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1. Introduction

Abstract: Motivated by the concept of degeneracy in biology [1], we establish a first connection
between the Multiplicity Principle [2, 3] and mathematical statistics. Specifically, we exhibit two families
of tests that satisfy this principle to achieve the detection of a signal in noise.

The contents of this report were presented during ACT 2019 (Applied Category Theory 2019), held in
Oxford (England) between the 15 and 19 July (see http://www.cs.ox.ac.uk/ACT2019/).

1. Introduction
In [1], Edelman & Gally pointed out degeneracy as the fundamental property allowing for living systems
to evolve through natural selection towards more complexity in fluctuating environments. Degeneracy is
defined [1] as “ . . . the ability of elements that are structurally different to perform the same function or
yield the same output”. Degeneracy is a crucial feature of immune systems and neural networks, at all
organization levels.

The Multiplicity Principle (MP) [2, 3], introduced by Ehresmann & Vanbremeersch, is a mathematical
formalization of degeneracy in Categorical terms. The consequences of this principle, as treated in [2, 3],
underpin Edelman & Gally’s conjecture according to which “complexity and degeneracy go hand in hand”
[1].

Another property of many biological and social systems is their resilience: (i) they can perform in
degraded mode, with some performance loss, but without collapsing; (ii) they can recover their initial
performance level when nominal conditions are satisfied again; (iii) they can perform corrections and
auto-adaption so as to maintain essential tasks for their survival. In addition, resilience of social or biological
systems is achieved via agents with different skills. For instance, cells are simply reactive organisms,
whereas social agents have some cognitive properties. Thence the idea that resilience may derive from
fundamental properties satisfied by agents, interactions and organizations. Could this fundamental property
be a possible consequence of degeneracy [3, Section 3.1, p. 15]?

The notion of resilience remains, however, somewhat elusive, mathematically speaking. In contrast,
the notion of robustness has a long history and track record in mathematical statistics [4]. By and large, a
statistical method is robust if its performance is not unduly altered in case of outliers or fluctuations around
the model for which it is designed. Can we fathom the links between resilience and robustness?

As an attempt to embrace the questions raised above from a comprehensive outlook, the original question
addressed in this work-in-progress is the possible connection between MP and robustness to account for
emergence of resilience in complex systems. As a first step in our study aimed at casting the notions of
robustness, resilience and degeneracy within the same theoretical framework based on MP, we hereafter
establish that statistical tests do satisfy MP. The task to perform by the tests is the fundamental problem of
detecting a signal in noise. However, to ease the reading of a paper at the interface between category theory
and mathematical statistics, we consider a simplified version of this problem.

The paper is organized as follows. We begin by specifying notation and notions in mathematical
statistics. In Section 2, we state MP in categorical words on the basis of [2] and consider the particular
case of preorders, which will be sufficient at the present time to establish that statistical tests satisfy MP for
detecting signals in noise. In Section 3, we set out the statistical detection problem. We will then introduce,
in Section 4, a preorder that makes it possible to exhibit two types of "structurally different" tests, namely,
the Neyman-Pearson tests (Section 5) and the RDT tests (Section 6). Section 7 concludes the paper by
establishing that these two types of tests achieve the MP for the detection problem under consideration. For
space considerations, we limit proofs to the minimum making it possible to follow the approach without too
much undue effort.

Summary of main results
Because this paper lies at the interface between different mathematical specialties, the present section
summarizes its contents in straight text. To begin with, the MP is a property of a category that structurally
different diagrams that share the same cocones. To state our main results, it will not be necessary to consider
the general MP though. In fact, the particular case of preordered sets will suffice, in which case MP reduces
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1. Introduction

to Proposition 1.
Second, in statistical hypothesis testing, a hypothesis can be seen as a predicate, the truth value of which

we aim at determining using statistical decisions, some of which being potentially better than others. There
exist many optimality criteria to devise a decision to test a given hypothesis. In non-Bayesian approaches,
which will be our focus below, such criteria are encoded through the notions of size and power.

The size is the least upper bound for the probability of rejecting the hypothesis when this one is actually
true. We generally want this size to remain below a certain value called level, because the hypothesis to test
mostly represents the standard situation. For instance, planes in the sky are rare events, after all, and the
standard hypothesis is "there is no plane", which represents the standard situation. A too large level may
result in an almost intractable cluttering of a radar screen.

We do not want to be bothered by too many alarms. In contrast, when the hypothesis is false, we want to
reject it with highest confidence. The probability of a test rejecting the hypothesis when this one is actually
false is called the powerof the test. For a given testing problem, we thus look for decisions with maximal
power within the set of decisions whose size does not exceed the specified level. This defines a preorder. A
maximal element in this preorder is said to be optimal.

Different hypotheses to test may thus require different criteria, specified through different notions of
size and two different notions of power. This is what we exploit below to exhibit two sets of "structurally
different" decisions that satisfy the MP.

To carry out this construction, we consider the detection of a signal in independent standard gaussian
noise, a classical problem in many applications. This is an hypothesis testing problem for which there
exists an optimality criterion where the size is the so-called probability of false alarm and the power is the
so-called probability of detection. This criterion has a solution, the Neyman-Pearson (NP) decision, which
is thus the maximal element of a certain preorder. We can consider a second class of tests, namely, the
RDT tests. These tests are aimed at detecting deviations of a signal with respect to a known deterministic
model in presence of independent standard gaussian noise. This problem is rotationally invariant and the
RDT tests are optimal with respect to a specific criterion defined through suitable notions of size and power.
They are maximal elements of another preordered set. Although not dedicated to signal detection, these
tests can be used as surrogates to NP tests to perform signal detection. It turns out that the family of RDT
tests and that of NP tests satisfy the MP as stated in Theorem 4. This is because the more data we have, the
closer to perfection both tests are.

Notation
Random variables. Given two measurable spaces E and F ,M(E,F ) denotes the set of all measurable
functions defined on E and valued in F . The two σ-algebra involved are omitted in the notation because,
in the sequel, they will always be obvious from the context. In particular, we will throughout consider a
probability space (Ω,B,P) and systematically endow R with the Borel σ-algebra, which will not be recalled.
Therefore,M(Ω,R) designates the set of all real random variables. Given q ∈ [0,∞[, B∞(q) is the set of
all real random variables ∆ ∈ M(Ω,R) such that |∆|∞ 6 q. As usual, we write X ∼ N(0,1) to mean that
X ∈ M(Ω,R) is standard normal. The cumulative distributive function (cdf) of any X ∼ N(0,1) is denoted
by Φ. Given a sequence (Xn)n∈N ∈ M(Ω,R)

N of real random variables, we write X1,X2, . . .
iid∼ N(0,1)

to mean that the random variables X1,X2, . . . are independent and identically distributed with common
distribution N(0,1). For any n ∈ N, the Generalized Marcum function Qn/2 is defined for all ρ > 0 and all
λ > 0 by setting: Qn/2(ρ,λ) := 1 − Fχ2

n(ρ
2)(λ

2), where Fχ2
n(ρ

2) is the cdf of the χ2 law with n degrees of
freedom and non-centrality parameter ρ2.

Decisions et Observations. Throughout, M
(
{0,1} ×Ω,

{
0,1

})
designates the set of all measurable

functions D :
{
0,1

}
×Ω→

{
0,1

}
. Any element ofM

(
{0,1} ×Ω,

{
0,1

})
is called a decision for obvious

reasons given below. If D ∈ M
(
{0,1} ×Ω,

{
0,1

})
then, for any ε ∈

{
0,1

}
, D(ε) denotes the Bernoulli-

distributed random variable D(ε) : Ω →
{
0,1

}
defined for any given ω ∈ Ω by D(ε)(ω) = D(ε,ω).

An n-dimensional test is hereafter any measurable function f : Rn → {0,1} andM (Rn, {0,1}) stands
for the set of all n-dimensional tests. A measurable function X : {0,1} × Ω → Rn is hereafter called
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2. Multiplicity Principle

an observation and M ({0,1} ×Ω,Rn) denotes the set of all these observations. Given a test f ∈
M (Rn, {0,1}) and X ∈ M ({0,1} ×Ω,Rn), D = f (X) is trivially a decision: D ∈ M

(
{0,1} ×Ω,

{
0,1

})
.

If X ∈ M ({0,1} ×Ω,Rn) then, for any ε ∈ {0,1}, X(ε) = X(ε, ·) ∈ X(ε) ∈ M(Ω,Rn) is defined for every
ω ∈ Ω by X(ε)(ω) = X(ε,ω).

Empirical means. We define the empirical mean of a given sequence y = (yn)n∈N of real values
as the sequence (〈y〉n)n∈N of real values such that, ∀n ∈ N, 〈y〉n := 1

n

∑n
i=1 yi. By extension, the

empirical mean of a sequence Y = (Yn)n∈N of random variables where each Yn ∈ M(Ω,R) is the sequence
(〈Y〉n)n∈N of random variables where, for each n ∈ N, 〈Y〉n ∈ M(Ω,R) is defined by 〈Y〉n := 1

n

∑n
i=1 Yi.

Therefore, for any ω ∈ Ω, 〈Y〉n(ω) := 〈Y (ω)〉n with Y (ω) = (Yn(ω))n∈N. If Y = (Yn)n∈N is a sequence
of observations (∀n ∈ N, Yn ∈ M ({0,1} ×Ω,R)), we define the empirical mean of Y as the sequence
(〈Y〉n)n∈N of observations such that, for ε ∈ {0,1}, 〈Y〉n ∈ M ({0,1} ×Ω,R) with〈Y〉n(ε) = 〈Y (ε)〉n and
Y (ε) = (Yn(ε))n∈N.

2. Multiplicity Principle
2.1. General case

The multiplicity principle (MP) comes from [2]. It proposes a categorical approach to the biological
degeneracy principle which ensures a kind of flexible redundancy. Roughly, MP, in a category C , ensures
the existence of structurally non isomorphic diagrams which have the same colimit. A formal definition
relies on the notion of a cluster between diagrams in a category C .

Definition 1 (Cluster). Let D : D → C and E : E → C be two (small) diagrams. A cluster G : D→ E is
a maximal set G = { f : D(d) → E(e) | d ∈ D, e ∈ E , f ∈ C } such that:

(i) for all d ∈ D there exist e ∈ E and g : D(d) → E(e) such that g ∈ G
(ii) let G(d) be the subset of G consisting of arrows g : D(d) → E(e) associated to the same d; then

G(d) is included in a connected component of the cone D(d) → E
(iii) if g : D(d) → E(e) ∈ G(d) and ε : e→ e′ ∈ E , then E(ε) ◦ g ∈ G(d)
(iv) if δ : d ′→ d ∈ D and g : D(d) → E(e) ∈ G(d), then g ◦ D(δ) ∈ G(d ′)

For instance, a connected cone from c to D can be seen as a cluster from the constant functor ∆(c) to D;
and any cocone from E to c is a cluster E → ∆(c).

Remark 1. Adjacent clusters can be composed: a cluster G : D → E0 and a cluster G0 : E0 → E can
be composed to a cluster G ◦ G0. We can then consider a category of clusters of C , whose objects are
the (small) diagrams D → C , and an arrow D→ E is a cluster. This category is isomorphic to the free
cocompletion of C [2].

A cluster G : D→ E defines a functor ΩG : Cocones (E) → Cocones (D) mapping a cocone α to the
cocone α ◦ G (composite of α, seen as a cluster, and G, which is a cluster).

Definition 2 (Multiplicity principle (MP)). A category C satisfies the multiplicity principle (MP) if there
exist two diagrams D : D → C and E : E → C such that:

(i) Cocones (D) � Cocones (E);
(ii) There is no cluster G : D→ E nor G : E → D such that ΩG is an isomorphism.

D and E having the same cocones translates the property of both systems to accomplish the same
function. The absence of clusters between D and E that define an isomorphism, reflects the structural
difference between them, which is key to robustness and adaptability: if the system described by E fails,
then D may replace it.
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3. Statistical detection of a signal in noise

2.2. Application to preorders
The main purpose of this paper is to find a meaningful instance of the multiplicity principle in some preorder.
In the following, we do not distinguish between a preorder and its associated category.

Proposition 1 (Multiplicity principle in a preorder). Let (E,6) be a preorder. If there are two disjoint
subsets A,B ⊂ E such that the following conditions hold, then E verifies the multiplicity principle:

(i) A and B have the same sets of upper bounds
(ii) There is an a ∈ A with no upper bounds in B

(iii) There is a b ∈ B with no upper bounds in A

Proof. Condition (i) ensures that A and B have isomorphic categories of cocones. Conditions (ii) and (iii)
respectively ensure that there is no cluster iA → iB nor iB → iA where iA : A ↪→ E and iB : B ↪→ E are
the inclusion functors.

Albeit trivial, the following lemma will be helpful.

Lemma 1. Given a preordered set (E,�), if A and B are two subsets of E such that sup (A, (E,�)) =
sup (B, (E,�)) and if A ×B ∩ � = ∅, then E satisfies MP.

3. Statistical detection of a signal in noise
3.1. Problem statement

Let ε ∈ {0,1} be the unknown indicator value on whether a certain physical phenomenon has occurred
(ε = 1) or not (ε = 0). We aim at determining this value. It is desirable to resort to something more evolved
than tossing a coin to estimate ε. However, whatever D, the decision is erroneous for any ω ∈ Ω such that
D(ε,ω) , ε. We thus have two distinct cases.
False alarm probability: If ε = 0 and D(0,ω) = 1, we commit an error of the 1st kind false or false alarm,
since we have erroneously decided that the phenomenon has occurred while nothing actually happened. We
thus define the false alarm probability (aka size, aka error probability of the 1st kind) of D as:

Pfa [D]
def
= P

[
D(0) = 1

]
(1)

Detection probability: If ε = 1 and D(1,ω) = 0, we commit an error of the 2nd kind, also called missed
detection since, in this case, we have missed the occurrence of the phenomenon. As often in the literature
on the topic, we prefer using the probability of correctly detecting the phenomenon by defining the detection
probability:

Pdet [D]
def
= P

[
D(1) = 1

]
(2)

3.2. Decision with level γ ∈ (0,1) and oracles
Among all the possible decisions, the omniscient oracle D∗ ∈ M

(
{0,1} ×Ω,

{
0,1

})
is defined for any

pair (ε,ω) ∈
{
0,1

}
× Ω by setting D∗(ε,ω) = ε. Its probability of false alarm is 0 and its probability of

detection is 1: Pfa [D∗] = 0 et Pdet [D∗] = 1. This omniscient oracle has no practical interest since it knows
ε. That’s not really fair! Since it is not possible in practice to guarantee a null false alarm probability, we
focus on decisions whose false alarm probabilities are upper-bounded by a real number γ ∈ (0,1) called
level. We state the following definition.

Definition 3 (Level). We say that D ∈ M
(
{0,1} ×Ω,

{
0,1

})
has level γ ∈]0,1[ if Pfa [D] 6 γ. The set of

all decisions with level γ ∈]0,1[ is denoted by Cγ.

We can easily prove the existence of an infinite number of elements in Cγ that all have a detection
probability equal to 1. Whence the following definition.
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Definition 4. Given γ ∈ (0,1), an oracle with level γ is any decision D ∈ Cγ such that Pdet [D] = 1. The
set of all the oracles with level γ is denoted by D∗γ.

Oracles with level γ have no practical interest either since they require prior knowledge of ε! Therefore,
we restrict our attention to decisions in Cγ that "approximate" at best the oracles with level γ, without prior
knowledge of ε, of course. To this end, we must preorder decisions.

Lemma-Definition 1 (Total preorder (Cγ, � )). For any given γ ∈ (0,1) and any pair (D,D′) ∈ Cγ × Cγ,
we define a preorder (Cγ, � ) by setting:

D � D′ if Pdet [D] 6 Pdet [D′] . (3)

We write D � D′ if D � D′ and D′ � D.

3.3. Observations
In practice, observations help us decide whether the phenomenon has occurred or not. By collecting a
certain number of them, we can expect to make a decision. Hereafter, observations are assumed to be
elements ofM ({0,1} ×Ω,R) and corrupted versions of ε. We suppose to have a sequence (Yn)n∈N of such
random variables. As a first standard model, we could assume that, for any n ∈ N and any (ε,ω) ∈ {0,1}×Ω,
Yn(ε,ω) = ε + Xn(ω) with X1,X2, . . . ,Xn, . . .

iid∼ N(0,1). In this additive model, Xn models noise on the
nth observation. We could make this model more complicated and realistic by considering random vectors
instead of variables. However, with respect to our purpose, the significant improvement we can bring to the
model is elsewhere. Indeed, we have assumed above that the signal, regardless of noise, is ε. However, from
a practical point of view, it is more realistic to assume that the nth observation Yn captures ε in presence
of some interference ∆n, independent of Xn. In practice, the probability distribution of ∆n will hardly be
known and, as a means to compensate for this lack of knowledge, we assume the existence of a uniform
bound on the amplitude of all possible interferences. Therefore, we assume that, for all (ε,ω) ∈ {0,1} ×Ω,
Yn(ε,ω) = ε + Xn(ω) + ∆n(ω) and the existence of q ∈ [0,∞) such that ∆n ∈ B∞(q). After all, this model
is standard in time series analysis: ε plays the role of a trend, ∆n is the seasonal variation and Xn is the
measurement noise.

For each q ∈ [0,∞), Seq[q] is hereafter the set of all the sequences Y [q] =
(
Y [q]n

)
n∈N

where, ∀n ∈ N and

∀(ε,ω) ∈ {0,1}×Ω,Y [q]n (ε,ω) = ε+∆n(ω)+Xn(ω), where ∆n ∈ B∞(q) and Xn ∼ N(0,1) are independant.
Therefore, for all n ∈ N and all ε ∈ {0,1}, Y [q]n (ε) = ε + ∆n + Xn, with X1,X2, . . . ,Xn, . . .

iid∼ N(0,1).

4. Selectivity, landscapes of tests and preordering
For any q ∈ [0,1/2[, any n ∈ N and any Y [q] =

(
Y [q]n

)
n∈N
∈ Seq[q], we set:

Y
[q]
n =

(
Y [q]1 ,Y [q]2 , . . . ,Y [q]n

)
(4)

Definition 5 (Selectivity of a test). Given any n ∈ N and any test f ∈ M (Rn, {0,1}), the selectivity of f at
given level γ ∈ (0,1) is defined as the set:

Selγ ( f ) :=
{

q ∈ [0,1/2) : ∀Y [q] ∈ Seq[q], f
(
Y
[q]
n

)
∈ Cγ

}
Definition 6 (Landscape of a test). Given any n ∈ N and any test f ∈ M (Rn, {0,1}), the landscape of f at
given level γ ∈ (0,1) is the subset of Cγ defined by:

Dγ ( f ) :=
⋃

q∈Selγ ( f )

{
f
(
Y
[q]
n

)
: Y [q] ∈ Seq[q]

}
(5)

This notion of landscape makes it possible to compare tests via landscapes via the following preorder.
The proofs that the following definition is consistent and that the next lemma holds true are left to the reader.
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4. Selectivity, landscapes of tests and preordering

Definition 7 (Preorder (2Cγ , �∗ )). Given any level γ ∈ (0,1), we define the preorder (2Cγ , �∗ ) via the
three following properties:

(P1) ∀n ∈ N, ∀( f ,g) ∈ M (Rn, {0,1}) ×M (Rn, {0,1}), Dγ ( f ) �∗ Dγ (g) if:

Selγ ( f ) = Selγ (g) and ∀q ∈ Selγ ( f ) ,∀Y [q] ∈ Seq[q], f
(
Y
[q]
n

)
� g

(
Y
[q]
n

)
(P2) ∀(D,D′) ∈

(
Dγ ∪ D

∗
γ

)
× D∗γ, D �∗ D′ with:

Dγ :=
⋃
n∈N

{
Dγ ( f ) : f ∈ M (Rn, {0,1})

}
and D∗γ := 2D

∗
γ

(P3) ∀D ∈ 2Cγ \
(
Dγ ∪ D

∗
γ

)
, D �∗ D

Lemma 2. ∀(D,D′) ∈
(
Dγ ∪ D

∗
γ

)
×

(
Dγ ∪ D

∗
γ

)
, D �∗ D′⇒ D ×D′ ⊂ � .

Henceforth, given a preordered set (E,�) and A ⊂ E , the set of maximal elements of A is denoted by
max (A, (E,�)), the set of upper bounds is denoted by upper (A, (E,�)) and the set of least upper bounds of
A in (E,�) is denoted by sup (A, (E,�)).

Theorem 1 (Approximation of oracles in (2Cγ , �∗ )). Given γ ∈ (0,1), let a set Xγ and a family of tests(
fξ,n

)
ξ ∈Xγ ,n∈N

such that:

(i) ∀(ξ,n) ∈ Xγ × N, fξ,n ∈ M (Rn, {0,1});

(ii) ∃Qγ ⊂ [0,∞), ∀(ξ,n) ∈ Xγ × N, Selγ
(
fξ,n

)
= Qγ;

(iii) ∀(ξ,q) ∈ Xγ × Qγ, ∀Y [q] ∈ Seq[q], lim
n→∞
Pdet

[
fξ,n

(
Y
[q]
n

)]
= 1;

then, by setting D′γ =
{
Dγ

(
fξ,n

)
: n ∈ N, ξ ∈ Xγ

}
, we have:

D∗γ = upper
(
D′γ ,

(
2Cγ , �∗

) )
= sup

(
D′γ ,

(
2Cγ , �∗

) )
(6)

Proof. For any (ξ,n) ∈ Xγ × N and any D ∈ D∗γ, (P2) in Definition 7 straightforwardly implies that
Dγ

(
fξ,n

)
�∗ D. As a consequence:

D∗γ ⊂ upper
(
D′γ ,

(
2Cγ , �∗

) )
(7)

To prove the converse inclusion, consider someD ∈ upper
(
D′γ ,

(
2Cγ , �∗

) )
. We thus have∀(ξ,n) ∈ N×Xγ,

Dγ
(
fξ,n

)
�∗ D. According to Lemma 2, we have ∀(ξ,n) ∈ Xγ × N, Dγ

(
fξ,n

)
× D ⊂ � . Therefore,

∀(ξ,n) ∈ N × Xγ, ∀q ∈ Selγ
(
fξ,n

)
, ∀Y [q] ∈ Seq[q] and ∀D ∈ D, fξ,n

(
Y
[q]
n

)
� D. It follows from the

definition of � and assumption (ii) above that:

∀(ξ,n) ∈ N × Xγ,∀q ∈ Qγ,∀Y [q] ∈ Seq[q],∀D ∈ D,Pdet

[
fξ,n

(
Y
[q]
n

)]
6 Pdet [D]

We derive from assumption (iii) that Pdet [D] = 1 and thus that D ∈ D∗γ. It follows that D ∈ D∗γ. We
thus obtain that upper

(
D′γ ,

(
2Cγ , �∗

) )
⊂ D∗γ and therefore, from (7), D∗γ = upper

(
D′γ ,

(
2Cγ , �∗

) )
. The

second inequality in (6) is straightforward since the elements of D∗γ are isomorphic in the sense of �∗ .

For later use, given J ⊂ [0,∞), n ∈ N and F ⊂ M (Rn, {0,1}), we hereafter set:

DJγ (F) :=
{
Dγ ( f ) ∈ Dγ : f ∈ F , Selγ ( f ) = J

}
(8)
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6. The RDT solution

5. The Neyman-Pearson (NP) solution
When n spans N, the Neyman-Pearson (NP) Lemma makes it possible to pinpoint a maximal element in
each (D{0}γ (F), � ) with F =M (Rn, {0,1}). These maximal elements are hereafter called NP decisions.
Specifically, we have the following result.

Lemma 3 (Maximality of the NP decisions). For any γ ∈ (0,1) and any n ∈ N,

Dγ

(
f np(γ)
n

)
= max

(
D
{0}
γ (M (R

n, {0,1})) , �∗
)

(9)

where f np(γ)
n ∈ M (Rn, {0,1}) is the n-dimensional NP test with size γ defined by:

∀(y1, y2, . . . , yn) ∈ R
n, f np(γ)

n (y1, y2, . . . , yn) =

{
1 if

∑n
i=1yi >

√
nΦ−1(1 − γ)

0 otherwise
(10)

and satisfies, ∀Y [0] ∈ Seq[0],
Pfa

[
f np(γ)
n

(
Y [0]n

)]
= γ

Pdet

[
f np(γ)
n

(
Y [0]n

)]
= 1 − Φ

(
Φ−1(1 − γ) −

√
n
)

Proof. A direct application of the Neyman-Pearson Lemma [5, Theorem 3.2.1, page 60], followed by some
standard algebra to obtain Pdet

[
f np(γ)
n Y [0]n

]
.

The next result states that it suffices to increase the number of observations to approximate oracles with
level γ by NP decisions.

Theorem 2 (Approximation of oracles with level γ by NP decisions in (2Cγ , �∗ )).

Setting DNP(γ) :=
{
Dγ

(
f np(γ)
n

)
: n ∈ N

}
for any γ ∈ (0,1), we have:

D∗γ = upper
(
DNP(γ) ,

(
2Cγ , �∗

) )
= sup

(
DNP(γ) ,

(
2Cγ , �∗

) )
Proof. According to Lemma 3, lim

n→∞
Pdet

[
f np(γ)
n Y [0]n

]
= 1. The set DNP(γ) ⊂ Dγ satisfies the conditions of

Theorem 1 for any γ ∈ (0,1) and Xγ = ∅. Thence the result.

6. The RDT solution
6.1. An elementary RDT problem

Problem statement. The RDT theoretical framework is exposed in full details in [6, 7]. To ease the reading
of the present paper, we directly focus on the particular RDT problem that can be used in connection with
the detection problem at stake.

In this respect, suppose that Y = Θ + X ∈ M(Ω,Rn), where Θ and X are independent elements of
M(Ω,Rn). In the sequel, we assume that X ∼ N(0, In), In being the n × n identity matrix, and consider
the mean testing problem of deciding on whether |〈Θ〉n(ω)| 6 τ (null hypothesis H0) or |〈Θ〉n(ω)| > τ

(alternative hypothesis H1), when we are given Y (ω) = Θ(ω) + X(ω), for ω ∈ Ω. The idea is that Θ
oscillates uncontrollably around 0 and that only sufficient large deviations of the norm should be detected.
This is a particular Block-RDT problem, following the terminology and definition given in [7]. This problem
is summarized by discarding ω and writing:

Observation:Y = Θ + X ∈ M(Ω,Rn) with
{
Θ ∈ M(Ω,Rn),X ∼ N(0, IN ),
Θ and X are independent,

H0 : |〈Θ〉n | 6 τ,

H1 : |〈Θ〉n | > τ.

(11)
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6. The RDT solution

Standard likelihood theory [5, 8, 9] does not make it possible to solve this problem. Fortunately, this
problem can be solved as follows via the Random Distortion Testing (RDT) framework.

Size and power of tests for mean testing. We seek tests with guaranteed size and optimal power, in the
sense specified below.

Definition 8 (Size for the mean testing problem). The size of f ∈ M (Rn, {0,1}) for testing the empirical
mean of the signals Θ ∈ M(Ω,Rn) such that P

[
|〈Θ〉n | 6 τ

]
, 0, given the processes Θ + X ∈ M(Ω,Rn)

with X independent of Θ, is defined by:

α[n]( f ) = sup
Θ∈M(Ω,Rn) :P [ | 〈Θ〉n |6τ ],0

P
[

f (Θ + X) = 1
�� |〈Θ〉n | 6 τ

]
(12)

We say that f ∈ M (Rn, {0,1}) has level (resp. size) γ if α[n]( f ) 6 γ (resp. α[n]( f ) = γ). The class of all
the tests with level γ is denoted by K [n]γ :

K
[n]
γ =

{
f ∈ M (Rn, {0,1}) : α[n]( f ) 6 γ

}
Definition 9 (Power for the mean testing problem). The power of f ∈ M (Rn, {0,1}) for testing the empirical
mean of Θ ∈ M(Ω,Rn) such that P

[
|〈Θ〉n | > τ

]
, 0 when we are given Y = Θ + X ∈ M(Ω,Rn), with X

independent of Θ, is defined by:

β
[n]
Θ
( f ) = P

[
f (Θ + X) = 1

�� |〈Θ〉n | > τ
]

(13)

The RDT solution. We can easily construct a preorder
(
K
[n]
γ , ��

)
by setting:

∀( f , f ′) ∈K [n]γ × K
[n]
γ , f �� f ′ if ∀Θ∈M(Ω,Rn),P

[
|〈Θ〉n |>τ

]
, 0⇒ β

[n]
Θ
( f )6 β

[n]
Θ
( f ′)

No maximal element exists in
(
K
[n]
γ , ��

)
. However, we can exhibit C[n]γ ⊂ K

[n]
γ whose elements satisfy

suitable invariance properties with respect to the mean testing problem and prove the existence of a maximal
element in

(
C
[n]
γ , ��

)
.

Set S =
{
id,−id

}
where id is the identity of R. Endowed with the usual composition law ◦ of

functions, (S,◦) is a group. Let A be the group action that associates to each given s ∈ S the
map As : Rn → Rn defined for every x = (x1, x2, . . . , xn) ∈ Rn by As(x) = (s(x1), s(x2), . . . , s(xn)).
Readily, the mean testing problem is invariant under the action of A in that As(Y ) = As(Θ) + X ′

where X ′ = (X ′1,X
′
2, . . . ,X

′
n) ∼ N(0, In) is independent of As(Θ). Therefore, As(Y ) satisfies the same

hypotheses as Y . We also have |〈As(Θ)〉n | = |〈Θ〉n |. Hence, the mean testing problem remains unchanged
by substituting As(Θ) for Θ and X ′ for X . It is thus natural to seek A-invariant tests, that is, tests
f ∈ M (Rn, {0,1}) such that f (As(x)) = f (x) for any s ∈ S and any x ∈ Rn.

On the other hand, since we can reduce the noise variance by averaging observations, we consider
A-invariant integrator tests, that is,A-invariant tests f ∈ M (Rn, {0,1}) for which exists f ∈ M

(
R1, {0,1}

)
,

henceforth called the reduced form of f , such that f (x) = f (〈x〉n) for any x ∈ Rn. Reduced forms of
A-invariant integrator tests are also A-invariant: ∀x ∈ R, ∀s ∈ A, f (s(x)) = f (x). We thus define
C
[n]
γ ⊂ K

[n]
γ of all A-invariant integrator tests. We thus have f ∈ C[n]γ if:

[Size]: α[n]( f ) 6 γ;

[A-invariance]: ∀(s, x) ∈ S × Rn, f (As(x)) = f (x);

[Integration]: ∃ f ∈ M
(
R1, {0,1}

)
, ∀x ∈ Rn, f (x) = f (〈x〉n).

The following result derives from the foregoing and [6, 7].
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6. The RDT solution

Proposition 2 (Maximal element of
(
C
[n]
γ , ��

)
). For any γ ∈ (0,1) and any n ∈ N,{

f rdt(γ)
n,τ

}
= max

(
C
[n]
γ , ��

)
(14)

where f rdt(γ)
n,τ ∈ M (Rn, {0,1}) is defined by setting:

∀(y1, y2, . . . , yn) ∈ R
n, f rdt(γ)

n,τ (y1, y2, . . . , yn) =

{
1 if

��∑n
i=1 yi

�� 6 √nλγ(τ
√

n)

0 otherwise

and λγ(τ
√

n) is the unique solution in x to the equation Q1/2(τ
√

n, x) = γ

RDT and NP tests are structurally different because dedicated to two different testing problems and
optimal with respect to two different criteria. This structural difference will be enhanced by coming back to
our initial detection problem.

6.2. Application to Detection
Consider again the problem of estimating ε ∈ {0,1}, when we have a sequenceY [q] ∈ Seq[q] of observations.
We thus have:

∀n ∈ N,∀(ε,ω) ∈
{
0,1

}
×Ω,Y [q]n (ε,ω) = ε + ∆n(ω) + Xn(ω) (15)

where X1,X2, . . .
iid∼ N(0,1) and ∀n ∈ N, ∆n ∈ B∞(q) with q ∈ [0,∞). The empirical mean of Y [q] satisfies:

∀n ∈ N, 〈Y [q]〉n(ε) = 〈Y [q](ε)〉n = ε + 〈∆〉n + 〈X〉n. We thus have |〈∆〉n | 6 q (a-s). Set Θn = ε + ∆n for
every n ∈ N. In the sequel, we assume q < 1/2 because, in this case, we straightforwardly verify that{

ε = 0 ⇔ |〈Θ〉n | 6 q
ε = 1 ⇔ |〈Θ〉n | > 1 − q

(16)

Therefore, when q ∈ [0,1/2), deciding on whether ε is zero or not when we are given Y [q]n (ω) amounts to
testing whether |〈Θ〉n(ω)| 6 τ or not for τ ∈ [q,1 − q]. We thus can use the decision f rdt(γ)

n,τ

(
Y
[q]
n

)
, where

f rdt(γ)
n,τ is given by Proposition 2.

We can calculate the false alarm probability of f rdt(γ)
n,τ

(
Y
[q]
n

)
defined by (1) and the theoretical results

in [6] yield that ∀τ ∈ [q,1 − q],Pfa

[
f rdt(γ)
n,τ

(
Y
[q]
n

)]
6 γ. In the sequel, for the sake of simplifying notation,

we assume that both τ and q are in [0,1/2). In this case, we have:

∀τ ∈ [0,1/2) ,


Selγ

(
f rdt(γ)
n,τ

)
= [0, τ]

Dγ

(
f rdt(γ)
n,τ

)
=

⋃
q∈[0,τ]

{
f rdt(γ)
n,τ

(
Y
[q]
n

)
: Y [q] ∈ Seq[q]

} (17)

We can then state the following lemma, which is the counterpart to Lemma 3.

Theorem 3 (Maximality of RDT decisions). For any γ ∈ (0,1), any n ∈ N and any 0 6 q 6 τ < 1/2,
Dγ

(
f rdt(γ)
n,τ

)
= max

(
D
[0,τ]
γ

(
C
[n]
γ

)
, �∗

)
.

Proof. It results from Definition 6 that Dγ ( f ) :=
{

f
(
Y
[q]
n

)
: Y [q] ∈ Seq[q],q ∈ [0, τ]

}
. According

to (8), we also have D[0,τ]γ

(
C
[n]
γ

)
=

{
Dγ ( f ) ∈ Dγ : f ∈ C[n]γ , Selγ ( f ) = [0, τ]

}
. Given q ∈ [0, τ] and

Y [q] ∈ Seq[q], set 
Y = Y

[q]
n =

(
Y [q]1 ,Y [q]2 , . . . ,Y [q]n

)
(see (4))

X = (X1,X2, . . . ,Xn) ∼ N(0, In)
Θ = (1 + ∆1,1 + ∆2, . . . ,1 + ∆n)
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7. Multiplicity Principle

We basically have Y = Θ + X . Consider now the mean testing problem (11) with Θ, X and Y defined as
above. For any f ∈ M (Rn, {0,1}), it follows from Eqs. (15) , (16), (2) and (12) that:

β
[n]
Θ
( f ) = Pdet

[
f
(
Y
[q]
n

)]
(18)

Suppose now that f ∈ C[n]γ with Selγ ( f ) = [0, τ]. We derive from Proposition 2, (18) and its application
to f rdt(γ)

n,τ , that Pdet

[
f
(
Y
[q]
n

)]
6 Pdet

[
f rdt(γ)
n,τ

(
Y
[q]
n

)]
. Since q 6 τ < 1/2 implies that q ∈ Selγ ( f ) and

since Selγ ( f ) = Selγ
(

f rdt(γ)
n,τ

)
= [0, τ], we can rewrite the foregoing equality as f

(
Y
[q]
n

)
� f rdt(γ)

n,τ

(
Y
[q]
n

)
.

This holding true for any q ∈ Selγ ( f ), any Y [q] ∈ Seq[q] and since f and f rdt(γ)
q,n have same selectivity

[0, τ], we derive from the foregoing and Definition 7 that Dγ ( f ) �∗ Dγ
(

f rdt(γ)
n,τ

)
.

We now prove that the oracles with level γ are approximated by RDT decisions.

Lemma 4 (Approximation of oracles with γ by RDT decisions in (2Cγ , �∗ )).

Setting DRDT(γ)
τ :=

{
Dγ

(
f rdt(γ)
n,τ

)
: n ∈ N

}
for any given γ ∈ (0,1), we have:

D∗γ = upper
(
D
RDT(γ)
τ ,

(
2Cγ , �∗

) )
= sup

(
D
RDT(γ)
τ ,

(
2Cγ , �∗

) )
Proof. According to (2) and [6, Theorem 2], we obtain:

∀(q, τ) ∈ [0,1/2) × [0,1/2),∀n ∈ N,Pdet

[
f rdt(γ)
n,τ

(
Y
[q]
n

)]
> Q1/2

(
(1 − q)

√
n, λγ(τ

√
n)

)
In [10], we proved that lim

σ→0
Q1/2(ρ/σ,λγ(τ/σ)) = 1]τ,∞[(ρ). Therefore, since τ < 1 − q, we have

lim
n→∞

Q1/2
(√

n(1 − q), λγ(τ
√

n)
)
= 1. Thus, lim

n→∞
Pdet

[
f rdt(γ)
n,τ

(
Y
[q]
n

)]
= 1. The set DRDT(γ)

τ ⊂ Dγ satisfies
Theorem 1 conditions for any γ ∈ (0,1) and Xγ = {τ}.

7. Multiplicity Principle in (2Cγ, �∗ )
To state the MP in (2Cγ , �∗ ), we need the following lemma.

Lemma 5 (Selectivity of NP tests). ∀n ∈ N, Selγ
(

f np(γ)
n

)
= {0}

Proof. A consequence of [6, Section B., p. 6.].

We have now all the material to state the main result.

Theorem 4 (Multiplicity Principle in (2Cγ , �∗ )). For any given τ ∈ [0,1/2), the MP is satisfied in
(2Cγ , �∗ ) by the pair

(
DNP(γ),D

RDT(γ)
τ

)
.

Proof. According to Theorems 2 and 3, the subsets DNP(γ) and DRDT(γ)
τ of 2Cγ are such that

sup
(
DNP(γ) ,

(
2Cγ , �∗

) )
= sup

(
DRDT(γ) ,

(
2Cγ , �∗

) )
= D∗γ

In addition, Lemma 5 implies that DNP(γ) × D
RDT(γ)
τ ∩ �∗ = ∅. The conclusion follows from Lemma

1.
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References

8. Conclusions and Perspectives
In this paper, via the framework provided by the Multiple Principle (MP), which is motivated by the
concept of degeneracy in biology, and by introducing the notions of test landscapes and selectivity, we have
established that this principle is satisfied when we consider the standard NP tests and the RDT tests applied
to a detection problem. One interest of this result is that it opens prospects on the construction of Memory
Evolutive Systems [2, 3] via tests.

More elaborated statistical decision problems should be considered beyond this preliminary work.
Sequential tests are particularly appealing because they collect information till they can decide with
guaranteed performance bounds. On the one hand, the Sequential Probability Ratio Test (SPRT) established
in [11] is proved to be optimal; on the other hand, in [10], we have exhibited non-optimal tests with
performance guarantees in presence of interferences. In the same way as NP and RDT tests satisfy PM, we
conjecture that these two types of sequential tests satisfy MP as well.
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