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LEARNING CONSTRAINED DYNAMICAL
EMBEDDINGS FOR GEOPHYSICAL DYNAMICS

Said Ouala1, Steven L. Brunton2, Duong Nguyen1, Lucas Drumetz1 and Ronan Fablet1

Abstract—In this work, we investigate the implementa-
tion of physical constraints for the regularization of linear
quadratic dynamical representations of partially observed
systems. We focus on energy preserving quadratic terms
and propose to enforce this constraint within the learning
criterion of the models. We further demonstrate on the
Lorenz 63 system that the generalization performance
is significantly improved to states beyond the attractor
spanned by the observation data when this constraint is
satisfied.

I. INTRODUCTION

Recent advances in data driven modeling, especially
in optimization techniques, machine learning and neural
networks address the learning of data-driven represen-
tations of dynamical systems as relevant alternatives to
model driven strategies for applications ranging from
system identification [1], forecasting [2], reconstruction
[3] and control [4]. When considering observation data
issued from an a priori complex field as encountered in
ocean, atmosphere and climate science, these powerful
tools should be considered with care to account for the
proper specifications of the underlying dynamics. For
instance, when considering the data-driven identifica-
tion of an Ordinary Differential Equation (ODE) from
a set of observations xt ∈ Rn, where t ∈ {t0, ..., T}
is the temporal sampling and n the dimension of our
observation space, the first question to answer is the
existence (or not) of an appropriate ODE mapping in
the observation space. For fully-observed systems, i.e.
when observed variables xt are governed by an ODE
or are related to some underlying states zt that are
governed by an ODE according to a diffeomorphic
mapping, recent advances [1], [5], [6] have shown
that one can identify the governing equations of the
dynamics of z from a representative dataset of obser-
vations {xti}i. However, in the more general cases, it
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is more likely that our observations depend (possibly
in a non-linear fashion) on unobserved latent variables
that make the underlying dynamical model evolve in a
higher dimensional space Rs with s > n. Under the
assumption that the relationship between the observed
and unobserved variables can not be decoupled, it is
rigorously impossible to find an appropriate one-to-
one mapping governed by an ODE in the observation
space Rn. In the latter case, classical approaches do not
apply since no ODE or, more generally, no one-to-one
mapping defined in the observation space can represent
the time evolution of the observations.

In this context, Takens’s theorem states the condi-
tions under which a delay embedding representation
guarantees the existence of governing equations in the
embedded space [7]. This technique was initially used
as a geometrical reconstruction technique of the higher
dimensional unobserved limit-cycle. The derivation of
a dynamical system from such a representation, on
the other hand, encountered large disparities since no
explicit relationships between the defined phase space
and an ODE formulation have been clearly identified.

The identification of an embedding of the observa-
tions parametrized by an ODE was proposed in [8] and
appears to be an interesting trade-off between recon-
structing the phase space of the unseen dynamical sys-
tem and forecasting the observations through the para-
metric ODE. However, this formulation is very limited
when considering generalization issues above the limit-
cycle described by the observations. From a topological
point of view, and without loss of generality, one can
expect the ODE representation to i) be bounded, ii) only
include the limit-cycle describing the observations in a
higher dimensional space with a reasonable attracting
region. Unfortunately, those characteristics relate to
some physical constraints that define trapping regions
of limit-cycles. The optimization criterion as proposed
in [8] does not guarantee those elementary constraints
which severely affects the generalization quality of the
models. In this work, we propose a new implementation
of the learning algorithm that allows to enforce prior
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knowledge such as physical constraints. We focus on
energy preserving non-linearities and illustrate on a
toy model whose the long term boundedness and the
attracting region of the revealed limit cycle are highly
influenced when this type of constraints are satisfied.
Regarding the data driven identification of climate and
ocean dynamics, we believe that this work provides
an initial playground for learning consistent models in
terms of long term forecast through the implementation
of physical constraints issued from prior knowledge of
the conservation laws governing the dynamics.

This paper is organized as follows. Section II re-
views the Neural Embedding for Dynamical Systems
technique as proposed in [8]. Section III introduces
the new optimization criterion of the model which
includes energy preservation constraints. The numerical
experiments are presented in Section IV. We further
discuss our contributions in section V.

II. NEURAL EMBEDDING OF DYNAMICAL SYSTEMS

This section summaries the Neural Embedding of
Dynamical Systems —NbedDyn— proposed in [8].

Let us Consider a dynamical system governed by and
autonomous ODE:

żt = fH(zt) (1)

For most applications, The true state zt ∈ Rs of the
system is unknown and we are only provided a series
of observations {xt}:

xt = h(zt) (2)

Where h : Rs → Rn is an observation operator
that does not satisfy the conditions [9] under which
the predictable deterministic dynamics expressed in the
space of z is still deterministic in the observation space.

The NbedDyn technique tackles this problem by
searching an augmented latent space, where the latent
states are governed by diffeomorphic flows and can be
mapped to the observations xt. For any given operator
h of a deterministic dynamical system, Takens’s the-
orem [7] guarantees that such augmented space exists.
However, instead of using a delay embedding, NbedDyn
defines a dE-dimensional augmented latent space with
states (dE > n) Xt ∈ RdE as follows:

Xt
T = [xTt , y

T
t ] (3)

where yt ∈ RdE−n presents the information of the
unobserved components of the true latent state zt.

The corresponding dynamics and observation opera-
tor are defined as:

Ẋt = fθ(Xt) (4)

xt = G(Xt) (5)

where the dynamical operator fθ belongs to a family of
operators parametrized by a parameter vector θ. Using
an integration scheme, we can associate fθ with an one-
step-ahead diffeomorphic mapping:

Φθ,t(Xt−1) = Xt−1 +

∫ t

t−1
fθ(Xt−1) (6)

From Eqs. (4), (5) and (6), we have a state space
model: {

Xt = Φθ,t(Xt−1)
xt = G(Xt)

(7)

Given an observation time series {x0, . . . ,xT }, the
Neural Embedding of Dynamical Systems model min-
imizes the forecasting error of the observations with
respect to the model parameters and the augmented
states as follow

θ̂,y1:T = arg min
θ

min
{yt}t

T∑
t=1

‖xt −G (Φθ,t (Xt−1))) ‖2

+ λ‖Xt − Φθ,t(Xt−1)‖2
(8)

with λ a trade-off parameter.
The ODE operator fθ is stated as a linear quadratic

neural network and the corresponding flow map Φθ,t

is a neural network based on a numerical integration
scheme formulation (typically a 4th-order Runge-Kutta
scheme).

III. CONSTRAINED DYNAMICAL EMBEDDING

The dynamical model fθ is expressed as a linear
quadratic model. This particular architecture is suitable
for the identification of reduced order models of incom-
pressible flows as it can be seen as a low dimensional
approximation of the Navier-Stokes equation. Formally,
we can formulate the operator fθ as follow

Ẋi = ci +

dE∑
j=1

li,jXj +

dE∑
j=1

dE∑
k=1

bi,j,kXjXk (9)

with ci, li,j , bi,j,k are the trainable coefficients of the
dynamical operator (θ), the time index t of X is omitted
for simplicity.

Regarding the data-driven identification of the pa-
rameters θ, the minimization of the cost function in (8)
does not guarantee fθ to satisfy elementary conservation
constraints present in the true underlying system which
severely affects the generalization performance of the
model. This is a classical issue in most data driven
representations. If the provided data is not big enough
for the model to learn these constraints one should
explicitly enforce them within the optimization criterion
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of the model. Here, we will focus on energy preserv-
ing non-linearities as this constraint is known to help
long-term boundness of reduced order models of non-
compressible flow [10], however, the general framework
proposed here applies to any prior knowledge (known
coefficients, existing symmetries ...etc.) on this specific
parametrization of the network fθ.

Let us consider the evolution of the fluctuation energy
K = 1

2

∑dE
i=1X

2
i of the system described by fθ. The

time derivative of this quantity can be written as:

K̇ = [∇XK]T Ẋ =

dE∑
i=1

Xifθ,i

=

dE∑
i=1

ciXi +

dE∑
i,j=1

li,jXiXj +

dE∑
i,j,k=1

bi,j,kXiXjXk

(10)

An energy preserving quadratic non linearity satisfies
the constraint:

dE∑
i,j,k=1

bi,j,kXiXjXk = 0 (11)

i.e. the contribution of the quadratic terms of fθ to the
fluctuation energy should sum up to zero. In this case,
the quadratic coefficients are responsible for redistribut-
ing the perturbation energy in directions of positive
and negative energy growth that are defined by the
eigenvalues of the matrix (li,j), i, j = 1, ..., dE [11]. It
can be shown that for constraint (11) to hold, the sums
of the quadratic coefficients over index permutations
must be zero:

bi,j,k + bi,k,j + bj,i,k + bj,k,i + bk,i,j + bk,j,i = 0,

i, j, k = 1, ..., dE
(12)

From the above definition of the energy-preserving
non-linearity and the corresponding energy function,
one can think of two distinct ways to enforce this
constraint on the approximate model, either through
enforcing the constraint described in (12) as a penalty
term over the quadratic coefficients in the loss function
(8) or penalizing the quadratic energy expressed by
(11). The latter implementation of the constraint is
avoided in this work since the loss function is optimized
with respect to both the parameters of the model and
the latent states. This will result in an expression (11)
that is not necessarily minimized due to the constraint
over the quadratic weights (12) as the latent states
in (11) are also trained to minimize the quadratic
energy. This represents an issue in the sense that our
energy preserving constraint will depend on the latent
states and thus, for large deviations from the spanned

manifold, this constraint will no longer be satisfied.
Finally, the following criterion is considered:

θ̂,y1,...,T = arg min
θ

min
{yt}t

T∑
t=1

‖xt −G (Φθ,t (Xt−1))) ‖2

+ λ‖Xt − Φθ,t(Xt−1)‖2

s.t. { bi,j,k + bi,k,j + bj,i,k + bj,k,i + bk,i,j + bk,j,i = 0
(13)

the constrained optimization problem is solved by using
the equality constraint as a penalty term in the loss
function.

IV. NUMERICAL EXPERIMENTS

Considered system : Lorenz-63 dynamical system
is a 3-dimensional model governed by the following
ODE: 

dzt,1
dt = σ (zt,2 − zt,2)
dzt,2
dt = ρzt,1 − zt,2 − zt,1zt,3
dzt,3
dt = zt,1zt,2 − βzt,3

(14)

Under parametrization σ = 10, ρ = 28 and β = 8/3,
this system involves chaotic dynamics with a strange
attractor [12].

We simulate Lorenz-63 state sequences using the
LOSDA ODE solver [13] with an integration step of
0.01. We assume that only the first Lorenz-63 variable is
observed xt = zt,1. We apply the proposed framework
to this experimental setting using a training sequence
of 10000 time-steps.

Proposed model : Regarding the proposed frame-
work, we tested the model for a dimension of the latent
space equal to 3. The neural-network parametrization
for operator fθ is a simple linear quadratic model. We
compare in this work the model optimized using the
initial criterion (8) as proposed in [8] and the new
criterion with the energy preserving constraint (13).

Forecasting performances of the proposed data-
driven models: We further evaluate the performances
of the learning criterion based on the comparison of the
foretasted limit-cycles. Table I reports the Lyapunov
spectrum and the Lyapunov dimension of the data
driven models of the proposed NbedDyn representation
compared with the true spectrum and dimension of
the Lorenz 63 system. As demonstrated in [8], when
the initial condition is inside the spanned manifold of
the augmented states, the dynamical model optimized
using criterion (8) gives trajectories that are bounded
(the sum of the Lyapunov exponents is negative) and
with topological characteristics that are very similar
to the true Lorenz 63 model. However, When the
initial condition is far from the spanned manifold,
the model optimized by the equation (8) diverges to
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NbedDyn model

True Lorenz 63 model

Scenario 1 (S1) :

Initial condition inside the attractor

Scenario 2 (S2) :

Initial condition outside the attractor

Constrained NbedDyn model

Fig. 1: Forecasting performances of the data driven models under different initial conditions: first row, NbedDyn model
as proposed in [8]; second row, proposed constrained NbedDyn model; third row, True lorenz 63 model.

infinity (the sum of the Lyapunov exponents is positive).
From a machine learning perspective, this is the direct
consequence of a poor generalization performance to
states that are far from the attractor spanned by the
training data. From a dynamical systems point of view,
our model contains several attracting regions of chaotic
and unstable solutions and when the initial condition
is far from the spanned attractor, the state evolution is
dominated by positive energy growth which makes our
model diverge to infinity. The constrained model in the
other hand, satisfies elementary preservation constraints
that are present in the actual Lorenz 63 system and leads
to a much more stable behavior with a larger attracting
region of the chaotic limit-cycle.

Qualitative analysis of the proposed schemes: We
also illustrate these conclusions through the forecasting
examples in Figure 1. When starting from an initial
condition inside the attractor, both the NbedDyn and the
Constrained NbedDyn models end up with a forecasted
limite cycle that is similar to the true Lorenz attractor.
When starting from an initial condition that is far from
the the spanned attractor, the classical NbedDyn as
proposed in [8] diverge to infinity. By contrast, adding
energy preserving constraints to the model significantly
improves the generalization performances to states be-
yond the attractor spanned by the training data.

V. CONCLUSION

In this work, we address the data-driven identifica-
tion of dynamical representations of partially observed
systems. We propose to include physical constraints
to the data driven models as prior knowledge of the
dynamics. The reported forecasting performance for
Lorenz-63 dynamics illustrates clearly the importance

Model Exponents Dimension

NbedDyn S1 (0.889, 0.0, -14.21) 2.063
S2 NaN NaN

Constrained NbedDyn S1 (0.811, 0.0, -12.66) 2.064
S2 (0.828, 0.0, -12.67) 2.064

TABLE I: Forecasting performance the data-driven models:
full Lyapunov spectrum and Lyapunov dimension of the
NbedDyn model as proposed in [8] and with the additional
energy preserving constraint on the quadratic terms of fθ.
The simulation S1 is carried with respect to an initial
condition inside of the spanned attractor of the augmented
states xt, the simulation S2 is performed with respect to
an initial condition far from the attractor. The Lyapunov
spectrum of the true Lorenz 63 system is (0.91, 0.0, -14.57)
and it’s dimension is estimated to be 2.064 [14]

of such an approach as only enforcing energy preserv-
ing nonentities constraints significantly improves the
generalization performances of the model far from the
attractor spanner by the training data.
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