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ABSTRACT

In this work, we propose an alternative to the Ensemble
Kalman filter through the implementation of a neural net-
works filtering scheme based on a parametric stochastic
model. From our numerical experiment, we prove the rel-
evance of the proposed architecture in the reconstruction of
geophysical fields with respect to the state-of-the-art schemes.

Index Terms— Neural networks, Kalman filter, Stochas-
tic models

1. INTRODUCTION

High resolution monitoring of the sea surface geophysical pa-
rameters is one of the major challenges in oceanography. Pro-
ducing high resolution gridded spatio-temporal products of
physical variables such as sea surface temperature, sea sur-
face height and sea surface salinity is of key interest for sev-
eral scientific fields [1].

Observations of these geophysical tracers are provided by
satellite remote sensing observations and in-situ monitoring.
However, they usually involve irregular sampling patterns due
to the sensor’s characteristics and we are only given partial
and possibly noisy observations. As a result, no sensor can
provide high-resolution (in space and time) gap-free observa-
tions. Missing data rates may become very large which makes
crucial the development of spatio-temporal interpolation tools
for end-users.

Optimal interpolation (OI) is the classic technique used by
operational products [2]. It relies on the modelization of the
covariance of the spatio-temporal fields. In general, stationary
covariance hypotheses are considered which prove relevant
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MANATEE), Microsoft (AI EU Ocean awards) and by MESR, FEDER, Ré-
gion Bretagne, Conseil Général du Finistere, Brest Métropole and Institut
Mines Télécom in the framework of the VIGISAT program managed by
"Groupement Bretagne Télédétection" (BreTel).

for the reconstruction of horizontal scales above 100km. Fine
scale components on the other hand may hardly be retrieved
with such approaches and a variety of research studies aim
to improve the reconstruction quality of the high resolution
component of the spatio-temporal fields.

Data assimilation, which includes OI techniques, is the
state-of-the-art framework for the reconstruction of dynami-
cal systems from partial observations [3] [4]. Statistical data
assimilation has become particularly popular due to their effi-
cient trade-off between computational performance and mod-
eling flexibility. Broadly speaking, data assimilation provides
means to combine a prior on the dynamics of the considered
system and partial observations. The definition of this dynam-
ical prior is a critical aspect. Regarding sea surface dynamics,
the analytic derivation of computationally-efficient models in-
volves theoretical assumptions, which may not be fulfilled by
the real observations and reduce their applicability. On the
other hand, realistic analytic parameterizations may lead to
highly-computationally-demanding numerical models associ-
ated with modeling and inversion uncertainties, which reduce
their applicability when addressing reconstruction issues to
only some variables of a system.

Recently, data-driven approaches [5, 6] have emerged as
relevant alternatives to model-driven schemes. They take
benefit from the increasing availability of remote sensing
observation and simulation data to derive priors from these
datasets. Analog methods are one of the first data-driven
techniques to develop this data-driven paradigm within a data
assimilation framework [5]. Analog forecasting operators
provide a data-driven formulation of the dynamical operator,
which can be plugged in classic Kalman-based assimilation
schemes. Applications to sea surface geophysical fields [7]
using a patch-based representation demonstrated the rele-
vance of such approaches compared with OI and Empirical
Orthogonal Functions (EOF) based schemes.

In this work, we further investigate data-driven ap-
proaches within a statistical data assimilation framework for



the reconstruction of sea surface dynamics. More specifically,
we propose to replace the ensemble forecasting formulation
in the ensemble Kalman filter by a stochastic forecasting
model parametrized by a neural network. We consider two
case studies for the reconstruction of Sea Level Anomaly
(SLA) field in the Western Mediterranean sea and for the
reconstruction of Sea Surface Temperature (SST) dynamics
off South Africa. From our numerical experiment this model
proves relevant for the reconstruction of high resolution scales
below 100km.

2. PROPOSED MODEL

2.1. High resolution SLA component extraction

We aim to reconstruct the high resolution scales unresolved
by classical techniques such as OI. Therefore, given a high
resolution spatio-temporal field x and the corresponding ob-
servations y (possibly noisy with missing data, typically along
track observations for an SLA field). A large scale component
T is derived using these observations based on an optimal in-
terpolation. The high resolution component of our field is
then deduced according to :

Z2=x—T (1)
Here, z corresponds to the high resolution scales unresolved
by OL
Following our recent study [7], we decompose the spatial
scales of our anomaly field z using a patch based EOF decom-
position. This representation allows us to significantly reduce
the complexity of the proposed model while still keeping a
high explained variance ratio. Formally, z is decomposed into
N, P x P patches z; where t € {0,...,7'} is the tempo-
ral sampling of our time series and P the width and height
of each patch, s represents the patch’s position in the global
field. Each patch is then projected into an EOF basis B, as
follow :

Ng
Zs,t = Z as,k(t)ﬁs,k ?2)
k=1

with B, 1. the k'™ EOF basis and sy (t) the corresponding

EOF coefficients for patch z, ;. The projection of the anomaly
patch z,; in the EOF space is the vector of the Ng coeffi-
cients « i (t) denoted as v, ;. We may also note y, , as the
restriction of the observations y in the patch region s at time
t.

2.2. Patch-based reconstruction

In oceanography, spatio-temporal data assimilation issues can
be regarded as the reconstruction of some hidden states from
partial and/or noisy observation series [8]. From this point of
view, and based on the above formulation, the patch based re-
construction issue can be formulated as the reconstruction of

the patch based EOF time series v ; based on given observa-
tions ¥, ;. Supposing that the evolution of our EOF states re-
lates to some unknown underlying dynamical model, we can
write the following state space model :

Vs,t4+1 = Fs(Vs,t) + Mt 3)
Ys,t+1 = Bsvs,t11 + € 4

where F the dynamical model describing the temporal evolu-

tion of the EOF states variables v,. The observation model B,
is the EOF basis formed by the Ng EOF coefficients 5y, k €
[1,..., Ng]. n: and €; are random processes accounting for the
uncertainties in the dynamical and observation models. They
are usually defined as centered Gaussian processes with co-
variances (); and R; respectively.

Ensemble Kalman filtering schemes [8] are among the
state-of-the-art data assimilation techniques in the reconstruc-
tion of geophysical dynamics. The key idea of these meth-
ods is to approximate the forecasting mean and covariance,
which are derived analytically in the linear case of a classical
Kalman filter, by a sample mean and covariance matrix com-
puted by propagating an ensemble v;;, i € {1,..., N} where
N represents the ensemble size using the dynamical model
Fs.

v =F.(vi}),i € {1,.., N} )
_ 1
S =N 1Dt+1D€+1 (6)
1— — N— _
D1 =05 11— Vs pt1r Vs ir1 — Vs et 7
vk =vl g+ Kipa[ys,e1 — st;H] ®)
Kty =%, BYB.2 BT + R} )
Ej—kl :Z;+1 - Kt+1882;+1 (10)

Here the superscript (-) refers to the forecasting of the en-
semble of state particles given observations up to time ¢ but
without the new observation at time ¢ 4+ 1. The superscript
(+) refers in the other hand to the corrected particles given all
observations up to time ¢ + 1.

Given a representative dataset of past realizations, we can
replace the ensemble forecasting formulation in the ensemble
Kalman filter by a data driven parametric stochastic model.
Formally, we can replace the equations (5), (6) and (7) in
the above ensemble Kalman recursion by the forecasting of
a Gaussian mean component v, and covariance pattern ¥~
as follow :

=Fs(vi,) 11)
=F3 (vl o) (12)
=U(S),50) - Fp(v),So)  (13)

Vg 41
Y
Fews(t)F,5)

with F; the approximate dynamical model and F73, (vs(t), Xo)
a diagonal covariance model in the EOF space, ¥ (X", Xp)
is a scaling function. F, and F7, are parametrized by neural
networks.



The proposed mean dynamical model F; is learnt based
on the minimization of the forecasting error. The covariance
model F7, model is optimized using an ensemble likelihood
maximization to emulate the ensemble forecasting used in
classical ensemble filtering techniques.

3. NUMERICAL EXPERIMENTS

3.1. SLA case study

Dataset description : The dataset used in our experiments is
a gap-free SLA time series obtained using the WMOP prod-
uct [9]. The spatial resolution of our data is a 0.05° and the
temporal resolution i = 1 day. We use the data from January
2009 to December 2014 as training data and we tested our
approach on the first 347 days of the year 2015. We also im-
plement an Observing system simulation experiment (OSSE)
to generate synthetic observations of satellite altimeter data
from real satellite track spatio-temporal locations from a four-
altimeter sampling configuration in 2015. We test our ap-
proach on two different patches located on south Mallorca
(2.5°F to 4.25°F, 37.25°N to 39.5°N) and north Algeria
(2.5°F to 4.25°F, 36.5° N to 38.25° N). These two patches
were selected to be representative of different dynamical be-
haviors. The patch size used in this work is P = 35 and the
EOF space dimension N = 18, which amounts to capture
95% of the total variance.

Experimental setting : Regarding the proposed Neural Net-
works Kalman Filter (NNKF), the following configuration
was adopted. For the patch-level NN model F, we use a
bilinear residual neural network architecture with 16 linear
neurons, 20 bilinear neurons and 6 fully-connected layers
with a Relu activation.

Regarding the covariance model Fx, we consider an MLP
with 6 layers, 5 hidden layers with 100 neurones and Relu
activations and an output layer with a softplus activation.

We perform a quantitative analysis of the interpolation
performance of the proposed scheme with respect to an op-
timal interpolation, and the analog data assimilation. Overall,
the considered parameter setting is as follows:

e Optimal interpolation (OI) : We use a Gaussian kernel
with a spatial correlation length of 100 km and a tem-
poral resolution length of 20 days. These parameters
were empirically tuned for the considered dataset us-
ing a cross-validation experiment. The OI reconstruc-
tion was held into the Balearic region (1.5° F to 8.5° F,
36.5° N to 40°N) since patch based OI reconstruction
leads to very poor reconstructions due to the big rate of
missing data.

e Analog data assimilation (LAF-EnKF, GAF-EnKF):
We apply both the global and local analog data assimi-

lation schemes, referred to as GAF-EnKF, LAF-EnKF
respectively [7, 5]. This technique is based on a lo-
cally linear analog forecasting operator in a classical
Ensemble Kalman filter with 100 particles.

Finally, regarding the assimilation experiment with the
proposed model and the analog data assimilation, we concate-
nate the observations given at day t with a half window size
of 3 days.

Interpolation performances : The analysis of the assimi-
lation results presented in the table 1 illustrates clearly the
advantage of the proposed framework. Despite the fact that
the OI reconstruction was performed through a much larger
region which provides more observations, especially in the
patches boundaries, Our method still gives better results.
Also, our model gives similar results comparing to the lo-
cal analogs based assimilation technique within a huge gain
in computational complexity. This is principally due to the
parametric data-driven formulation of the Gaussian transition
function.

Model SLA Gradient Exec time
or RMSE  0.031 0.0053
Correlation 82.66%  52.42%
RMSE  0.027 0.0048
GAF-EnKE - (  clation  87.28%  63.58%  ~ 208°¢
Patch 1
RMSE  0.025 0.0041 e
LAF-EnKE (o clation  80.21%  68.75%  Sovsee
RMSE  0.026 0.0041
NNKF Correlation  88.35%  66.72% 2%¢¢
or RMSE __ 0.040 0.0072
Correlation  65.05%  30.21%
RMSE  0.036 0.0066
GAF-EnKE (o clation  82.07%  42.19%  ~ 40s°¢
Patch 2
RMSE  0.034 0.0060 e
LAF-EnKE o clation  84.98%  45.04% ~ So0see
RMSE  0.036 0.0061
NNKF Correlation  84.34%  45.71%  ~ 2%€¢

Table 1: SLA interpolation experiment: Mean reconstruction cor-
relation coefficient and RMSE over the SLA time series and their
gradients.

3.2. SST case study

Dataset description : We use as SST data the OSTIA prod-
uct [2]. The spatial resolution of the SST field is 0.05° and
the temporal resolution & = 1 day. We use the data from Jan-
uary 2008 to December 2014 as training data and we tested
our approach on the 2015 data. As case-study region, we
consider a region off south Africa (from 2.5°F,38.75°S to
32.5°F,58.75°5). For the data assimilation experiment, We
also simulated realistic spatio-temporal cloud patterns over
the test set using the METOP-AVHRR masks.

Experimental setting : Regarding the proposed neural net-



works Kalman filter (NNKF), we used the following config-
uration. The case study region was decomposed into a col-
lection of non-overlapping 20 x 20 patches. Each patch was
then projected into an EOF basis with 50 components (witch
amounts to 95 % of the total variance). Each patch based EOF
decomposition was then forecasted using the described patch
based stochastic model (a bilinear residual neural network
with 60 linear neurons, 100 bilinear neurons and 10 fully-
connected layers with a Relu activation for the mean model
Fs and an MLP with 3 layers, 2 hidden layers with 200 neu-
rones and Relu activations and an output layer with a softplus
activation for the covariance model 7). Finally and to avoid
a post-processing step, the forecasted EOF states are propa-
gated back into the patch space and fed into a convolutional
neural network (with 3 layers). This network is trained to
combine the forecasted patches to form the global region.

‘We compare our approach to the same methods mentioned
above. For the optimal interpolation, we use a Gaussian ker-
nel with a spatial correlation length of 100km and a temporal
resolution length of 3 days. For the analog data assimilation,
we decompose the region into 20 x 20 patches with 50% over-
lapping. Each patch is propagated into an EOF basis with 50
components and reconstructed using a locally linear analog
forecasting operator in an ensemble Kalman filter.

Interpolation performances : We report the data assimila-
tion performance in Tab.2. The proposed NNKF leads to sig-
nificant improvements with respect to OI and to the analog
based schemes. From a methodological point of view, the in-
terpolation improvement with respect to OI is principally due
to the use of a data driven dynamical prior. Concerning the
analog data assimilation, the mapping between the SST field
and its patch-level representation plays a significant role in
the improvement of our reconstruction. The analog data as-
similation relies on a post-processing filtering step to remove
patches boundaries. This post-processing step decreases the
quality of the reconstruction as some fine scale details could
be filtered.

Model SST Gradient
oI RMSE 0.76 0.25
Correlation  99.35%  60.31%
RMSE 0.48 0.19
GAF-EnKF Correlation  99.74%  79.12%
RMSE 0.43 0.16
LAF-EnKF Correlation  99.79%  84.41%
RMSE 0.33 0.13
PB-NNKF-EOF | relation  99.87%  89.87%

Table 2: SST interpolation experiment: Mean reconstruction cor-
relation coefficient and RMSE over the SST time series.

4. CONCLUSION

In this work, propose an alternative to the ensemble Kalman
filter for the spatio-temporal reconstruction of sea surface
geophysical tracers. Our architecture relies on the definition
of a Gaussian dynamical model that will replace the ensemble
forecasting step in the Kalman recursion. From our numer-
ical experiment, our model gives at least similar results to
the ensemble Kalman filter in the reconstruction of patch
based SLA and SST dynamics while drastically decreasing
the numerical complexity of the interpolation routine. This
gain in numerical complexity is due to the propagation of a
parametric Gaussian distribution instead of an ensemble.
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