprizone diet, implying T1 modifications of the semi-solid part of the myelin. A proton density analysis would provide a more
precise and absolute measurement of the actual state of the myelin structure; unfortunately, T1 relaxometry experiments of short-T2 components
remain challenging and require further adjustments as well as an increased acquisition time.

In the separated groups (either Control or Cuprizone), no significant correlation was found betweenMRI and histologymetrics, nor betweenMRI
metrics. This observation may stem from the limited amount of samples in each group. This also emphasizes the necessity of p-value correction in
such analyses since high scores with counterintuitive polarity (e.g. ρ = −0.86 between rSPF and MPF in the Cortex in the Cuprizone group; see
Table T1 in SI) are most likely spurious.

In this study, the preferential SNR situation (≈ 100 on MT0 prior to the denoising step) allowed to estimate the qMT parameters through the
Sled and Pike’s RP model. Among the similar investigations at 7 T over a murine model involving a group of mice demyelinated by a cuprizone
diet, Thiessen et al. 4 and Turati et al. 33 employed Ramani’s model for parametric estimations 45. However, it has been demonstrated by Cercignani
et al. 11 that this method leads to an underestimation of f , contrary to Sled and Pike’s RP model, in spite of being more robust in case of a low
SNR. In addition, Ramani’s model is sensitive to both the RF duty cycle and the excitation flip angle introducing a bias due to T1-weighting. Also,
it should be noticed that in both studies, no account of potential B1 deviations was made, inherently biasing the resulting f in case of B1 field
inhomogeneities or miscalibration. Nonetheless, the mean f value estimated in the corpus callosum of the control group in our study was still lower
than the nominal value of about 0.10 found in healthy mice and humans 4,46, and yet similar to those of Ou et al. 47 (f ≈ 0.09) who employed a
selective inversion recovery fast-spin-echo sequence. Khodanovich et al. 5 estimated higher values in healthy mice (f ≈ 0.13 in the CC) at 11.7 T
using Yarnykh’s single-point f mapping 41,48.

Myelin water imaging remains a standard method for white matter monitoring 2,49,50. However, tissue fixation protocols deeply modify the
multi-compartmental behavior of cerebral tissues, leading to an observable mono-compartmentalization of water T2 distribution in white matter,
as reported by Thiessen et al. 4 who employed a 0.5%-glutaraldehyde/2%-PFA fixation. Wood et al. 22 estimated MWF using a fixation protocol
similar to ours, and by means of the mcDESPOT model 18. To our knowledge, the present preclinical study is the first one performing a MWF
NNLS-based analysis using a multi spin-echo sequence in an ex vivo cuprizone model of demyelination. MWF values are consistent with that
found in literature in healthy human white matter 51,52, but also remains lower than those estimated in mcDESPOT 22 (MWF≈ 20%). Nonetheless,
the difference between these estimations may not only arise from the arbitrary MWF-T2 cutoff in the NNLS analysis, but also from the absence
of consideration of chemical exchange between the different compartments which is an important dynamic aspect of water molecules evolving
within the microstructure 22,20.

To compensate for a lack of signal-to-noise ratio (SNR) in brain tissues in Diff-UTE, an anisotropic voxel geometry was preferred in the slice
direction. In addition, themanufacturer native 3D-UTE sequence does not allow for any field of view re-positioning, and heads placement remained
challenging for reproducibility purpose since it was therefore made by mechanical shifting of the cell inside the bore. Both features may lead to
increased partial volume effects in regions of interest, especially in the thin white matter area of the mouse brain, although the linear interpolation
prior to ROI delineations aimed at diminishing such effects. The use of a 23-mm volume transceiver coil was initially chosen to provide an homo-
geneous B1 profile in the slab of interest, as the Diff-UTE suppression scheme is sensitive to such inhomogeneities (see Supporting Information).
The use of more sensitive signal reception systems in pair with a transmitter volume coil may represents an alternative to address these issues.

In spite of a high correlation with to macromolecular content metrics (MBP and f; see Table T1 in SI) in the corpus callosum, rSPF correlates
moderately with these in the cortex. As can be noticed in Figure 3 on the rSPF maps, a dominant signal arises from the skull. Hence, estimations
from ROIs placed in the cortex may suffer from contaminations inherent to Gibbs artifacts and blurry effects caused by the relatively low receiver
bandwidth in Diff-UTE and short T2 values in the cortical bone.
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In this study, we made use of the Diff-UTE sequence for a first assessment of the sensitivity of a UTE sequence to demyelination in a preclin-
ical environment. This sequence was preferred to the commonly-used IR-UTE 26 since it allows for higher short-T2 signal generation 31. From a
demyelination point of view, the rSPF scores demonstrated an interesting sensitivity, as well as high correlations to macromolecular content met-
rics. However, as any long-T2 suppressed UTE method, the sequence requires optimum hardware capabilities (e.g. RF peak power for short-T2

signal maximization), but also strong gradients for diffusivity purpose and a reasonable B+
1 profile (see Figure S1 in Supporting Information): these

constraints may represent an issue toward the applicability over standard high-field clinical systems. Although, UTE acquisitions on such systems
may be highly beneficial for different aspects. For example, the employed radial acquisition pattern represents a permissive feature for sequence
acceleration (undersampling and sparse reconstructions 53,54), especially in high signal-to-noise ratio conditions with increased voxel sizes. It is also
advantageous for its motion insensitivity intrinsic ability 55.

The precise spectrum composition in thewhitematter following a cuprizone demyelination remains to be established aswhitemattermicrostruc-
ture following demyelination is changed. The changes comprise patchy absence of myelin sheath, presence of intra/extracellular myelin debris,
increased number and size of reactive cells (microglia, astrocytes) and oligodendrocyte progenitors proliferation 56. These alterations have an impact
over dipolar interactions experienced by protons carried by semi-solid structures, hence lowering the mechanisms that mainly influence the short-
T2 phenomenon. The T2-spectrum of the semi-solid part of myelin will suffer from such structural modifications, and short relaxing components
may shift toward higher values. However, estimating the actual state of this spectrum remains complex in UTE sequences due to the low SNR in
myelinated structures and other filtering and weighing effects (e.g. low TR and T2 relaxation during excitation). In order to reduce such undesirable
effects, one may for example increase the repetition time, although leading to prohibitively long scan times. A precise exploration of the biological
content using an extended panel of biomarkers such as additional MRI quantitative parameters, electron microscopy and immuno-histology for
the different cell types and oligodendrocytes differentiation stages 57,58 will allow for a better characterization of the white matter microstructure
and myelin state.

Leprince et al. 59 demonstrated variations of a mono-component T2 as a function of the post-fixation conservation duration. Chen et al. 50

observed amyelin sheath loosening and cell shrinkage, simultaneously modifying the respective size of the various water compartments, and hence
MWF. Sheath loosening most likely leads to a degraded mechanism responsible for T2 shortening of trapped water in myelin sheaths. As a result,
the T2 distribution of myelin water may shift and distort depending on the type of employed fixation, and the optimal T2 cutoff in NNLS-analyses
has to be modulated as such. The inability of Thiessen et al. 4 to perform MWI is most likely due to such phenomena. Further investigations have
yet to be led in order to determine the optimal T2-cutoff as well as a robust fixation protocol for ex vivo myelin imaging.

In the present study, a single protein was marked for myelin quantification by histology, showing a high correlation with putative MRI markers
indicative of macromolecular content (f and rSPF). Ideally, myelin quantification should be confronted to electron microscopy. Unfortunately, the
fixation protocol imposes the use of glutaraldehyde and PFA, leading to a T2 shortening andmono-compartmentalization in soft tissues, preventing
MWI analyses 4. In addition, it has been shown that Diff-UTE efficiency for long-T2 signal suppression is reduced if the diffusive species were to
present too short T2 values 31.

The objective of the histology study was to verify whether the variation of MRI parameters following demyelination at the level of large struc-
tures (e.g. the whole corpus callosum or large cortical areas) mirrored the histological demyelination. Histology is a versatile technique as its in-plane
resolution streches from nanometer to millimeter, whether its in-slice resolution may go from a few tens of nanometers to a few hundreds microm-
eters. In this study, we used low in-slice MRI partition; accordingly, histological technique was adapted to favor high fluorescence yield by the use
of thick histological sections. Other histological techniques can be used for myelin quantification, namely myelin scoring following LFB staining 5,60.
Although easy to perform, the scoring is highly subjective and dependent upon the observer. Moreover, tissue processing for LFB staining requires
prolonged fixation in order to perform paraffin embedding and 5 µm-thick tissue sectioning. On one hand, prolonged fixation and technical pro-
cedure for paraffin embedding (i.e. dehydration) distort protein architecture and thus the relevance of histology toward quantitative in vivo MRI;
on the other hand, 5 µm-thick tissue sections are poor references for volumes even if their number is multiplied. In order to diminish these biases,
short fixation times were used followed by residual free fixative removal with isotonic solution. Sectioning were performed with a vibratome prior
to immuno-staining, a method which does not require tissue dehydration and allows sectioning between 40 and 200 µm. 5 weeks 0.2% cuprizone
administration induces global, but not total corpus callosum demyelination: on coronal sections, patches of total demyelination are intermingled
with areas displaying intact myelin 43. Moreover, caudal and rostral corpus callosum are not equally sensitive to cuprizone demyelination which
induces a rostro-caudal demyelination gradient 44 at 5 weeks. In this last study, authors considered ROIs of 200 µm in length along the corpus cal-
losum and showed that within the millimeter preceding bregma, the demyelination is lower than in the second millimeter following bregma. The
authors examined, when available, two to three 20 µm-thick sections (thus representing 40 to 60 µm) in 5 demyelinated mice and reported a mean
demyelination score. In our study, we examined one 60 µm-thick rostral section within the 0.5 millimeters anterior to bregma and one 60 µm-thick
caudal section within the second millimeter posterior to bregma, thus placing our histological references according to published references.

The parameters sensitivity analysis between the two groups assesses the mean difference of a metric following demyelination, assuming homo-
geneous groups. Unfortunately, estimations demonstrated a dispersion depending on the brain tissue state prior to acquisitions (e.g. conservation
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and myelin loss) as well as parametric estimations. Thus, such analysis is moderately informative about the superiority of a metric over another
to quantify myelin changes as a function of demyelination. Increasing the number of sample examined and minimizing intra-group experimental
variability should allow for more precise interpretations.

In this study, the analyses were performed by comparing the mean values of voxels comprised within structures of interest in each mouse. In
spite of particular attentions regarding ROI delineations, inter-individual variabilities may propagate and bias estimations. To reduce these issues, an
atlas could be constituted in order to perform a more rigorous voxel-based analysis 61,37. However in our case, anatomical variabilities (e.g. variable
ventricles dilation in the cuprizone mice) and high voxels anisotropy make atlases constitution challenging. Furthermore, the particular contrast
generated in Diff-UTE prevents from automatic registration onto soft-tissues contrasted images.

Due to the multiple quantitative protocols resulting in a prohibitively long total acquisition duration, ex vivo experiments were preferred. Tissue
states and experimental conditions (e.g. sample temperature, tissue permeability to free water and ratio of the various intra/extracellular spaces)
were very different from in vivo conditions 62,63,64. Potential variabilities in the statistics based on quantitative metrics may therefore occur in an
in vivo study. Nonetheless, the present study shows encouraging results and represents a first step toward in vivo validation using an updated
Diff-UTE protocol.

5 CONCLUSIONS

We have assessed the sensitivities and correlations of various quantitative MRI parameters to histological immuno-marking of the MBP in ex vivo
healthy and demyelinated mice brains. The macromolecular proton fraction from qMTI presented the highest correlation in the corpus callosum,
followed by the rSPF from Diff-UTE. Alternatively, radial diffusivity from DTI and myelin water fraction fromMWI demonstrated high sensitivities,
but moderate correlations, which is somewhat inherent to the underlying signal source from these two metrics. This emphasizes the need of
comprehensive quantitative protocols to better characterize complex biological tissues from the central nervous system.
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SUPPORTING INFORMATION

The following supporting information is available as part of the online article:
Figure S1. Simulated long-T2 signals (a) as a function of B1 deviation and preparation flip angle α1 for optimized α2, and (b) as a function of
B1 deviation and readout flip angle α2 for α1 = 90◦ (the white dashed line corresponding to the optimal α2 for this parameter set). Simulation
parameters: long relaxing component TL

1/TL
2 = 1000/100 ms and D = 1.00 µm2/ms, short relaxing component TS

1/TS
2 = 300/0.315 ms, τ1/τ2 =

1/0.01ms,TR1/TR2 = 5/25ms. Signal nulling occurrences (ML
z/M0 = SL < 0.05%M0) are depicted in the blue bands. Simulationswere performed

using the Extended Phase Graph algorithm.
Figure S2. Exemplary fractional anisotropy and rSPF maps of the three axial views from four mice from the Control (CTL; top) and Cuprizone (CPZ;
bottom) groups.
Table T1. Summary of the Spearman correlations between each MRI metrics rSPF, f , λ⊥ and MWF in the corpus callosum subregions and in the
cortex. Spearman correlation coefficients are reported as {CTL ∪ CPZ — CTL/CPZ}
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