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ABSTRACT

The detection of inshore and offshore ships is an important
issue in both military and civilian fields. It helps monitor-
ing fisheries, managing maritime traffics, ensuring safety of
coast and sea, etc. In operational contexts, ship detection
is traditionally performed by a human observer who identi-
fies all kind of ships from visual analysis on remote sensing
images. Such a task is very time consuming and cannot be
conducted at a very large scale, while Sentinel-1 SAR data
now provides regular, worldwide coverage. Meanwhile, with
the emergence of GPUs, deep learning methods are now es-
tablished as a state-of-the-art solution for computer vision,
replacing human intervention in many contexts. They have
been shown to be adapted for ship detection and recognition,
most often with very high resolution SAR or optical imagery.
In this paper, we go one step further and propose a deep neu-
ral network for the detection, classification and length esti-
mation of ships from SAR Sentinel-1 data. We benefit from
synergies between AIS (Automatic Identification System) and
Sentinel-1 data to build significant training datasets. We then
design a multi-task neural-network architecture composed of
one joint convolutional network connected to 3 networks ded-
icated to the different tasks: ship detection, classification and
length estimation. Experimental assessment showed our net-
work provides satisfactory results, with accurate classification
and length estimation.

Index Terms— Deep neural network, Sentinel-1 SAR
images, Ship detection, Classification, Length estimation,
Multi-task learning

1. INTRODUCTION

Deep learning is considered as one of the major breakthrough
related to big data and computer vision [8]. It has become
very popular and successful in many fields including remote
sensing [14]. Deep learning are representation-learning meth-
ods providing multiple levels of representation. When ap-
plied on visual data such as images, it is usually achieved by
means of convolutional neural networks, that consists of mul-
tiple layers (such as convolution, pooling, fully connected and
normalization layers) that aim to transform original data (raw

input) into higher-semantics representation. With the com-
position of enough such operations, very complex functions
can be learned. For classification tasks, higher representa-
tion layers amplify aspects of the input that are important for
discrimination and discard irrelevant variations. For humans,
it is simple through visual inspection to know what objects
are in an image, where they are, and how they interact in
a very fast and accurate way, allowing to perform complex
tasks. Fast, accurate, algorithms for object detection are thus
sought to allow computers to perform such tasks, at a much
large scale than humans can achieve.

Sentinel-1 SAR images are well adapted for ship detec-
tion. Almost all coastal zones and shipping routes are covered
by Interferometric Wide Swath Mode (IW), while Extra-Wide
Swath Mode (EW) acquires data over open oceans, providing
a global coverage for sea-oriented applications. Such images,
combined with the Automatic Identification System (AIS),
represent a large amount of data that can be employed for
deep learning models. AIS provides meaningful and relevant
information about ships (such as position, type, length, rate
of turn, speed over ground, etc.). Combining these two data
sources could ease accurate detection and estimation of ship
parameters from SAR images, which remains a very challeng-
ing task. Indeed, detecting inshore and offshore ships has an
important significance in both military and civilian fields (e.g.
for monitoring of fisheries, management of maritime traffics,
safety of coast and sea, etc). In operational contexts, the ap-
proaches used so far still rely on manual visual interpretations
that are time-consuming, possibly error-prone, and definitely
not able to cope with big data issues. On the contrary, the
availability of satellite data such as Sentinel-1 SAR makes
possible the efficient and accurate ship detection.

Among existing methods for ship detection from SAR im-
ages, constant false alarm rate (CFAR) based methods have
been widely used to detect ships in the sea [9, 1]. The ad-
vantage of CFAR-based methods is their reliability and high
efficiency. As the choice of features has an impact on the per-
formance of discrimination, deep neural networks took the
lead thanks to their ability to extract (or learn) features that
are richer than hand-crafted features. In [10], a framework
named Sea-Land Segmentation-based Convolutional Neural
Network (SLS-CNN) was proposed for ship detection, com-
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bined with the use of saliency computation. A modified Faster
R-CNN based on CFAR algorithm for SAR ship detection
was proposed in [4] with good detection performances. In [6],
a method categorizing ship targets from SAR images using
texture features in artificial neural networks (TF-ANN) was
proposed. The TF-ANN method selects an appropriate tex-
ture feature for SAR images and uses the feature as the input
of neural network to extract ship pixels from sea ones. [12]
employed highway network for ship detection in SAR images
and achieved good results, especially in detecting correctly
false positive. These state-of-the-art approaches focused on
ship detection in SAR images. In this paper, we address not
only to detect ships from SAR images, but also the recogni-
tion of ship types and length estimation, which to our knowl-
edge has not been dealt with before.

2. PROPOSED APPROACH

2.1. Creation of groundtruthed datasets

With a view to implementing deep learning strategies, we first
address the creation of groundtruthed datasets from the syn-
ergy between AIS data and Sentinel-1 SAR data. AIS data
are in interpolated in order to know the ship location when the
SAR image have been captured. Thus it is possible to know
the precise location of the ship in the SAR image and its re-
lated information (in our case, length and type). The footprint
of the ship is obtained by thresholding the SAR image in the
area where it is located.

2.2. Proposed framework

The proposed multi-task framework is based on two stages,
with a first common part and then three task-oriented branches
for ship detection, classification and length estimation, re-
spectively (see Fig. 1). The first part is a convolutional
network made of 5 layers. It is a mutual network that is
used for all the 3 tasks. It is followed by the task-oriented
branches. For the detection task, the output consists in a
pixel-wise probability of presence of ship. It is composed
of 4 convolutional layers and 1 fully connected layer. For
the classification task, we consider 4 ship classes (Cargo,
Tanker, Fishing and Passenger). The branch is composed of
4 convolutional layers and 2 fully connected layers. The last
task is related to the length estimation. The related branch
is composed of 4 convolutional layers and 5 fully connected
layers.

Such settings are commonly employed in deep learning
methods [11]. All the activations of the convolutional lay-
ers and fully connected layers are ReLu [7]. Other activation
functions are employed for the output layers: a sigmoid for
the detection, a softmax activation for the classification, and
a linear activation is employed for the length estimation.
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upsampling, 64x40x40

Detection

conv, 256x20x20

conv, 512x4x4

conv, 256x4x4
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Input, 2x80x80

Fig. 1: Proposed multi-task architecture for ship detection,
classification and length estimation from Sentinel-1 SAR.

2.3. Loss functions

2.3.1. Detection

The detection output is the probability of ship presence. We
thus employ a binary cross-entropy loss, which is defined by:

Ldet = − 1

N

N∑
n=1

∑
k∈I

(yklog(p(k)) + (1− yk)log(1− p(k)),

(1)
where N is the number of samples, k is a pixel of the output
detection image I , yk is the ground truth of ship presence (0
or 1), and p(k) is the predicted probability of ship presence.

2.3.2. Classification

The output for the last classification layer is the probability
that the input image corresponds to one of the considered ship
types. We use here the categorical cross-entropy loss, defined
by:

Lclass = − 1

N

N∑
n=1

nc∑
c=1

(yo,clog(po,c), (2)

where N is the number of samples, nc is the number of classes
(here, nc = 4), yo,c is a binary indicator (0 or 1) if class label
c is the correct classification for observation o and po,c is the
predicted probability for the observation o to belong to c.

2.3.3. Length

In the length estimation network, the 4 fully-connected layers
of shape (64×1×1) are connected to each other (see Fig. 2).
The idea is to propagate the difference between the first layer
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Fig. 2: Difference propagation flowchart in the fully-
connected layers.

and the current layer and is related to residual learning [3].
We use here the mean squared error defined as

Llength =
1

N

N∑
n=1

(lpred − ltrue)
2, (3)

where N is the number of samples, lpred is the predicted
length and ltrue is the true length.

2.3.4. End-to-end training

We define the loss function of the whole network as

L = Ldet + Lclass + Llength. (4)

Our network is trained end-to-end using RMSProp optimizer
[13]. The weights of the network are updated by using a learn-
ing rate of 1e-4 and a learning rate decay over each update of
1e-6 over the 500 iterations.

3. DATA

In our experiments, we consider a dataset composed of
18, 894 400 × 400 SAR images having a 10 m resolution.
Each image is accompanied with the incidence angle since
it impacts the backscatter intensity of the signal. We rely on
Automatic Identification System (AIS) to extract images that
contain a ship in their center. Furthermore, AIS also provides
us with information about the ship type and length. The
dataset is very unbalanced (10, 430 Tanker and only 1, 071
Passenger), thus requiring dedicated strategy [5]. Here we
simply decided to enlarge our dataset by performing transla-
tions and rotations in order to have 20, 000 balanced images.
The images employed to train our network are 80 × 80 im-
ages containing ships (not necessarily in the center). The
ship footprint ground truth is generated by thresholding the
SAR image since we precisely know the location of the ship
(i.e. it is the brightest pixel of the SAR image). The obtained
footprint is not perfect (see Fig. 3b) but is sufficient in order
to train the network. Let us note that a CFAR approach could
have been employed in order to extract more precisely the
ship footprint [9].

4. RESULTS

We train and test our network on a PC with a single NVIDIA
GTX 1080 Ti, an Intel Xeon W-2145 CPU 3.70GHz and

64GB RAM (Keras [2] implementation). For a 80 × 80
image, our method can run at 55 frames per seconds.

The network is trained using 16, 000 images from the aug-
mented dataset and the remaining 4, 000 images are used for
validation. Accurate evaluation of ship detection is difficult,
so we conduct a visual inspection to confirm that the detec-
tion is well performed by our network (see Fig. 3). Let us
note that the detection task has been widely addressed in the
literature [10, 4, 6] and is not our main purpose here.

(a) SAR image. (b) Ship footprint ground truth.

(c) Detection result.

Fig. 3: SAR image (with backscatter intensity), the generated
ground truth and result of detection from the network.

To our knowledge, the length estimation is a task that
has never been investigated yet using learning-based schemes.
Our framework performs well with very promising results.
The length is slightly under-estimated: -2.4 m ± 9.5 m, which
is very good regarding the spatial resolution of the Sentinel-1
SAR data. Indeed, having only the ship footprint and the spa-
tial resolution of the image is not sufficient and often leads
to an over-estimation of the length. The classification task is
of high importance. Table 1 gives the confusion matrix, and
several accuracy metrics are also presented in Table 2. The
confusion matrix shows some light confusions for passenger
ships, decreasing slightly the precision for this class. Some
fishing ships are classified as passenger ships impacting the
recall for this class. For the tanker and cargo ships, the classi-
fication is very accurate. The accuracy metrics confirm these
satisfactory results with an overall accuracy and a mean F-
score of 95.4%.

5. CONCLUSION

In this paper, a multi-task deep neural network approach
was introduced to address joint detection, classification



Label Tanker Cargo Fishing Passenger Recall
Tanker 978 7 6 9 97.8
Cargo 8 946 7 39 94.6
Fishing 1 15 934 50 93.4
Passenger 5 13 24 958 95.8
Precision 98.6 96.4 96.2 90.7

Table 1: Confusion matrix of ship classification.

Label Tanker Cargo Fishing Passenger Overall
IoU 96.5 91.4 90.1 87.3 91.3
F-score 98.2 95.5 94.8 93.2 95.4
Accuracy 99.1 97.8 97.4 96.5 95.4
κ 0.98 0.94 0.93 0.91 0.95

Table 2: Accuracy metrics of ship classification.

and length estimation for ships in Sentinel-1 SAR images.
We exploit AIS-Sentinel-1 synergies to automatically build
groundtruthed training and evaluation datasets. Regarding
the considered architecture, a mutual convolutional branch
transforms raw inputs into meaningful information. Such
information is fed into specific branches for each of the three
considered tasks. Ship detection cannot be totally assessed,
but a visual inspection still shows our network achieved good
performances. As expected, we reach state-of-the-art per-
formance for the detection task but jointly deliver relevant
performance for ship classification (above 90% of correct
classification) and length estimation (relative bias and stan-
dard deviation below 10%). We may point out that the con-
sidered residual architecture for length estimation seems to
be a critical feature to reach good estimation performance,
but should be further investigated in order to confirm its
relevance.

Further improvements will be investigated. Using false
positive in the dataset would allow to evaluate the relevance
of our detection network. We also consider to increase the
number of classes and see if our network is robust to more
complex scenarios.
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