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Abstract—In this article, we propose a theoretical framework

to derive the stochastic behavior of the cyclic autocorrelation

power (CAP). This function is especially used in cyclostationarity-

based spectrum sensing for its robustness to noise uncertainty

and its low computational cost. We first express the theoretical

probability density function (PDF) of the cyclic autocorrelation

power – which proves to follow a central scaled (respectively non-

central) chi-square distribution if the received samples consist of

additive Gaussian noise (respectively noise plus a cyclostationary

signal). In order to verify the accuracy of the proposed theoretical

derivation, simulation results are then provided in terms of

detection and false alarm probabilities.

Index Terms—Cyclic autocorrelation function, cyclostationar-

ity, spectrum sensing, theoretical distributions.

I. INTRODUCTION

Cyclostationarity-based signal processing is a major ad-

vance in blind detection and estimation of communication

signals. Consequently, it is of real interest for cognitive radio

systems and it is widely used for spectrum sensing [1], timing

estimation [2], source localization [3], automatic modulation

classification (AMC) [4], and so on. Its performances mainly

rely on the way the signal-of-interest – which exhibits some

cyclostationary properties – shows particular features even

if it is highly corrupted by some stationary noise – which

would asymptotically (i.e. when the observation length goes

to infinity) vanish with appropriately chosen transforms.

In the literature, several functions have been proposed to

bring the cyclostationary property out. For instance, cyclic-

moments (CM) and cyclic-cumulants (CC) are commonly used

in AMC [5]. Meanwhile, the so-called M th-Power nonlinear

Transformation (MPT) [2][6] is useful for both symbol timing

detection and AMC. Last but not least, cyclic autocorrelation

function (CAF) [7], spectral correlation density (SCD) [8] and

spectrum coherence (SC) [9] have shown numerous benefits

in the field of spectrum sensing.

In order to design a detection (or estimation) algorithm and

to predict its performance, one may be interested in deriv-

ing its theoretical behavior. This derivation necessarily arises

from the study of the probabilistic distribution of the chosen

transformation, given a set of assumptions and parameters.

In cyclostationarity-based spectrum sensing, a set of features

is generally extracted from a two dimensional cyclic function

(CAF, CAP, SCD, SC...). A detector (statistical test, threshold,

specific property...) finally makes a decision about the presence

or absence of a certain type of signal in the collected samples.

For the aforementioned purpose, obtaining the theoretical

performances in terms of probability of detection (Pd) and

probability of false alarm (Pfa) is usually needed to verify that

a given detector would match some performance requirements.

For instance, the IEEE 802.22 norm requires a Pd of 0.9 for

a Pfa of 0.1 at -20.8 dB SNR [10].

In the litterature, several theoretical studies in this direction

have been carried out. For instance, we may refer to the

pioneering articles by Gardner and Spooner [8], and by Dan-

dawate and Giannakis [11]. However, these studies are more

focused on the asymptotic behavior of the cyclostationarity-

based detectors than on there probabilistic behavior, i.e. when

a short observation length is considered. More recently, and

mainly based on the mathematical results provided in the

book by S. Mac Kay [12], some novel methods have been

proposed to derive approximate distributions in the context of

spectral correlation density-based detectors [13] or in the case

of classical first or second-order cyclic detectors [14].

To the best of our knowledge, no attempt to derive the theo-

retical distributions of the cyclic autocorrelation power (CAP)

was made. However, such a study is of real interest for two

reasons. First, simulation results show that the CAP has good

performance and robustness when used in spectrum sensing.

Secondly, the CAP is particularly cost-effective, which makes

it a great tool for embedded cognitive receiver applications.

In this paper, we propose a framework to derive the theoret-

ical distributions of the CAP. Then, we apply these results in

the context of spectrum sensing. Our work mainly relies on the

study by J. E. Mazo [2] – carried out in the case of the MPT

for timing estimation purpose – and continued by J. Reichert

in [15] – in the context of AMC. As in [14], our study follows

a two steps approach: we first derive the asymptotic behavior

of the CAP. It is then used to derive the distributions of the

CAP in the finite-length observation context.

The paper is organized as follows: In Section II the problem

under study is formulated, while in Section III the asymptotic

study of the CAP is conducted. In Section IV the theoretical

development of the distributions is carried out. Finally, in

Section V, the proposed theoretical results are confronted to

simulations in the context of spectrum sensing. Section VI

concludes the paper.



II. CAP-BASED SPECTRUM SENSING: SYSTEM MODEL

We first list the assumptions made throughout the paper. We

also briefly present the properties exhibited by the CAP for a

better understanding of cyclostationarity-based detection.

A. Spectrum sensing problem formulation

The spectrum sensing problem consists in determining if a

primary user is present or absent in a given frequency band

B during a given time interval. This problem is solved by

collecting a vector of N data samples y = [y(1), ..., y(N)]
and by considering the following two hypotheses problem:

namely, H0 – respectively H1 – corresponds to the absence –

respectively presence – of a primary user.

We consider the situation where the primary user is a

pulse-shaped digital signal transmitted over an additive white

gaussian noise (AWGN) channel. Then, the entailed binary

problem is defined such that, under H0, y is only composed

of noise samples, while under H1, y is composed of noise

samples plus the samples of the signal from the primary user.

Hence, the detection problem is formulated as: make a

decision between H0 and H1 such that for all n in {1, ..., N},
{

H0 : y(n) = ω(n)

H1 : y(n) = x(n) + ω(n)

where x(n) =
∑

k s(k) · h(n − ρk). The series s consists

of indepedent and identically distributed symbols carried by

zero mean and unit variance constellation C. Vector h is the

equivalent channel (i.e. the convolution of the pulse-shaping

function and the physical channel) and ρ is the oversampling

factor. Finally, ω(n) denotes the additive channel noise.

In this paper, we assume that h is a centered rectangular

pulse-shaping function with unit normalized length, while

ω(n) is modelled as a complex zero-mean white Gaussian

noise with variance σ2
ω , i.e. ω(n) ∼ NC(0, σ

2
ω). The extension

of the proposed framework to other types of channels or

signals should be straightforward.

B. Basic considerations related to the CAP

Let consider the equivalent continuous-time signal x(t) as

x(t) =
∑

k

s(k) · h(t− kTs), (1)

where Ts stands for the symbol duration.

Under weak assumptions on equivalent channel h, the

random process x(t) proves to be wide-sense second-order

(almost)-cyclostationary [16]. Hence, the cyclic autocorrela-

tion function (CAF) of signal x corresponds to the Fourier

coefficients of the classical autocorrelation function Rxx(τ0).
Then, the CAF may be written as in [7] as

Rα
xx(τ0)= lim

T→∞

1

T

∫ T/2

−T/2

x
(

t+
τ0
2

)

x∗
(

t−
τ0
2

)

e−j2παtdt. (2)

Based on the CAF, the detection process may rely on the

spectral lines that appear in the cyclic autocorrelation power

(CAP) – denoted as Sα
xx(τ0) , |Rα

xx(τ0)|
2 – at each integer

multiple of the cyclic frequency (i.e. when α ∈ T−1
s Z).

As a consequence, our goal is to derive the distribution of

the cyclic autocorrelation power Sα
yy(τ0) for {α, τ0} ∈ R×R

∗,

under both assumption H0 and H1. For this purpose, we note

that Sα
yy(τ0) can also be written as the Fourier transform of

the autocorrelation of function

yy(t, τ0) , y
(

t+
τ0
2

)

y∗
(

t−
τ0
2

)

(3)

as

Sα
yy(τ0) =

∫ +∞

−∞

ryy(t,τ0)(τ)e
−i2πατdτ, (4)

where we denoted

ryy(t,τ0)(τ)=
1

Ts

∫ Ts

0

E

[

yy
(

t+
τ

2
, τ0

)

yy∗
(

t−
τ

2
, τ0

)]

dt. (5)

III. CONTINUOUS-TIME OBSERVATION MODEL

We first develop the theoretical asymptotic expression of

Sα
yy(τ0) – i.e. when y is seen as a continuous-time infinite-

length random process. In this context, we first consider that y
is the continuous signal from which the N samples described

in Section II. A. are collected. Thus, for all t, y(t) is such that

{

H0 : y(t) = ω(t)

H1 : y(t) =
∑

k s(k) · h(t− kTs) + ω(t)

where Ts is the symbol duration and h(t) is the unit-power

rectangular function between −Ts/2 and Ts/2.

A. Cyclic autocorrelation power under H0

Under H0 and in the presence of white Gaussian noise, it

is trivial to show that for all {α, τ0} ∈ R× R
∗

Sα
yy|H0

(τ0) = σ4
ω, (6)

where we recall that σ2
ω stands for the variance of ω.

B. Cyclic autocorrelation power under H1

We first develop the product yy(t, τ0) as a sum of cross-

terms as in [13]. Since x and ω are mutually independent, we

may get for all {α, τ0} ∈ R× R
∗,

Sα
yy|H1

(τ0) = Sα
xx(τ0) + 2Sα

xω(τ0) + Sα
ωω(τ0). (7)

Due to the independence between x(t) and ω(t), we

also have Sα
xω(τ0) = σ2

ω. Moreover, it can be shown that

Sα
ωω(τ0) = σ4

ω , yields the following expression for (7):

Sα
yy|H1

(τ0) = Sα
xx(τ0) + 2σ2

ω + σ4
ω. (8)

Hence, the only unknown term in (7) is Sα
xx(τ0). Following

the work carried out by Mazo [2], we may get the theoretical

expression of this term from (5) by splitting x into its random

part (involved by symbols s) and into its deterministic part

(involved by invariant channel h).



1) Derivation of the random part: Under the i.i.d. assump-

tion for symbol stream s carried by constellation C, we may

show that for all {a, b, c, d} ∈ Z
4 we have

E [s(a)s∗(b)s∗(c)s(d)] = δabδcd + δacδbd + µ2
2 · δadδbc

− (2 + µ2
2 − µ∗

4) · δabδacδad, (9)

where δab is the Kronecker delta function,

δab =

{

1, if a = b

0, else
(10)

µ2 is the second-order moment of C and µ∗
4 is its fourth order

two-conjugated moment. You may refer to Table I for the

values of the coefficients classically considered in (9).

TABLE I
CONSIDERED COEFFICIENTS IN (9)

Constellation C → BPSK QPSK 8PSK 16QAM 4PAM

µ2

2
1 0 0 0 1

µ∗

4
1 1 1

33

25

41

25

2 + µ2

2
− µ∗

4
2 1 1

17

25

34

25

2) Derivation of the deterministic part: Related to the four

terms in (9), we now derive the four cyclic autocorrelation

terms that take part in the following equation

Sα
yy|H1

(τ0) = Sα
ab,cd(τ0) + Sα

ac,bd(τ0) + µ2
2 · S

α
ad,bc(τ0)

− (2 + µ2
2 − µ∗

4) · S
α
ab,ac,ad(τ0) + 2σ2

ω + σ4
ω, (11)

where {a, b, c, d} ∈ Z
4 as in (9) and where the literal expres-

sion of each CAP may be derived as detailed in Appendix.

For instance, if h is a centered unit-power rectangular pulse-

shape, we may get for the first term

Sα
ab,cd(τ0) =

(

Ts − τ0
Ts

)2

·

∑

m∈fsZ

sinc2 [(Ts − τ0)m] δ(α−m) (12)

where δ(·) stands for the Dirac delta function and fs = T−1
s .

We may note that the presence of spectral lines in the cyclic

autocorrelation power may be partly explained by (12) as

suggested by the presence of a sum of Dirac delta functions,

each of them shifted by a multiple of the cyclic frequency.

The derivation of the three other cyclic autocorrelation terms

follows the same principle and should not be an issue. We

especially get with a rectangular pulse:

Sα
ac,bd(τ0) =

(

τ0
Ts

)2

sinc2
(

τ0
Ts

· α

)

, (13)

and

Sα
ad,bc(τ0) = Sα

ab,ac,ad(τ0) =
(

Ts − τ0
Ts

)2

sinc2
(

Ts − τ0
Ts

· α

)

. (14)

IV. DISCRETE FINITE-LENGTH OBSERVATION MODEL

In the spectrum sensing context, the value of N is relatively

small so that the infinite-length model does no longer hold.

Then, based on the development proposed in Section III, we

derive the theoretical distribution of Sα
yy(n0) under both H0

and H1. The discrete-time CAP of y may be defined as

Sα
yy(n0) , N−1 · |Fn [y(n) · y

∗(n− n0)] (α)|
2

(15)

where Fn stands for the discrete-time Fourier transform

(DTFT) with respect to n and n0 ∈ [[1; ⌊ρ⌋]] to the delay.

We recall that ρ is the oversampling factor and ⌊·⌋ stands for

the floor function. In all what follows, we denote by p[λ|H](x)
the PDF of random variable λ under hypothesis H.

A. Distribution under H0

Based on the derivation in [12], it is easy to show that for

all normalized α ∈ [−ρ/2; ρ/2], Sα
yy(n0) follows a scaled

Chi-square distribution with two degrees of freedom.

It follows from (6) that we have, whatever {α, n0}

p[Sα
yy(n0)|H0](x) =

1

θ0
· e−

x
θ0 . (16)

where θ0 is necessarily equal to σ4
ω .

B. Distributions under H1

Thereby, two situations have to be dealt with. We especially

have to consider whether the value of α is a multiple of the

normalized cyclic frequency – i.e. α ∈ Z – or not.

We first define the two following power spectral functions

Sα
1 (n0) and Sα

2 (n0) as

Sα
1 (n0) =

(

ρ− n0

ρ

)2

·

(

sinc(α · (ρ− n0) · ρ−1)

sinc(α · ρ−1)

)2

, (17)

Sα
2 (n0) =

(

n0

ρ

)2

·

(

sinc(α · n0 · ρ−1)

sinc(α · ρ−1)

)2

. (18)

Equations (17) and (18) correspond to the discrete-time

finite-length adaptations of the basis of functions obtained in

Section III. B. 2), namely in (12), (13) and (14).

We especially remark in (17) and (18) the presence of a

denominator involving the sinc function, which is due to the

truncation of the signal on N samples compared to the infinite-

length model. Since the oversampling factor is considered

greater than or equal to 1, the sampling process has no other

impact on (17) and (18) than the presence of the oversampling

ratio ρ in the expression of both Sα
1 (n0) and Sα

2 (n0).
In the first case – i.e. α ∈ Z – Sα

yy|H1
(n0) proves to follow a

scaled version of the non-central Chi-square distribution with

two degrees of freedom [12], which expression is

p[Sα
yy(n0)|H1](x)=

1

θα1 (n0)
e
−

x+λα
1 (n0)

θα
1

(n0) I0

(

2
√

xλα
1 (n0)

θα1 (n0)

)

(19)

where λα
1 (n0) stands for the non-centrality parameter and

θα1 (n0) for the scaling factor.



Noting that the expectation of (19) is

E
[

Sα
yy(n0)

]

= θα1 (n0) + λα
1 (n0), (20)

and that its variance is

V
[

Sα
yy(n0)

]

= θα1 (n0) · (θ
α
1 (n0) + 2λα

1 (n0)), (21)

it is possible to derive the theoretical expressions of λα
1 (n0)

and θα1 (n0) by considering that expectation (20) and variance

(21) asymptotically tends to their theoretical limits, yields

λα
1 (n0) = NSα

1 (n0) + ρ(1−µ∗
4)S

α
1 (n0)− ρµ2

2S
α
2 (n0), (22)

and

θα1 (n0) = ρ
(

1 + µ2
2

)

Sα
2 (n0)

− 2ρ(1− µ∗
4)S

α
1 (n0) + σ4

ω + 2σ2
ω. (23)

In the spectral background noise case – i.e. α /∈ Z

– Sα
yy|H1

(n0) proves to follow a scaled central Chi-square

distribution with two degrees of freedom. We may have

p[Sα
yy(n0)|H1](x) =

1

θα1 (n0)
· e

− x
θα
1

(n0) , (24)

where, following the same reasoning as in the line case,

θα1 (n0) = ρSα
2 (n0)− ρ(1 − µ∗

4)S
α
1 (n0) + σ4

ω + 2σ2
ω. (25)

C. Concluding remarks

The knowledge of the aforementioned distributions, in-

cluding the theoretical expression of the entailed parameters,

allows us to derive in the next Section the theoretical perfor-

mance analysis of the classical CAP-based detector.

Prior to that, we draw in Fig. 1 the theoretical mean and

variance of the CAP under H1 in both the spectral line and

noise cases. We compare it with some simulation results drawn

in the same context with 10000 independent realizations. As

expected, the theoretical and simulated curves perfectly match.
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Fig. 1. Theoretical and simulated mean and variance of the cyclic autocor-
relation power (CAP). The following parameters were used: C = QPSK,
N = 512, SNR = 0 dB, ρ = 8, n0 = 4.

V. THEORETICAL PERFORMANCE OF CAP DETECTION

In this Section, we derive both the probabilities of detection

Pd = P [H1|H1] and false alarm Pfa = P [H1|H0] for the

classical CA-based spectrum sensing, i.e. a detector which

relies on the power of the spectral line at null cyclic frequency.

A. Theoretical Pd and Pfa

According to (16), the probability of false alarm for a

given threshold ξ is simply expressed as the complementary

cumulative distribution function (CCDF) of the scaled Chi-

square distribution with two degrees of freedom, yields:

Pfa = e
− ξ

σ4
ω . (26)

Conversely, it is possible to set threshold ξ so that the

detector respects some constraints on the probability of false

alarm. We may straightforwardly get from (26):

ξ = −σ4
ω · ln (Pfa) . (27)

Furthermore, the probability of detection may be derived

for all n0 ∈ [[1; ⌊ρ⌋]], according to the CCDF of the scaled

non-central Chi-square distribution, as available in [12], as

Pd = Q1

(
√

2λ0
1(n0)

θ01(n0)
,

√

2ξ

θ01(n0)

)

. (28)

where Q1(·, ·) stands for the generalized one-order Marcum

Q function, and where we recall that λ0
1(n0) and θ01(n0) are

respectively given by (22) and (23).

B. Adequacy between theory and simulation

In this penultimate part, we confront the theoretical prob-

abilities of detection Pd (28) and false alarm Pfa (26) with

numerical simulations. Fig. 2 shows the theoretical and sim-

ulated Pd and Pfa as a function of the SNR and when the

symbols are modulated via QPSK. The oversampling factor is

set to 16, τ0 is fixed to 0.125 (or equivalently n0 = 2). For

the simulations, 10000 independent trials were performed for

each value of N.

−25 −20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1

SNR (dB)

P
ro

b
a

b
ili

ty

 

 

P
fa

 Simu.

P
fa

 Theory

P
d
 Simu.

P
d
 Theory

 N = 256 

N = 512 

N = 2048 

Fig. 2. Theoretical and simulated probabilities of detection Pd and false
alarm Pfa for the classical CA-based detector, as a function of the SNR.

Finally, Fig. 3 shows the receiver operating characteristic

(ROC) curves in the same context as the one of Fig. 1. As

expected, the theoretical and simulated results match, even

when the number of samples is fairly low.
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Fig. 3. Theoretical and simulated receiver operating characteristic (ROC)
curves for the classical CA-based detector and for various parameters.

VI. CONCLUSION

In this paper, we proposed a framework to derive the

distributions of the cyclic autocorrelation power (CAP). We

showed that this derivation allows to compute the theoretical

probabilities of detection Pd and false alarm Pfa for the

classical CA-based detector. These new results are particu-

larly interesting in the field of spectrum sensing, where the

performance must be closely studied to match some specific

requirements. Further work shall be carried out based on this

framework: for instance, theoretical results may be derived for

other types of CA-based detectors or in the context of different

assumptions on the received signal.

APPENDIX

For ease of notation, we denote in what follows

hx
k , h(t− x+ kTs + τ/2 + τ0/2). (29)

From (4) and (5), we express the first term in (11) as

Sα
ab,cd(τ0),Fτ

[

1

Ts

∫ Ts

0

(

∑

k

h0
kh

τ0
k

)(

∑

k

hτ
kh

τ0+τ
k

)

dt

]

(30)

where Fτ [·] is the Fourier Transform with respect to τ .

According to the Poisson Summation Formula, we have:

∑

k

h0
kh

τ0
k =

1

Ts
·
∑

m∈fsZ

ei2πmtH0,τ0(m) (31)

∑

k

hτ
kh

τ0+τ
k =

1

Ts
·
∑

m∈fsZ

ei2πmtHτ,τ0+τ (m) (32)

where H0,τ0(f)=Ft

[

h0hτ0
]

and Hτ,τ0+τ (f)=Ft [h
τhτ0+τ ].

Remarking that Hτ,τ0+τ (f) = ei2πατH0,τ0(f), we have:

1

Ts

∫ Ts

0

(

∑

k

h0
kh

τ0
k

)(

∑

k

hτ
kh

τ0+τ
k

)

dt

=
1

T 2
s

∑

m∈fsZ

e−i2πmτH0,τ0(m)H0,τ0(−m) (33)

We deduce that, for τ0 ∈]−Ts;Ts[:

Sα
ab,cd(τ0) =

1

T 2
s

∑

m∈fsZ

H2
0,τ0(m)

∫ ∞

−∞

ei2πτ(α−m)dτ (34)

Moreover, for τ0 ∈]−Ts;Ts[:

H0,τ0(f) = (Ts − τ0) · sinc (α(Ts − τ0)) (35)

Finally, for τ0 ∈]−Ts;Ts[:

Sα
ab,cd(τ0) =

(

Ts − τ0
Ts

)2
∑

m∈fsZ

sinc2 (m(Ts − τ0)) δ(α−m)

(36)

where δ classically stands for the Dirac delta function.
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