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Abstract: Information overload and complexity are core problems to most 

organizations of today.  The advances in networking capabilities have created 

the conditions of complexity by enabling richer, real-time interactions between 

and among individuals, objects, systems and organizations. Fusion of 

Information and Analytics Technologies (FIAT) are key enablers for the design 

of current and future decision support systems to support prognosis, diagnosis, 

and prescriptive tasks in such complex environments. Hundreds of methods and 

technologies exist, and several books have been dedicated to either analytics or 

information fusion so far. However, very few have discussed the methodological 

aspects and the need of integrating frameworks for these techniques coming from 

multiple disciplines. This paper presents a discussion of potential integrating 

frameworks as well as the development of a computational model to evolve 

FIAT-based systems capable of meeting the challenges of complex environments 

such as in Big Data and Internet of Things (IoT). 
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1 Introduction 

All organizations have a tendency of generating more and more information that 

obviously challenges decision-makers and analysts with a deluge of potentially 

valuable data. The data deluge [1] is a result from a multitude of advanced sensors 

and sources capable of generating a diversity and a volume of data never 

envisioned before. Decision-makers and analysts cannot cope with that flow of 

data, without any impact on decisions quality and on actions efficiency. On the 

other hand, decision-makers can foresee value in that data deluge which can 

translate to technological opportunities, for instance, the Internet of Things [2-8] 

and the Big Data [9-12]. More and more, IoT and Big data are perceived as two 

sides of the same coin where Big Data would be a subset of IoT [13-15].  Big Data 

is evidently contextual to Cyber-Physical and Social Systems (CPSS) [16-20].  

CPSS emerge from the interrelation of social, cognitive, information/cyber and 

physical worlds as pictured in figure 1. Social and cognitive dimensions interface 

with the physical world through the cyber world.  

 

Figure 1 CPSS versus CPS (Source: [12]) 
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Considering the interface between the information/cyber and physical worlds, 

one can imagine CPSS as a network of networks of humans and machines (Cyber-

Physical Systems (CPS)).  In CPS [21], computations are integrated with physical 

processes. This is either called Cyber-Physical Systems (CPS) or Internet of 

Things (IoT) depending on the community of origin (engineering or computer 

sciences) [22].   ‘Embedded Systems’ are considered as predecessors of CPS. CPS 

is not being discussed is this paper since it concerns more multisensory data fusion 

techniques and there exist excellent books [23] and surveys [24], [25], [26], [27] 

on that.  Note that CPS and IoT do not necessarily imply complexity while CPSS 

can be considered as a typical complex system. 

The discussion here concerns potential methods to benefit from Fusion of 

Information and Analytics Technologies (FIAT) to cope with complexity. CPSS 

demand multidisciplinary contributions from human and social sciences, physics, 

engineering and computer sciences to meet system overall challenges such as: 24/7 

availability, 100% connectivity, predictability and repeatability, real-time, etc. The 

advances in Information and Communications Technologies (ICT) in particular 

smart ICT, to which FIAT belong, although providing a lot of benefits to improve 

dependability, efficiency and trustworthiness in systems, have also increased 

tremendously the networking capabilities so creating the conditions of complexity 

by enabling richer, real-time interactions between and among entities that 

compose CPSS. As a result, events that may once have had isolated consequences 

can now generate a cascade of consequences that affect badly system dependability 

and trustworthiness. The question is how to assemble a set of FIAT that would 

support decision makers in such complex systems? 

The development of FIAT can facilitate decision-makers to get ways to 

communicate and understand complex insights and take efficient action. FIAT can 

be assembled into dynamic, real-time and near real-time, decision support systems 

(DSS) that are capable of supporting prognosis, diagnosis, and prescriptive tasks. 

Several applications involving data analytics and information fusion have already 

demonstrated that in current complicated systems. The question is then: what 
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theories, concepts, models and tools can help to achieve the same kind of 

objectives but within complex systems?  Note that from a FIAT-based decision 

support system perspective, Big Data and IoT are problems to solve but from the 

decision-makers perspective, they represent opportunities and they are called Big 

Data and IoT technologies. 

FIAT-based DSS meant to improve the quality of information (QoI) that in turn 

will improve the quality of decisions, which is directly linked with the capacity to 

ensure dependability and obtain trustworthiness in systems. By system 

dependability, we mean the main aspects described throughout the literature 

[28],[29]: reliability, safety, availability, maintainability and security. The 

objectives for the development of FIAT-based decision support tools (or a network 

of tools) could be illustrated as in figure 2 that represents our frame of thought 

throughout the whole discussion.  

Situation Awareness (SAW) is somehow related to the quantity and the quality 

of information available to an individual say, a decision-maker: no information 

should result in poor SAW so very low decision quality as indicated on the lower 

left portion of figure 2. Providing “all information, everywhere, at all time” does 

not necessarily mean better SAW since too much information may exceed the 

human information processing capabilities, resulting in a cognitive overload 

(lower right portion of figure 2). Second, a portion of the data may be seen as noise 

to decision-maker because it is irrelevant. The decision-maker must detect and use 

only a relevant fraction of the information, called ‘useful bandwidth’ in figure 2.  

Such considerations bring the concept of  “the right information, at the right place, 

at the right time”, in turn leading to the notion of information relevance to provide 

actionable knowledge to deciders (desired zone of operation in figure 2). 

FIAT are represented by the analytics and information fusion processes to 

support measuring, organizing, understanding, and reasoning with data-

information-knowledge (DIK). Using an analogy brought by the signal processing 

community and pictured in figure 2, one can imagine a useful ‘information’ 

bandwidth where the overall goal would be to provide only useful information to 

deciders. That conceptual multidimensional ‘useful bandwidth’ could be defined 

by assembling appropriate FIAT to lead to intelligent filtering and with metadata 

approaches [30]. In fact, in the presence of a deluge of data, the emphasis is upon 

classification and prioritization of information required to execute a given task 

[31]:  “As data become abundant, the main problem is no longer finding the 

information as such but laying one’s hands on the relevant bits easily and quickly.” 

Dependability has been addressed extensively in physical systems and 

computer engineering [29], [32], [33]. However, to ensure dependability in CPS 

[34] is very immature due to our poor understanding of the cyber-physical 

interface, mainly due to the consequences of the cyber-objects interactions. One 

can imagine the complications in CPSS with the addition of a social computing 

dimension. The dependability assessments of distributed physical systems have 

been particularly focused on the probabilistic modeling of random behaviors, given 

sufficient informative data.  In future CPSS, traditional ways to provide DS for the 

four general cybernetic functions (integration, monitoring, coordination, control) 
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must be revisited, adapted or even more often reinvented. That reinvention requires 

an obliged passage through FIAT. 

Figure 2  FIAT supporting deciders/operators to be in a desired zone of operation: 

(Adapted from Source [12] p.52) 

 

This paper is in fact a transversal cut through the 8 chapters of the authors’ 

recent book [12] published by Artech House entitled “Fusion of Information and 

Analytics for Big Data and IoT”. The transversal cut provides an overview of 

potential methods that look promising for the design of FIAT-based decision 

support systems in complex dynamic environments as CPSS. Details of 

algorithms, technics, methods, examples and more complete literature surveys can 

be found in the book [12]. 

The paper is organized as follow. Section 2 describes the high-level 

characteristics of complex systems that challenge any FIAT design intervention. 

Section 3 discusses FIAT potential integrating frameworks. Section 4 introduces 

the essential elements toward the construct of a computational FIAT model. 

Section 5 terminates with the concluding remarks. 
 

2.  Characteristics of Cyber-Physical and Social Systems (CPSS)  
 

Complexity is a consequence of interactions of elements within a system and 

between a system and its environment. Complexity is present in several natural 

systems but now, with the evolution of networking, human-made systems (e.g. 
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parallel and distributed computing systems, artificial intelligence systems, etc 

) exhibit complex behaviors. These behaviors emerge as a result of nonlinear 

spatio-temporal interactions among a large number of system components at 

different levels of the organization. Cyber-Physical and Social Systems (CPSS), or 

Complex Adaptive Systems or simply Complex Systems is the way they are called. 

A complex adaptive system (CAS) is being defined succinctly in [35] as “a 

collection of semi-autonomous agents that are free to interact in unpredictable 

ways, and whose interactions generate system-wide patterns.  Over time, those 

emergent patterns influence the subsequent behaviors of the participating agents.”  

Table 1 below presents their main characteristics.  

 
 Table 1 –  Main characteristics of complex systems. 

Characteristics Description 

Emergence 

Out of the interactions between the individual elements in the 

systems, behaviour emerges at the level of the system as a whole. 

- the overall behavior usually cannot be explained merely as the 

sum of individual parts.   

Non­linearity 

Non-linear dynamics: 

- may suddenly change behaviour or move to another regime.  

- relatively small changes may lead to large effects. 

Limited 

predictability 

Behaviour cannot be well predicted. Small changes in initial 

conditions can lead to very different dynamics over time.  

Evolutionary 

dynamics 

Systems are shaped by evolutionary dynamics:   

- selection of elements that are fit to cope with variations causing 

new variation. 

- cycles of  variation-selection-multiplication-variation of 

elements.  

- elements in a system can change based on their interactions. 

Self-organisation 

Systems operate without central control: 

- often characterised by a certain order.  

- distributed control. 

- organise themselves from the bottom-up. 

- interrelationships between elements of the system produce 

coherence. 

Fundamental 

Uncertainty 

Complex systems are extremely hard to predict: 

- future states are fundamentally uncertain. 

- three pattern dynamics: organized, self-organized, non-

organized 

     - organized: close to certainty so easier to plan and control. 

     - self-organized: hardly predictable so tension between 

stability and surprise. 

     - non-organized: seek patterns to push towards self-organized. 
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What is the difference between a complex and a complicated system? A 

complicated system is the one where the number of parts, and their relationships 

are hidden from view. To understand such a system, a reductionist method can be 

used: the parts are separated from each other and the relationships clearly defined. 

A complicated system can be understood in terms of its parts.  If the whole of the 

system is different from the sum of its parts, then it is complex. Each part is 

massively entwined with others, and the emergent pattern cannot be discerned 

from its components. Complicated and complex systems require different methods 

of analysis.  With complicated systems, methods based upon repetition, 

replication, predictability, and functional decompositions are being used while in 

complex systems, we have methods based on pattern description, 

contextualization, and dynamic evolution. In CPSS, we are dealing with a 

spectrum of pattern dynamics from: organized, self-organized and non-organized. 

Interactions between elements of a complex system is the most important ‘aspect’ 

to model the phenomenon since they partly determine the future states of the 

system [36, 37]. Agent-based technologies and network sciences are extremely 

important to model and simulate complex systems phenomena [38].  

 

2.1 System of systems engineering principles: fundamental remarks 

 

The realization of the complex interface between cyber and physical worlds is 

challenged by the concurrent nature and laws of physics governing our world, as 

opposed to the discrete and asynchronous nature of the cyber world. Adding the 

social dimension through the cyber world (by what is labeled social computing in 

figure 2) evolves CPS to CPSS sometime alternatively referred as ‘complex 

networks’, ‘system-of-systems’, ‘network centric systems’, ‘socio-technical 

systems’. Some excerpts below reflect challenges encountered facing this 

complexity:  

- from [39], “CPS changes the notion of the physical systems (e.g., aircraft, 

vehicle) to include human, infrastructure, and platform in a system-of-

systems, creating a uniquely large scope and context in which the system 

behavior must be predictable and provable. The resulting systems-of-systems 

are highly networked and dynamic in nature, with complexity, e.g., software 

size, growing at an exponential rate, with increasing time-critical 

interactions between purely physical elements and highly intangible cyber 

elements (e.g. social computing)”;  

- from [40], “System integration is the elephant in the China store of large-

scale Cyber–Physical Systems (CPS) design. It would be hard to find any 

other technology that is more undervalued scientifically and at the same time 

has bigger impact on the presence and future of engineered systems. The 

unique challenges in CPS integration emerge from the heterogeneity of 

components and interactions. This heterogeneity drives the need for 

modeling and analyzing cross-domain interactions among physical and 
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computational/networking domains and demands deep understanding of the 

effects of heterogeneous abstraction layers in the design flow.” 

System of systems engineering methodologies and Enterprise Architecture 

(EA) [41] are emerging approaches to deal with the development and maintenance 

of CPSS. Architectures help in managing complexity through techniques such as 

modularization and abstraction at various levels, and facilitate changes by 

providing a documentation of the components, relationships, and constraints of the 

systems or processes. It is worth considering, or perhaps, anticipating the general 

concepts or principles from which such complex systems might be constructed in 

the future. The following two general concepts and principles are emerging from 

literature: 

 1) the concept of composition, defined in figure 3 as composability and 

compositionality, that is very important to deal with complexity through system 

scalability, modularity, abstraction and to exploit homomorphism in constructing 

layered systems and services; 

 2) the principles of a transcendence/emergence pair: also defined in figure 3, 

where self- organization concepts such as the autonomic principles brought by 

IBM [42, 43] are guided by a transcendent concept ‘task to be performed’: the goal 

here is to realize software systems and applications that can manage themselves 

under high-level supervision from humans. 

  In CPSS, the combined scale, complexity, heterogeneous and dynamics of 

networks, systems and applications impose ever increasing constraints on 

information infrastructure that alternate paradigms and strategies need to be used 

to ensure system dependability and trustworthiness. Autonomic systems [44] are 

characterized by their self-properties: “self-configuration, self-healing, self-

optimization and self-protection”. The principles of systems transcendence and 

emergence impact greatly on the principle of composition for complex systems. 

Bernard-Weir [45] discusses the principle of transcendence and proposed points 

about the system’s evolution that could be directed by “the concept of a task to be 

performed” (a sort of “blueprint”) and stated that random causality and 

unpredictable unfolding may not be sufficient to explain such evolution. He states 

about the concepts of Self-Organization (SO), emergence, and the concepts of 

hetero organization and immergence. “SO does not (self-) organize at random. … 

Self Organisation (SO) is a very important concept, but it is not sufficient in itself. 

Too much stress has been placed on the unpredictability and the novelty of the new 

states or levels that would emerge by virtue of SO.” Bernard-Weir [45] makes 

reference to Agonistic Antagonistic System Sciences (AASS) for the 

transcendence versus immanence pair that proved its efficiency in various domains 

from biomedical to social sciences. He presents a series of examples from the 

biological field where the recurrence of the same general mechanisms may be 

observed at every level of evolution (a kind of life model): “actions of pairs such 

as stimulation/inhibition, gene expression/repression, trophotrope/ergotrope 

regulation, information/catalysis, phenotype/genotype …”. 
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Figure 3  General principles of complex systems engineering 

 

Figure 4  Cyber-Physical and Social Systems (CPSS): (Adapted from Source [12] 

p.20) 

 

Highly relevant to this discussion on CPSS, Bernard-Weil [45] continues this 

way: “ …when socially complex organizations and firms have emerged, the pairs 

of the life model, or their corresponding properties, are found again. … According 

to this concept, a social system, for instance, would reach an optimal equilibration 

between ruling powers and developmental trends, if self-organizational processes 

were introduced in its functioning. This is, however, far from being certain. The 
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specialists of management are quite right in claiming that strategies of emergence, 

though they might well contribute to generate new types of organization, will not 

necessarily bring forth solutions to the dysfunctions within the firms, if they are 

not combined with deliberate strategies.” 

 

2.2 Decision Support in complex systems: CPSS 

 

Decision making is involved in all aspects of our lives, and it is of particular 

importance for the critical CPSS in: transport, defense and security, health, and 

energy. With the advancement of information and communications technologies, 

CPSS environments, in addition of being composed of networks of CPS or IoT, 

become more and more complex and amplify the Vs dimensions of Big Data: 

Volume, Veracity, Value, Velocity, Variety, and Visualization. That presents real 

challenges in terms of decision support. Understanding the process of decision-

making is necessary for the design of decision support solutions (desired zone in 

figure 2). 

 The oversimplified Boyd’s Observe-Orient-Decide-Act (OODA) loop [46], 

illustrated in figure 4, is used to describe the decision process. Although the OODA 

loop might give the impression that activities are executed in a sequential way, in 

reality, the activities are concurrent and hierarchically structured. The processes of 

the loop are typically performed in a very dynamic and complex environment, and 

are heavily influenced by factors such as uncertainty, information and knowledge 

imperfections and time stress. The Boyd’s OODA loop has been developed for 

human dynamic decision-making in military environment. It has however being 

used as well in civilian domains. The OODA applications include information 

fusion [47],[48], analytics and business intelligence [49],[50], autonomic systems 

[51], cultural modeling  [52], and cyber security [53] to name a few. 

The four CPSS environments in figure 4 present cases where interdependent 

decisions take place in a dynamic environment due to previous actions or decisions 

and events that are outside of the control of the decision-maker [54]. In addition to 

conventional one-time decisions, CPSS present dynamic decisions. The latter field 

is typically more complex than one-time decisions and much relevant to the 

environments of Big Data and IoT. In addition, dynamic decisions occur in real-

time. In complex CPSS, if we wish to provide efficient computer-based decision 

support, understanding and framing the problem is the most important step. Over 

the years, multiple efforts have been deployed to better understand and explain the 

decision-making process in rather complicated environments. The case has now 

evolved to CPSS. 

Among these models, two main influential streams [55],[56] are generally 

recognized to understand decision-making. The first stream refers to a rational 

approach that is based on formal analytic processes predicted by normative 

theories of probability and logic. The second stream, called naturalistic or intuitive 

theories, is based on informal procedures or heuristics to make decisions within 

the restrictions of available time, limited information, and limited cognitive 

processing. Bryant et al. [55] insist upon a continuum in decision strategy to adopt 
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the approach that is best tailored to the situation and may use elements of the two 

approaches at the same time as illustrated on figure 5. Ideally, it is that continuum 

of decision strategies that systems based on FIAT must support. Part I of [57] 

provides detailed descriptions and analysis of the various decision-making models. 

 

Figure 5  A continuum of decision-making strategies: (Adapted from Source [12] 

p.27) 

 

 

2.2.1 FIAT-based Decision Support  

 

At this point, the question is what is FIAT?  The answer is an assemblage of 

techniques and methods to analyze (analytics) and synthesize (fusion) information 

from multiple sources to support a decision cycle (e.g. OODA). In figure 6 an 

assemblage of FIAT is proposed around three main categories to be considered in 

a holistic fashion (through an integrating framework, e.g. archetypal dynamics) for 

the design of FIAT-based support systems [58]: 1) Multi-Agent Systems (MAS) 

theories to formalize the distributed system aspect and the notion of autonomy; 2) 

Generalized Information Theory (GIT) [59] for knowledge, information and 

uncertainty representation; and, 3) decision theories (represented by Operational 

Research (OR) in figure 6) in order to explicitly account for actuation (e.g. 

decisions-actions and their impact). 

We assume here that OR also includes dynamic decision-making methods and 

techniques. The challenge is to assemble an appropriate set of techniques and 

methods that will support – measuring-organizing- reasoning-understanding-

deciding and acting about/upon situations in complex environments such as CPSS 

in conditions of data overload and complexity. Note that the three categories of 

FIAT in figure 6 follow the line of thought of the archetypal dynamics triad 

(explained later): representation (GIT) – interpretation (OR) – realization 

(distributed systems - MAS). Taking individually, the techniques in figure 6 can 

only resolve aspects of the problems associated with complex systems. An 

assemblage of techniques and methods guided by a sort of transcendence principle, 

as discussed above, shows a better potential to address the multi-faceted problems 
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of complex systems. This assemblage is ‘Analytics and Information Fusion’: a 

processing chain that “transform data into actionable knowledge”.  Meaning 

transcends from actuation (contexts of actions).  Semantics grows as the 

transformations (FIAT) progress data towards actionable knowledge.  Figure 7 

presents the most known data-information fusion model (right) associated with a 

high-level description of analytics (left). 

  

Figure 6   Main categories of FIAT: (adapted from  [12] p.53) 

. The data fusion model maintained by the Joint Directors of Laboratories’ Data 

and Information Fusion Group (JDL DIFG) is the most widely-used approach for 

categorizing data fusion-related functions [60]. The JDL distinction, among fusion 

‘levels’ in figure 7, provides a valuable way of differentiating between data fusion 

processes that relate to the refinement (semantic levels and growth) of “objects, 

situations, threats, and processes”. The fusion process also progresses through a 

hierarchical series of inferences at varying levels of abstraction (data-information-

knowledge as shown in figure 7). The exploitation of contexts in the inferences 

processes aims at an increase in semantics that is only obtained by “what one can 

do with the information?” i.e. ‘actionable’ knowledge. There are numerous books 

available that present more definitions, explain concepts in details, develop 

mathematical techniques and models related to figure 7 [57], [61], [23], [62], [49], 

[63]. 
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Figure 7 Sheikh’s proposal definition of analytics; and the JDL model: (adapted 

from Source [12] pp.44 et 53)  

 

Eckerson [64] defines analytics as: “everything involved in turning data into 

insights into action.” This is a quite broad definition that could include ‘data and 

information fusion’ of the preceding section but does not help understanding 

analytics from an applied point of view. Unlike information fusion community, the 

analytics community did not benefit from a well-structured organization like JDL 

to fix the terminology in order to ease communication amongst communities. The 

joint MIT Sloan and IBM Institute for Business Value report [65] define ‘analytics’ 

as “the use of data and related insights developed through applied analytics 

disciplines (for example, statistical, contextual, quantitative, predictive, cognitive, 

and other models) to drive fact-based planning, decisions, execution, management, 

measurement and learning.”  

Operational analytics is “the process of developing optimal or realistic 

recommendations for operational decisions (real-time and near-real time) based on 

insights derived through the application of statistical models and analysis against 

existing and/or simulated future data, and applying these recommendations in 

operational interactions.” The taxonomy associated to Analytics is highly related 

to BigData.  In a recent paper [66],  important terms related to “big data” included:  

“data integration” and “computational science”, “clouds”, “cloud computing” 

“Hadoop”, “MapReduce”, “big science” , “data sciences” “NoSQL,” and “data 

warehouse”, “cyberinfrastructure“, “data mining”, “data warehouse”.  

The definition of analytics associated to Big Data becomes more and more 

confusing with various vendors, consultants, and trade publications defining and 

offering new technologies. As Sheikh points out in his book [67], analytics is one 

of the hot topics on today’s technology landscape (also referred as Big Data). 

Analytics is not new and originates from business intelligence. It has been 

rejuvenated with Big Data. Figure 7 (left) illustrates Sheikh’s proposal [67] to 

define analytics based upon a business and a technical implementation perspective. 

The business value perspective looks at data in motion as it is generated through 
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normal conduct of business. For this data, there are three variations of value: the 

present, the past, and the future, in the exact order as represented on figure 7. 

When data is created, referenced, modified, and deleted during the course of 

normal business activities, it lives in an operational system. The operational 

system at any given time can tell us what we are doing now. The data from day-

to-day operations (e.g. selling merchandise, reviewing applications, etc.) is 

accumulated for record keeping and starts to build history in a data warehouse. 

Reporting can then be done to help understanding how a business did (e.g. total 

sales) in the last month, quarter, or year. These analysis reports provide managers 

the tools to understand the performance of their departments. This leads into the 

question that ‘Analytics’ should help to answer “what should we be doing within 

departments and business units to improve business performance?”  

Any tools, technologies, or systems that help with this question can qualify to 

be in the analytics space. The technical implementation perspective described in 

Sheikh [67] is also the tangent adopted by Das [49] in his recent book on 

computational business analytics. Das’ book describes the characteristics of 

analytics in terms of the techniques used to implement analytics solutions. They 

are listed in figure 7. In the analytics literature, three general types of analytics 

make consensus even though terminology may differ: descriptive, predictive and 

prescriptive. A lot of good reference books are available to describe these 

techniques particularly under data mining and machine learning fields [68].  

In summary, both analytics (from business intelligence and operations) and 

information fusion (military intelligence and operations) share the same sets of 

techniques (figure 6). They could be assembled in a different way depending upon 

the contexts and domains of application. Both analytics and information fusion 

have the same kind of goals: to create situation awareness for decision makers. In 

practice, analytics has been more dedicated to collecting,  organizing, structuring, 

storing and visualizing data (variety and volume) under mainly inductive and 

abductive reasoning processes (e.g. machine learning, data mining) while 

information fusion has been more on synthesizing information (veracity, velocity 

and value) under deductive reasoning processes (e.g. estimation and prediction, 

uncertainty management, impact assessment) both for operational decision 

support. 

  

2.2.2 Situation Awareness, Situation Analysis, Complex Events and Situations 

 

Situation AWareness (SAW) [69] is a concept around dynamic human decision-

making (DM) in both military and civilian complex environments. Situation 

analysis (SA) is defined as the process that sustains a state of situation awareness 

for the decision maker(s). The SA process is the provision of decision quality 

information to the decision maker, thereby enabling timely situation awareness. A 

recent state of the art on this topic is provided in chapter 2 of [61]. Endsley [69] 

provides a theoretical model of SAW based on its role in dynamic human decision 

making. SAW is defined along three main processes: “ 1) the perception of the 

elements in the environment, within a volume of time and space; 2) the 
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comprehension of their meaning; and 3) the projection of their status in the 

future.” Part I of [57] presents a detailed analysis of the Endsley’s model and its 

relationship with respect to decision-making models and the cognitive demands of 

a human to perform a task.  

 Llinas [70] raises issues involving interdependencies among the situation 

analysis processes (e.g. analytics, fusion, sense-making) and decision-making 

processes for complex decision-making environments.  He advocates that a critical 

examination of inter-process (situation analysis and decision making) 

interdependencies (see figure 4) is needed to design Decision Support Systems 

(DSS) for optimum performance.  He recommends an integrated, multidisciplinary 

approach (cognitive sciences, human factors, decision sciences and computer 

sciences), otherwise DSS designs will remain disconnected and suboptimal. The 

interconnected processes identified by Llinas [70]  are: 1) automated FIAT-based 

situation analysis process ; 2) sense-making and information foraging (for further 

reading [71],[72]); and, 3) decision-making, a semi-automated process that 

operates in an analytic, an intuitive or a “hybrid/mixed” decision-making mode to 

support actuation onto the real-world situation. 

Roy [73] defines Situation Analysis (SA) as: “a process, the examination of a 

situation, its elements, and their relations, to provide and maintain a product, i.e., 

a state of situation awareness, for the decision maker”; and a situation as: “A 

specific combination of circumstances, i.e., conditions, facts, or states of affairs, 

at a certain moment.” The SA process is concerned with understanding the world. 

The situation can be defined in terms of events, entities, scenes, systems, people, 

etc., and their mutual interactions as pictured in figure 8.  Entities and events are 

quite important elements of concern for SA. 

A complex event is a composition of events that suggest more complicated 

circumstances. Examples of  events may be:  “sales leads, orders or customer 

service calls, news items, text messages, social media posts, stock market feeds, 

traffic reports, weather reports, or other kinds of data”.  Complex Event Processing 

(CEP) methods [74],[75],[76] track and process streams of information (data) from 

multiple sources about events, establish temporal and causal dependencies 

between them, infer patterns and derive conclusions (such as opportunities or 

threats) from all that. This is quite an important set of analytics methods and 

technologies, part of FIAT, that have applications for system health monitoring, 

anomalies and fraud detection, Internet of Things, and for situation analysis in 

general. CEP provides ways to analyze patterns in real-time and can be of prime 

importance in the composition of services for the enterprise.  

Granular Computing [77, 78] is another set of analytics methods and 

technologies that has emerged in recent years. It concerns the representation, 

construction and processing of complex information entities called information 

granules. Information granules are the result of a data abstraction and derivation 

process of knowledge from data and information. They can be treated as linked 

collections of objects or entities that, from the numeric level are pinched together 
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by the criteria of indistinguishability, similarity, proximity or functionality, 

coherency, or the like.  

 

Figure 8   Six epistemic questions for situation assessment: (Source [12] p.32) 

 

The above examples of methods (e.g. sense-making, foraging, granular 

computing) refer to FIAT-based support systems that can provides answers, in 

whole or in part, to the six basic epistemic questions excerpted from Sulis [79] that 

have been listed in figure 8. Phrased in a different way, similar questions appeared 

in Nicholson [80] with respect to situation awareness: “what are the objects of 

interest? where are they? how are they moving? where have they been? and where 

might they be going?” Objects could refer to either physical objects, such as 

vehicles, or symbolic objects such as terrorist events, system faults or business 

plans.  

Finally, ‘complex situations’ could be defined by considering the level of 

complexity of such situations. This is the approach reported in Guitouni [81] as 

part of an analysis conducted to support the Canadian Crisis and Emergency 

Management community with respect to complexity:  “compositions and 

interactions of variables in a situation that affect the cause and the effects, the 

sources and accuracy of information, the communication and decision making 

processes, and the activities/actions that are required to achieve a desired end-

state.” Guitouni [81] presented the key variables (figure 9) that have been 

identified as being influential for situations complexity. For instance, crisis and 

emergency response plans revealed a number of common variables in emergency 

situations resulting from terrorist activities and asymmetric threats. They can be 

grouped into four categories (figure 9) of response team, adversary, environment 

and incident.  Further details on these four categories can be found in [81]. 
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Figure 9 Framework listing the common variables characterizing complex 

situations 

 

 

 

 

3.  FIAT Integrating Frameworks  

 

The literature is quite poor on integrating frameworks or computational models 

that would ease the design of FIAT-based support systems. FIAT supports a 

process to ‘transform data into actionable knowledge’ for sense making, to reduce 

uncertainty and, thus, to improve dependability in systems. The making-sense 

process is highly related to actions of any agent being a human or a machine. A 

goal-driven, or activity-based, approach sounds appropriate for that process. In a 

recent survey (2010) of information fusion (IF) frameworks, Llinas [82] 

concluded: “While a number of efforts have been made to define a robust, 

extended-domain IF Framework, our review of past works indicates that no such 

Framework has been well-defined.” Llinas, in coordination with the Board of the 

International Society for Information Fusion (ISIF) created in 2011, the “Fusion 

Process Model and Frameworks Working Group (FPMFWG)” recognizing the 

insufficiency in the current level of advancement of the JDL model to support the 

design of IF systems for complex dynamic environments. Recently, we see a sort 

of convergence between the analytics and IF communities about hard-soft fusion 

[83], [84], [85]. The fusion of hard and soft information comprises analytics 

technologies. 

The development of a framework in which knowledge, information and 

uncertainty can be represented, organized, and structured is a core requirement. 

Such integration FIAT framework should: 1) provide means to represent 

knowledge through well-defined notions of situation and awareness; 2) support the 

modeling of uncertainty, belief, and belief update; 3) provide the key 

‘computational model’ for FIAT and linkage to actions (users and machines); 4) 
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provide practical support for system design through modularization, refinement, 

validation, and verification; 5) offer a good compromise between operational and 

functional modeling in capturing systems behaviour; 6) enable rapid prototyping 

and experimental validation of fairly abstract models; and finally, 7) support 

modeling of multi-agent systems. 

A very limited number of information fusion frameworks have been proposed 

in the literature that offer partial fulfillment of the above mentioned requirements. 

A number of significant and powerful ‘Analytics’ tools and techniques have been 

offered to scientific and engineering communities for organizing, integrating and 

visualizing large volumes of data. One can think at: MapReduce [86], HADOOP 

[87], EXALEAD [88] to name a few. In the domain of information fusion alone, 

noticeable efforts have recently been dedicated to define an integration fusion 

framework: the State Transition Data Fusion (STDF) model introduced in [89], the 

Interpreted Systems for Situation Analysis (ISSA) in [90], Abstract State Machine 

(ASM) methods in [91] for high-level design and analysis of distributed systems, 

OODA-based agents in [92], the recombinant design approach in [93], fuzzy 

cognitive maps used for situation assessment [94]  and recently, the holonic 

processing framework of [95],[96] based on Sulis’ archetypal dynamics [97].  

 

3.1 The Archetypal Dynamics Framework 

 

Archetypal Dynamics (AD) is almost unknown to the information fusion and 

analytics communities. Sulis [79] introduced AD as: “Archetypal dynamics is a 

formal framework for dealing with the study of meaning laden information flows 

within complex systems.” Let replicate here what has been written on AD in 

Solaiman et al. [95]: “ This is a formal framework for dealing with the study of the 

relationships between systems, frames and their representations and the flow of 

information among these different entities. The framework consists of a triad of: 

semantic frame (representation), realizations (system) and interpretation 

(agent/user). Real systems relate to semantic frames through one of the dimensions 

of that triad. The viewpoint of archetypal dynamics is that meaning is tight with 

actions. A semantic frame is an organizing principle that ascribes meaning in a 

coherent and consistent manner to phenomena that have been parsed into distinct 

entities, mode of being, modes of behaving, modes of acting and interacting.” The 

archetypal dynamics triad has been illustrated in the right portion of figure 6. The 

semantic frame (defined later in the next section) provides partial answers to the 

six basic epistemic questions presented in figure 8. Full answers would suppose 

that one know the ground truth. In archetypal dynamics, the way the information 

is understood is not in the sense of Shannon (i.e. the quantity of information), but 

in its active sense:  “Information possesses content and elicits meaning.”  

Sulis [98, 99] proposes the mathematical framework of tapestries which is a 

formal representational system. Tapestries represent information flow by means of 

multi layered, recursive, interlinked graphical structures that express both 

geometry (form or sign) and logic (semantics). Sulis [98] presents a detailed 

mathematical description of a specific tapestry model, the causal tapestry, selected 
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for use in describing behaving systems. Observables are represented by tapestry 

‘informons’ while subjective or hidden components (for example intellectual and 

emotional processes) are incorporated into a reality game that determines the 

tapestry dynamics. Details on causal tapestries can be found in Sulis’ thesis [99], 

namely in Appendix C and D where the basic ideas of process theory, archetypal 

dynamics, causal tapestries and emergence are described. An implementation of a 

causal tapestry for a realistic analytics or information fusion problem is still 

required in view of comparison and valuation with respect to other frameworks 

below. A holonic computational model has been proposed in [95, 96] using the 

ideas of informon from archetypal dynamics and holons from complex systems 

theory to progress towards a potential FIAT computational model. Some of the 

elements are discussed in section 4. 

 

3.2 The State Transition Data Fusion (STDF) 

 

The State Transition Data Fusion, STDF, model introduced by Lambert [89] is a 

functional model aiming at an unification of the notions of “object, situation, and 

impact” (Levels 1-3) JDL fusion. In Solaiman et al. [95], STDF is briefly described 

as: “It views the world at time k as a composition of states s(k). At time k, the world 

is understood in terms of the history of its state transitions up to time k. At time k 

+ 1, different states of the world may be sensed by the sensors. This new data is 

fed into the observation process identifies the detections, normalizes the detections 

to a frame of reference, and then utilizes the prediction process to match the new 

observation to one or more previously predicted states of the world. An object 

instance of the world is represented at time t as a state vector u(t) of the measured 

values and the understanding of that object at time k is captured as a set of 

transitioning state vectors. A situation is represented at time t as a set of statements 

about the world (state of affairs) in some formal language [100] and it is 

understood at time k as a set of transitioning states of affairs. Finally, impact 

assessment in STDF presents an understanding of the world in terms of scenarios. 

A scenario instance at time t is expressed as a set of transitioning situations 

projected into the future. Scenario prediction in STDF involves assessment of 

intent, awareness, and capability of agents.” Much more details on STDF can be 

found in chapter 3 of [61] as well as in [89].Similar to causal tapestry, an 

implementation is due to compare with other frameworks.  

3.3 The Interpreted Systems Situation Analysis (ISSA) Approach 

Maupin and Jousselme [90] used the notion of Interpreted Systems from Fagin et 

al. [101] and they showed its potential in simple situations comprising few agents. 

Interpreted Systems is a formal semantic framework for reasoning about 

knowledge and uncertainty. Maupin et al. [90] proposed to use it as a general 

framework for situation analysis referred here as ISSA. In Solaiman et al. [95] 

ISSA is briefly described as: “The ISSA approach provides a formal framework 

for reasoning about knowledge and uncertainty and for dealing with belief change 
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concepts in a distributed systems context. Unlike STDF, ISSA comes with a 

computational underlying formal framework for modeling a distributed system. 

ISSA views distributed computations of concurrent and reactive systems as 

evolution of states, assuming multiple computational agents interacting with one 

another as well as with their operational environment representing the external 

world. The underlying computation model, in ISSA, defines the behavior of a 

distributed system as the set of all admissible runs originating in a distinguished 

set of initial system states.” Details on ISSA can be found in chapters (4, 14) of 

[61]. However, the value of ISSA as an integrating framework has yet to be 

demonstrated since the application of ISSA has been limited so far to a few number 

of academic examples. It requires further work involving more real-life or realistic 

scenarios. 

3.4 Abstract State Machines (ASM) 

Abstract State Machine (ASM) method is a scientifically and industrially 

recognised systems engineering method for the design and analysis of complex 

systems. This method guides the development of embedded systems from 

requirements capture to their implementation. It supports the designer to cope with 

size, complexity and trustworthiness. This method deserves to be looked at for the 

design of FIAT-based systems to be embedded in CPSS since, from [102]: “The 

method bridges the gap between the human understanding and formulation of real-

world problems and the deployment of their algorithmic solutions by code-

executing machines on changing platforms. It covers within a single conceptual 

framework both design and analysis, for procedural single-agent and for 

asynchronous multiple-agent distributed systems.” 

The ASM method for systems high-level design and analysis builds on the 

concept of abstract state machines [91, 102, 103] and brings together two tasks of 

requirement capture and system design. The goal is to improve industrial systems 

development by integrating high-level abstract modeling into the software 

development cycle down to executable code. The method presents three essential 

phases: a) a requirements capture and  the development of an abstract operational 

model: a ground model , b) an incremental refinement of the ground model down 

to the implementation, and c) an experimental validation, by simulation or testing, 

of the models at each level of abstraction. This approach can be used to design 

FIAT-based intelligent support systems as demonstrated in [91]. For further details 

on ASM, see [102],[103].  

 

3.5 Remarks on FIAT integrating frameworks? 

None of the above frameworks have been demonstrated so far to be fully 

appropriate for the design of FIAT-based support systems facing realistic scenarios 

( i.e. presenting at least some characteristics of complex systems – Table 1). At the 

basis, the ASM is a universal computation model of distributed systems. The 

system view of STDF and ISSA, in terms of transitioning states and especially 

STDF in defining the structure of the states, fits very well with the notion of 

abstract state machines. The set of states in STDF can be mapped to the global 
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state of a distributed abstract state machine and the notion of state transition would 

be captured by the notion of computation steps in ASMs. On the top of this 

foundation, the information fusion concepts of object, situation, and scenario, 

present in STDF unified model, can thus be defined. Sensor signals will be 

modeled by monitored functions that receive input from the environment. The 

view of ISSA toward knowledge representation, uncertainty, and belief changes 

enables to model situation awareness of agents as part of their local states. 

Semantic values in STDF, i.e. the understanding of an object, a situation, or a 

scenario, are defined based on the whole history of transitioning states of the 

corresponding entities. In a distributed ASM at any given state, agents have access 

to the values of functions and terms only in the current state of the machine. 

However, with the freedom of abstraction in ASMs, one can introduce a notion of 

‘history of values’ which would expose, in the current state of the machine, the 

historical values of functions in the previous states of the machine. 

A formal computational framework for the design of FIAT-based systems is 

unavoidable if one is interested in representing and reasoning about dynamic 

situations and producing solid system designs that can be experimentally validated 

and systematically verified. Such a framework should not only provide a basic 

model for FIAT and means to represents knowledge and uncertainty, but it should 

also offer practical support for systems engineering and experimental validation of 

models as ASM can provide.. In order to satisfy the set of requirements for such a 

formal framework, we propose, as of future work, to analyze in details the formal 

approaches, causal tapestries, STDF and ISSA, with the systems design and 

analysis approach of ASMs (language of functional programming). This analysis 

has been started in [91] and needs to be pursued considering the notions of 

archetypal dynamics [104] and the holonic approach of Solaiman et al. [95]. A 

strengths and weaknesses analysis of STDF, ISSA and ASM potential integrating 

frameworks for the design of FIAT-based systems can also be found in chapter 7 

of [12]. 

4.  Elements of a Computational FIAT model 

In an attempt to define a FIAT computational model also called information fusion 

framework, the authors [95, 96, 105], have proposed an approach based on a 

holonic functional processing. The framework is a goal-driven approach suitable 

for processing any semantic level of the JDL information hierarchical abstraction 

model (data-information-knowledge) with notions to take into account quality of 

information (QoI) [106] for managing the fusion process.  

4.1 Definition of an Information Element 

The quality of information produced by a fusion process is highly related to the 

definition of its basic components and the quality of its associated knowledge. As 

stated in [95]: “Observing data from a given set is not enough to make it an 

informative entity. Information hence requires a content set, how its outcome is 
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obtained and what it refers to.” That leads to the following definition of an 

information element from [95] illustrated in figure 10:  

 

Figure 10 A basic Information Element (ℐ) structure 

 

Definition, an Information Element is: “an entity composed of a definition set and 

a content set linked by a functional relationship called informative relation, 

associated with internal & external contexts.” 

Therefore, as shown in figure 10 and described in [95], the main components 

of an information element are:  “ 1) a Definition Set giving the potential 

information input elements (what the information refers to); 2) a Contents Set 

encoding the possible knowledge produced by the information (e.g. measurements 

or estimations of physical parameters, decisions, hypothesis); 3) an input-output 

relationship representing the “functional link – informative relation” model (e.g. 

mathematical, physical) that associates the input elements with the produced 

information contents; 4) an Internal Context gathering intrinsic characteristics, 

constraints or controls about the informative relation itself; 5) an External 

Context containing data, information or knowledge useful to the elaboration of the 

meaning or the interpretation of the Information Element. The information element 

(ℐ), is denoted as:  ℐ = (Information definition set, Informative relation, 

Information content set, Internal Context, External Context).” 

Internal and external contexts, the basic general properties of an (ℐ) such as 

exhaustivity, exclusivity and incompleteness, along with the characterization of  

(ℐ) have all been defined in [12, 95]. An information element ℐ = (Θ, 𝑋, Ω) is 

considered as “fully characterized” if the following features are known, besides 

the input and output sets Θ and Ω:  

“1) Information Input Scope (ISc) indicating how the informative relation 

considers the elementary objects from the definition set (single-arity, plural-arity, 
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fuzzy-arity); 2) Information Output Scope (OSc) indicating how the informative 

relation considers the elementary objects from the contents set (single-arity, plural-

arity, fuzzy-arity, semantic status  ); 3) Imperfection Status (St) indicating if the 

information element is considered as Perfect (precise and certain) or Imperfect 

(Uncertain, Imprecise or Ambiguous); 4) Imperfection available knowledge in 

terms of Belief Model (BM); 5) Information reliability weight (R); 6) Information 

consistency degree (Cons);and, a semantic status Ψ .”In this case, a fully 

characterized information element ℐ is denoted as (figure 11):  

 

 ℐ = [(Θ, 𝑋, Ω), IS𝐶 ,  OS𝐶 , 𝑆𝑡, 𝐵𝑀, 𝑅, 𝐶𝑜𝑛𝑠, Ψ ] (1) 

 

4.2  Notion of a semantic status  

 

In the literature, the terms data, information and knowledge are not always clearly 

distinguished [107]. However, each refers to ideas and concepts that, after 

examination, will appear differentiable. A distinction, yet clearly apparent in 

current language when talking about data from a physical problem, information 

brochure on a commodity, while the term of knowledge remains vested in the 

mastering of a technic or holding an important function. The terms are distinct 

since they do not reflect the same reality, and they convey different levels of 

signified that we call later ‘semantic status’. The advances in the development of 

techniques emphasize that distinction by dedicating to them separate roles and 

processing. Their conceptual and implementation approaches are different in the 

architecture of information systems. Finally, the literature has gradually addressed 

data fusion, information fusion and recently, more and more papers appear on 

knowledge fusion [108],[109]. 

To highlight the importance of the information contents on acting or its impact 

on the decision-making, it is interesting to introduce here a concept to reflect its 

position in the context of a semantic field; called semantic status. This will help 

justify the order on the following: data, information and knowledge. The semantic 

status is defined as: Order 0 (data), when its informative contents remains 

constant as it can be neither increased nor decreased; Order 1 (information), if 

its informative contents may change, for instance, under the processing applied to 

it; Order 2 (knowledge), to indicate that its information contents can be 

significantly enriched through the intervention of cognition and also by an act of 

human appropriation. The way to measure the semantic status (), to make the 

fusion process aware of a semantic status and to represent it, is still an open 

research question. For now, let us include  in the definition of the input and 

output scopes: IS𝐶 ,  OS𝐶. However, it could very well be part of external context. 

4.3 Composition of an Information fusion cell 

Information fusion approaches mainly focus on the establishment of adequate 

Belief Models (BM) characterizing intrinsic information imperfections, as well as 

on the development of reasoning tools allowing imperfect information processing 
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and fusion, through joint “merging” of these belief models. The most widely used 

belief models dealing with single information elements are: probability 

distributions Pr{. } [110], evidential mass functions 𝑚(. ) [111],[112] and 

possibility distributions 𝜋(. ) [113],[114]. As previously shown, these belief 

models allow representing, reasoning, processing and merging all forms of 

intrinsic imperfections that may affect punctual information elements,  ℐ. In [95], 

the concept of Information Fusion Cells (ℐℱ𝒞) is introduced as the smallest 

granular component of information fusion systems. ℐℱ𝒞 is then considered as an 

“intermediate conceptual level” between different individual information elements 

and the global information processing systems. This behavior has been exhibited, 

in chapters 4-6 of  [12], according to several fusion computational strategies. 

 

Figure 11.  Information Fusion Cell (ℐℱ𝒞) Concept: (Adapted from Source [12] 

p.140) 

 

The Quality of Fusion (QoF), as illustrated in figure 11, measures the quality 

of the fusion process itself and not the quality of the produced information. It may 

be constraints or indicators relative to the fusion process (not the information 

which have their own quality description - QoI). Both information fusion and 

analytics provide services to users (machines or humans). Efficiency and 

effectiveness are important in delivering those services. The quality of services 

depends on several criteria derived from notions such as: “ timeliness, accuracy, 

throughput, confidence, cost, completeness, consistency, correctness, currency, 

precision, relevance, and various types of uncertainty associated to information. “ 

An ℐℱ𝒞 is composed of information fusion core functions labelled as ‘ℐℱ𝒞 

computational functions’ in figure 11. The revised JDL [115],[60], presented a 

fusion node construct (similar to an ℐℱ𝒞)  upon three functions: “ Common 

Referencing, Data Association, and State Estimation.” Another source, Nicholson 

[80], used five core functions: “Detection, Classification, Prediction, Correlation 

and Assimilation (function of combining) “ for a situation awareness processing 
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engine. The idea in Solaiman et al. [95] is to propose a more exhaustive set of core 

functions for an ℐℱ𝒞. The 8-computational functions of an ℐℱ𝒞 are: “alignment, 

detection, partition, combination, veracity, estimation, prediction, association.”  

A better characterization of properties of an ℐℱ𝒞, formal approaches such as in 

Kokar et al. [116] using category theory, or interpreted systems as with ISSA [90], 

state-space approach of STDF [89], and ‘causal tapestries’ of Sulis’ archetypal 

dynamics [97] could contribute to adapt and advance current software engineering 

methodologies for specifying a computational FIAT model. In [95], [96], the 

authors state that the core functions are holonic since they can be applied to any 

semantic status  (data-information-knowledge) provided one can make the 

process self-aware of . The core functions have been described as holons. Holons 

form dynamic hierarchies called holarchies that are networks of ℐℱ𝒞𝑠. For 

instance, meta-agents, at JDL level-4, can manage the ‘fusion’ holarchy and allow 

a certain degree of control over lower levels of fusion.  

 

Figure 12.  Processing strategies for fusion: (Source [12] p.141) 

 

4.4 Computational Strategies for Information Fusion Cells  

Most information processing systems consider information elements as fully 

reliable (i.e. having unit reliability weights) and fully consistent (having unit 

consistency degrees). Otherwise, these contextual imperfection indicators are 

expressed and computed using available prior information.   An Information 

Fusion Cell (ℐℱ𝒞) is defined as the “basic fusion platform” allowing the fusion of 

two information elements (Figure 12):  

ℐ1 = [(Θ1, 𝑋1, Ω1), IS𝐶1,  OS𝐶1,  𝑆𝑡1, 𝐵𝑀1, 𝑅1, 𝐶𝑜𝑛𝑠1] (2) 
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ℐ2 = [(Θ2, 𝑋2, Ω2), IS𝐶2,  OS𝐶2,  𝑆𝑡2, 𝐵𝑀2, 𝑅2, 𝐶𝑜𝑛𝑠2] (3) 

 

“ The ℐℱ𝒞 concept is illustrated in figure 12 with the following notations: 

Θ1⊕2 (resp. Ω1⊕2) denotes the resulting information definition (resp. content) set; 

𝐼𝑆𝐶1⊕2 (resp.  OS𝐶1⊕2) denotes the resulting information input (resp. output) 

scope; 

 𝑆𝑡1⊕2 is the resulting information imperfection status; 

𝐵𝑀1⊕2 is the resulting belief model associated with the information element ℐ1⊕2; 

𝑅1⊕2 (resp. 𝐶𝑜𝑛𝑠1⊕2) denotes the resulting reliability weight (resp. consistency 

degree).” 

Thus, depending on the ℐℱ𝒞 structural and semantic meaning aspects of both 

the input and the resulting information elements, four ℐℱ𝒞 categories, called ℐℱ𝒞 

types, can be identified. These four types widely corresponding to semantic 

objectives encountered for fusion strategies are presented in chapters 4-5 of [12]: 

- Processing Strategy 1: Type 1 (Data Fusion); - Processing Strategy 2: Type 2 

(Parallel Belief Fusion); - Processing Strategy 3: Type 3 (Sequential Belief 

Fusion); - Processing Strategy 4: Type 4 (Competitive Belief Fusion). 

A crucial and challenging information fusion tasks concerns the situation where 

the available belief models 𝐵𝑀1and 𝐵𝑀2 come from different mathematical 

representation models. For instance, in the case where the resulting information 

element is punctual (OS𝐶1⨁2 ≡ 𝑆𝑖𝑛𝑔𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡), several configurations can be 

encountered referred as hybrid competitive belief models fusion: Case 1: 

Probabilistic & evidential models fusion; Case 2: Possibilistic & evidential models 

fusion; Case 3: Probabilistic & possibilistic models fusion; and the more general, 

Case 4: Probabilistic & possibilistic & evidential models fusion. To the knowledge 

of the authors, nothing has been done so far for Case 4. It represents the case where 

you choose the best representation with respect of the type of the information 

sources: use probabilistic with statistical-type data, use evidential with testimony-

type, use possibilistic with vague and incomplete information. See chapters 4-6 of 

[12] for more details. 

4.5  Quality of Information (QoI): a need for developing measures and metrics 

Information and data quality topic has been receiving more attention in the recent 

years in both civilian and military domains. The problem of representing and 

incorporating quality characteristics into the design of analytics and information 

fusion processes is still highly unresolved. There is no unique definition of 

information quality. In fact, the literature presents several definitions of 

information quality:  “1. Quality is the totality of characteristics of an entity that 

bear on its ability to satisfy stated and implied needs’ [117]; 2. ‘Quality is the 

degree to which information has content, form, and time characteristics, which 

give it value to specific end users’ [118]; 3. ‘Quality is the degree to which 

information is meeting user needs according to external, subjective user 

perceptions’ [119]; 4. ‘Quality is fitness for use’ [120].” Quality of Information 

(QoI) is a ‘user-centric’ notion. Users can be either humans or automated agents 

or models. QoI is a meta-information is ‘information about information’.  
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Measuring the value of this meta-information is through its attributes. In  [121], 

the authors argue that “without clearly defined attributes and their relationships, 

we are not just unable to assess QoI; we may be unaware of the problem.”. By 

attributes, we may mean information imperfections. That emphasizes the Veracity 

dimension in the Big Data problem.  

QoI, its representation, interpretation, measuring and processing are probably 

the most important and difficult tasks of a FIAT-based process. There have been 

multiple views on QoI, identifying quality attributes and classifying them into 

broad categories and relations. In [119] (Wang & Strong), data quality was 

classified into four categories: “ intrinsic, contextual, representational, and 

accessibility.”  In [122], three categories were enumerated: “ pragmatic, semantic, 

and syntax ” while in [121], four sets were identified: “ integrity, accessibility, 

interpretability and relevance ”.  In [123], they used “ relevance, reliability, 

completeness and uncertainty “ as illustrated in figure 13. The information quality 

ontology presented in [124],[125] is one of the first attempt to define information 

quality and its interrelated dimensions.  

Figure 13.  Four QoI dimensions that required formalization to be used in FIAT-

based designs: (Adapted from Source [12] p.113) 

Amongst the four main aspects of figure 13, uncertainty-based information and 

its measures is certainly the most developed in terms of formalization, measures 

and its processing.  

 

Measures of uncertainty - More recently, significant efforts [126],[127], 

[128],[129],[130] have been pursued to address the evaluation of techniques of 

uncertainty reasoning and to define an ontology for uncertainty reasoning. These 

efforts contribute towards the understanding of QoI and the formalization of some 

criteria that could be used for the design of FIAT support systems. However, 

research is still ongoing and requires additional efforts to get a QoI ontology. In 

fact, from all the efforts just mentioned, there are mainly four main aspects of 

information quality that offer formalizations exploitable in computer-based 

support systems, namely on: uncertainty, reliability, completeness, and relevance 

[12] shown in figure 13. 

In the classical theory of probability, Shannon’s entropy is the tool used for 

quantifying uncertainty. The approach is to verify a set of desirable properties for 
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probability distributions. In situations where the probabilistic representation is 

inadequate, the approach is an axiomatic one, by assuming a set of necessary basic 

properties that a measure must verify. Abellán et al. [131, 132] extend the set of 

required properties originally defined by Klir et al. [133] for a total uncertainty 

measure in Dempster-Shafer Theory. Their extension concerns a monotonicity 

property that is quite important in the design of a FIAT-based system. 

 

Figure 14. Circular uncertainty typology adapted from [134, 135] 

 

 

Based on Klir and Wierman’s classification, Liu et al. [134] developed a 

circular typology of uncertainty that has been slightly modified as it appears on 

figure 14. Three general terms are used to designate the combinations of: i) 

nonspecificity and discord, i.e. ambiguity, ii) nonspecificity and fuzziness, i.e. 

imprecision, and iii) fuzziness and confusion, i.e. nondisguishability. The term 

uncertainty refers to the combination of these three basic kinds. The dotted circle 

on figure 14a, that encircles the notion of fuzziness and vagueness, is plotted to 

illustrate that the typology of the various kinds of uncertainty may be classified in 

different ways. For instance, beyond the concept of fuzziness is the broader 

concept of vagueness which simply means that borderline cases arise when 

representing set elements. Modelling borderline cases by degrees of truth or 

membership is only one of many solutions. Vagueness is thus a kind of uncertainty 

that is detected when borderline cases arise, i.e. objects for which we cannot decide 

if they belong or not to a given concept. Just like for uncertainty, different kinds 

of vagueness can be identified. 

In the framework of evidence theory (Dempster-Shafer), the belief function can 

model both nonspecificity and discord. The fuzzy sets theory, representing and 

managing vague information, deals with fuzziness and nonspecificity as main 

kinds of uncertainty. The most adequate framework for representing uncertainty 

when dealing with all three kinds of uncertainty is the combination of the evidence 

and fuzzy sets theory, i.e. fuzzy evidence theory [135]. Each type of uncertainty 
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can be quantified in fuzzy evidence theory and a general measure of uncertainty 

named ℳ𝐺𝑀 is being proposed in [135] along with a new measure of total 

uncertainty in fuzzy sets theory, named ℳ𝐼𝑀. The general measure of uncertainty 

is an aggregate measure including all kinds of uncertainty. Figure 14b illustrates 

the approach used in  [135] to show the consistency with respect to existing 

uncertainty measures in classical set, fuzzy sets, probability, fuzzy probability and 

evidence theories. The approach is based on the reduction of the uncertainty of to 

a fuzzy basic probability assignment (bpa), from ℳ𝐺𝑀 which quantifies fuzziness, 

discord and nonspecificity to 0 where no uncertainty can be measured (figure 14b).  

Three basic operations aiming at artificially reducing the uncertainty of a fuzzy 

bpa are proposed: (1) defuzzification, (2) specification, and (3) accordance. This 

scheme leads then to six (6) different ways, as pictured on figure 13b, to make 

ℳ𝐺𝑀 decreasing to 0, through the different quantities of uncertainty according to 

the circular typology (figure 13a) with  ℳ𝐴𝑀, ℳ𝐼𝑀, ℳ𝐹𝑍, ℳ𝑁𝑆, ℳ𝐷𝐶, ℳ𝑁𝐷: 1) 

Defuzzification transforms a fuzzy bpa into a crisp one. When applied to a fuzzy 

set, defuzzification gives a crisp set, while applied to a fuzzy probability 

distribution, defuzzification gives a classical probability distribution. 2) 

Specification that transforms a fuzzy bpa into a fuzzy probability distribution. 

When applied to a fuzzy set, specification gives a nonspecific fuzzy set (‘pure’ 

fuzzy set), while applied to a crisp set, specification gives a singleton. 3) 

Accordance that transforms a fuzzy bpa into a fuzzy set. When applied to a fuzzy 

probability distribution, accordance gives a nonspecific fuzzy set, while applied 

to a classical probability distribution accordance gives a singleton. 

Abellán et al. [131] as well as Liu et al. [135] examine a certain number of 

measures ( ℳ𝐴𝑀, ℳ𝐼𝑀, ℳ𝐹𝑍, ℳ𝑁𝑆, ℳ𝐷𝐶, ℳ𝑁𝐷, ℳ𝐺𝑀) associated with the 

circular uncertainty typology (extension of  Klir’s typology) of figure 13. 

However,  despite of significant recent contributions [136],[131],[134],[137],[138] 

on measures of uncertainty, great challenges are still unresolved: 1) More 

investigations are required to attach meaning to those measures. The pragmatics 

has not been established yet. What those measures are really measuring?  2) 

Meeting a set of mathematical properties may not mean a meaningful translation 

to real world systems; 3) Definition of properties that a total measure of uncertainty 

shall possess in order to be used in the management of FIAT-based support 

systems.    

Measures of relevance - Another crucial aspect of QoI is relevance of 

information. If appropriately formalized, relevance [139],[140],[141] could benefit 

to any intelligent filtering and context-aware processing system and impacts 

positively on quality of decisions. Measures of relevance are not presented as such 

in the literature. The relevance dimension of QoI is about semantics, thus measures 

of similarity or other semantic measures [142], [143]  might be a starting point to 

define metrics that would help in a FIAT-based design. This dimension of QoI, to 

be exploitable, would necessitate formalizations. Until now, the literature is 

presenting too few of contributions on it.  This dimension is critical for Big Data 

and online intelligent applications. 
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For lack of space, reliability and completeness will not be discussed here. 

Completeness might be related to aspects of uncertainty.  Reliability and trust have 

received a great deal of attention in the literature since several papers and books 

have already been published on these topics. Still an open research question is how 

the four dimensions of QoI are related to the dimensions of system dependability 

and trustworthiness,  the overall objective of a FIAT-based support system (figure 

2)? 

4.6  Contexts, semantic frames and ontologies 

Data acquire meaning through context. Context establishes the basis for discerning 

meaning of its subjects and may occur at many levels. Exploitation of contextual 

knowledge is necessary for situation analysis and consequently for its support 

through FIAT-based systems. The most widely accepted definitions of context is 

from Dey [145] phrased as follows: “Context is any information that can be used 

to characterise the situation of an entity. An entity is a person, place, or object that 

is considered relevant to the interaction between the user and the application, 

including the user and the applications themselves.” 

 

Figure 15  Definition of context according to Zimmermann et al. [144] 

 

 

This general definition of context has been extended by Zimmermann et al. 

[144] who introduce a definition comprising three canonical parts: a definition per 

se in general terms, a formal definition describing the appearance of context and 

an operational definition characterizing the use of context and its dynamic 

behavior. Figure 15 shows the five categories of the formal definition as well as 

the elements of the operational extension. Zimmermann et al. [144] extend the 

definition by the description of the following five categories of elements: 

“individuality, activity, location, time, and relations.” These five fundamental 

context categories determine the design space of context models. The description 

of the five categories of elements is presented in Zimmermann et al. [144] for more 

comprehensive details. Their underlying motivation is to provide a structure that 
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bridges the user-developer gap from a general concept (e.g. Dey’s definition) 

easily understandable by the user to its engineering by software developers. This 

is more than required for the design of a FIAT tools suite to support situation 

analysis. Dey’s definition clearly states that “ context is always bound to an entity 

and that information that describes the situation of an entity is context.” 

A semantic frame can be thought of as a conceptual structure describing an 

event, relation, or object and the participants in it. In archetypal dynamics of Sulis, 

an informon acquires meaning through and from contexts. Semantic frames are 

built of contextual information. The fundamental idea is that a frame represents an 

object or a concept. Frames are stored as ontologies of sets and subsets of 

the frame concepts. Frame-based knowledge representation has been exploited in 

a non-exhaustive list of several applications such as: semantic web [146], object-

oriented and markup languages, ontologies, and information fusion.  

Ontologies are proving to be effective tools for capturing and specifying 

categorical information about objects at various levels of granularity, as well as the 

various sorts of relations that hold between them. Ontologies can be used to model 

physical objects (including their material composition, attributes and properties), 

non-physical or psychological objects (e.g. concepts, plans, intentions), temporal 

events (sequential or scattered processes), and relations between such items (e.g. 

logical, causal, dependence, internal, external, and intentional kinds of relations). 

Ontologies have been used to exchange information and knowledge representation 

in a variety of domains including the four critical CPSS: defense and security, 

health, transport and energy. Ontologies are part of FIAT to represent domain 

contextual knowledge. 

The distributed nature of most contexts of application requires to relate 

heterogeneous ontological specifications and to integrate information from 

multiple diverse sources. The development of Ontology Management Methods 

(OMM) is then essential to cope with heterogeneity and to enable systems 

interoperability. OMM are required: for alignment [147],[148],[149]; for merging 

and translation [150],[151]; for revision and refinement [152], [153],[154].  

4.7 Future work toward a FIAT computational model 

The elements presented in this section represent a starting point toward a 

computational model for FIAT. Of course, if the context of application does not 

have the characteristics elicited in Table 1, the design of FIAT-based support 

systems might require less sophistication. Nevertheless, CPSS and its complexity 

are already a reality of our current world. Elements such as those discussed in this 

section as well as new ones must be developed to get that framework and 

computational model for a better exploitation of what FIAT can offer. 

5.  Conclusion 

Fusion of Information and Analytics Technologies (FIAT) is a sine qua non 

enabler to cope with Cyber-Physical and Social Systems (CPSS) facing 

information overload and complexity. FIAT will support rethinking of cyber 
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interface functions, such as coordination, integration, monitoring, and control and 

progress decision support concepts to be operational through these interface 

functions. FIAT-based decision support systems help mainly: 1) in making sense 

of an ever increasing complexity of our world; 2) to better exploit technological 

opportunities such as Big Data and IoT; 3) to improve the quality of information 

(QoI), to reduce and cope with uncertainty; 4) to support distributed decision-

making and execution of actions; and, 5) to ensure a proper overall system 

dependability and trustworthiness. Some of the techniques and methods, taken 

individually, may be quite mature but can only solve a facet of the problem. The 

problem is tremendously complex and the current paper has surveyed only a 

portion of the problem-space. The problem is multidisciplinary by nature and 

several books and paper would be required to explore the vast solution space. The 

engineering of an efficient FIAT processing chain to transform data-information-

to-actionable knowledge in complex dynamic environments is still quite immature. 

The authors hope that this paper would motivate the scientific and engineering 

communities to progress some of the approaches presented here and provide more 

implementable solutions to cope with that complexity. 

Acknowledgement 

The authors wish to thank those who have made possible the publication of the book 

entitled ‘Fusion of Information and Analytics for Big Data and IoT: Artech House, 2016’ 

from which the contents of this paper has been extracted, adapted and updated. 

References 

[1] P. McFedries, "The coming data deluge [Technically Speaking]," Spectrum, IEEE, 

vol. 48, pp. 19-19, 2011. 

[2] L. Atzori, A. Iera, and G. Morabito, "The internet of things: A survey," Computer 

networks, vol. 54, pp. 2787-2805, 2010. 

[3] F. Wortmann and K. Flüchter, "Internet of things," Business & Information Systems 

Engineering, vol. 57, pp. 221-224, 2015. 

[4] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A 

vision, architectural elements, and future directions," Future generation computer 

systems, vol. 29, pp. 1645-1660, 2013. 

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet 

of things: A survey on enabling technologies, protocols, and applications," IEEE 

Communications Surveys & Tutorials, vol. 17, pp. 2347-2376, 2015. 

[6] S. C. Mukhopadhyay and N. Suryadevara, "Internet of things: Challenges and 

opportunities," in Internet of Things, ed: Springer, 2014, pp. 1-17. 

[7] A. Whitmore, A. Agarwal, and L. Da Xu, "The Internet of Things—A survey of 

topics and trends," Information Systems Frontiers, vol. 17, pp. 261-274, 2015. 

[8] D. Bradley, D. Russell, I. Ferguson, J. Isaacs, A. MacLeod, and R. White, "The 

Internet of Things–The future or the end of mechatronics," Mechatronics, vol. 27, 

pp. 57-74, 2015. 

[9] M. B. Nirmala, "A Survey of Big Data Analytics Systems: Appliances, Platforms, 

and Frameworks," Handbook of Research for Cloud Infrastructures to Big Data 

Analytics, pp. 393-419, 2014. 



   

 

   

   

 

   

   

 

   

    Fusion of Information and Analytics: A Discussion on Potential Methods to 

Cope with Uncertainty in Complex Environments (Big Data and IoT) 
   

 

 

    

 

 

   

   

 

   

   

 

   

       
 

[10] M. Chen, S. Mao, and Y. Liu, "Big data: A survey," Mobile Networks and 

Applications, vol. 19, pp. 171-209, 2014. 

[11] U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody, "Critical analysis of Big 

Data challenges and analytical methods," Journal of Business Research, vol. 70, pp. 

263-286, 2017. 

[12] É. Bossé and B. Solaiman, Fusion of Information and Analytics for Big Data and 

IoT: Artech House, Inc., 2016. 

[13] K. Pawar and V. Attar, "A survey on Data Analytic Platforms for Internet of Things," 

in Computing, Analytics and Security Trends (CAST), International Conference on, 

2016, pp. 605-610. 

[14] T. Dull, "Big data and the Internet of Things: Two sides of the same coin," SAS Best 

Practices, 2015. 

[15] N. Jesse, "Internet of Things and Big Data–The Disruption of the Value Chain and 

the Rise of New Software Ecosystems," IFAC-PapersOnLine, vol. 49, pp. 275-282, 

2016. 

[16] Z. Liu, D.-S. Yang, D. Wen, W.-M. Zhang, and W. Mao, "Cyber-physical-social 

systems for command and control," IEEE Intelligent Systems, vol. 26, pp. 92-96, 

2011. 

[17] H. Zhuge, "Cyber-Physical Society-The science and engineering for future society," 

Future Generation Computer Systems, vol. 32, pp. 180-186, 2014. 

[18] G. Xiong, F. Zhu, X. Liu, X. Dong, W. Huang, S. Chen, et al., "Cyber-physical-

social system in intelligent transportation," IEEE/CAA Journal of Automatica Sinica, 

vol. 2, pp. 320-333, 2015. 

[19] J. Zeng, L. T. Yang, M. Lin, H. Ning, and J. Ma, "A survey: Cyber-physical-social 

systems and their system-level design methodology," Future Generation Computer 

Systems, 2016. 

[20] P. Jiang, K. Ding, and J. Leng, "Towards a cyber-physical-social-connected and 

service-oriented manufacturing paradigm: Social Manufacturing," Manufacturing 

Letters, vol. 7, pp. 15-21, 2016. 

[21] H. Gill, "From vision to reality: cyber-physical systems," in Presentation, HCSS 

National Workshop on New Research Directions for High Confidence 

Transportation CPS: Automotive, Aviation and Rail, 2008. 

[22] S. Jeschke, "Cyber-Physical Systems - History, Presence and Future," ed, 2013. 

[23] M. Liggins, D. Hall, and J. Llinas, Handbook of Multisensor Data Fusion: Theory 

and Practice, Second Edition: Taylor & Francis, 2008. 

[24] D. Smith and S. Singh, "Approaches to multisensor data fusion in target tracking: A 

survey," Knowledge and Data Engineering, IEEE Transactions on, vol. 18, pp. 

1696-1710, 2006. 

[25] G. Navarro-Arribas and V. Torra, "Information fusion in data privacy: A survey," 

Information Fusion, vol. 13, pp. 235-244, 2012. 

[26] E. F. Nakamura, A. A. Loureiro, and A. C. Frery, "Information fusion for wireless 

sensor networks: Methods, models, and classifications," ACM Computing Surveys 

(CSUR), vol. 39, p. 9, 2007. 

[27] B. Khaleghi, A. Khamisa, F. O. Karraya, and S. N. Razavi, "Multisensor data fusion: 

A review of the state-of-the-art," Information Fusion, vol. 14, pp. 28-44, 2013. 



   

 

   

   

 

   

   

 

   

    Éloi Bossé and Basel Solaiman    
 

    

 

 

   

   

 

   

   

 

   

       
 

[28] A. Avizienis, J.-C. Laprie, and B. Randell, Fundamental concepts of dependability: 

University of Newcastle upon Tyne, Computing Science, 2001. 

[29] L. Petre, K. Sere, and E. Troubitsyna, Dependability and Computer Engineering: 

Concepts for Software Intensive Systems. Hershey, USA IGI Global, 2012. 

[30] M. Johnson and C. N. Dampney, "On category theory as a (meta) ontology for 

information systems research," in Proceedings of the international conference on 

Formal Ontology in Information Systems-Volume 2001, 2001, pp. 59-69. 

[31] (2010, February) Data, data everywhere. The Economist - A Special Report on 

Managing Information. Available: http://www.economist.com/node/15557443 

[32] K. Wan and V. Alagar, "Dependable Context-Sensitive Services in Cyber Physical 

Systems," in Trust, Security and Privacy in Computing and Communications 

(TrustCom), 2011 IEEE 10th International Conference on, 2011, pp. 687-694. 

[33] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla, "Improving the analysis 

of dependable systems by mapping fault trees into Bayesian networks," Reliability 

Engineering & System Safety, vol. 71, pp. 249-260, 2001. 

[34] E. A. Lee, "Cyber physical systems: Design challenges," in Object Oriented Real-

Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium 

on, 2008, pp. 363-369. 

[35] G. Eoyang, "Human systems dynamics: Competencies for a new organizational 

practice," Practicing organization development: A guide for leading change, pp. 

446-456, 2010. 

[36] C. Gershenson, Design and control of self-organizing systems: CopIt Arxives, 2007. 

[37] C. Gershenson, "The implications of interactions for science and philosophy," 

Foundations of Science, vol. 18, pp. 781-790, 2013. 

[38] M. Niazi and A. Hussain, "Agent-based computing from multi-agent systems to 

agent-based models: a visual survey," Scientometrics, vol. 89, pp. 479-499, 2011. 

[39] R. Poovendran, "Cyber–physical systems: Close encounters between two parallel 

worlds [Point of view]," Proceedings of the IEEE, vol. 98, pp. 1363-1366, 2010. 

[40] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis, V. Gupta, 

et al., "Toward a science of cyber–physical system integration," Proceedings of the 

IEEE, vol. 100, pp. 29-44, 2012. 

[41] M. A. Solano and G. Jernigan, "Enterprise data architecture principles for High-

Level Multi-Int fusion: A pragmatic guide for implementing a heterogeneous data 

exploitation framework," in Information Fusion (FUSION), 2012 15th International 

Conference on, 2012, pp. 867-874. 

[42] N. Agoulmine, Autonomic Network Management Principles: From Concepts to 

Applications: Elsevier Science, 2010. 

[43] P. Horn, "Autonomic computing: IBM\'s Perspective on the State of Information 

Technology," 2001. 

[44] M. Parashar and S. Hariri, Autonomic computing: concepts, infrastructure, and 

applications: CRC press, 2006. 

[45] E. Bernard‐Weil, "Transcendance, an essential concept for system and complexity 

sciences to spread out," Complexity, vol. 6, pp. 23-35, 2000. 

[46] C. Richards, "Boyd’s OODA loop," Slideshow. URL: http://www. dni. 

net/fcs/ppt/boyds_ooda_loop. ppt [Online, 2001. 

[47] E. Blasch, R. Breton, and É. Bossé, "User Information Fusion Decision Making 

Analysis with the C-OODA Model," in High-Level Information Fusion Management 

http://www.economist.com/node/15557443
http://www/


   

 

   

   

 

   

   

 

   

    Fusion of Information and Analytics: A Discussion on Potential Methods to 

Cope with Uncertainty in Complex Environments (Big Data and IoT) 
   

 

 

    

 

 

   

   

 

   

   

 

   

       
 

and Systems Design, E. Blasch, É. Bossé, and D. A. Lambert, Eds., ed: Artech 

House, 2012, pp. 215-232. 

[48] E. Shahbazian, D. E. Blodgett, and P. Labbé, "The extended OODA model for data 

fusion systems," in Proceedings of the 4th International Conference on Information 

Fusion (FUSION2001), Montreal, 2001. 

[49] S. Das, Computational Business Analytics: Taylor & Francis, 2013. 

[50] J. Taylor, Decision Management Systems: A Practical Guide to Using Business 

Rules and Predictive Analytics: Pearson Education, 2011. 

[51] J. Strassner, "Knowledge Representation, Processing, and Governance in the 

FOCALE Autonomic Architecture," Autonomic Network Management Principles: 

From Concepts to Applications, p. 253, 2010. 

[52] E. Blasch, P. Valin, E. Bossé, M. Nilsson, J. van Laere, and E. Shahbazian, 

"Implication of culture: user roles in information fusion for enhanced situational 

understanding," in Information Fusion, 2009. FUSION'09. 12th International 

Conference on, 2009, pp. 1272-1279. 

[53] D. Dittrich, A. Center, and M. P. Haselkorn, "Visual Analytics in Support of Secure 

Cyber-Physical Systems." 

[54] S. Ghosh, Algorithm design for networked information technology systems: 

Springer, 2004. 

[55] D. J. Bryant, R. D. Webb, and C. McCann, "Synthesizing two approaches to decision 

making in command and control," Canadian Military Journal, vol. 4, pp. 29-34, 

2003. 

[56] A. Guitouni, K. Wheaton, and D. Wood, "An Essay to Characterize Models of the 

Military Decision-Making Process," in 11th ICCRT Symposium, Cambridge UK, 

2006. 

[57] É. Bossé, J. Roy, and S. Wark, Concepts, models, and tools for information fusion: 

Artech House, Inc., 2007. 

[58] É. Bossé, A.-L. Jousselme, and P. Maupin, "Situation analysis for decision support: 

a formal approach," in Proceedings of the 10th International Conference on 

Information Fusion (FUSION 2007), Quebec City, 2007. 

[59] G. J. Klir, Uncertainty and information: foundations of generalized information 

theory: John Wiley & Sons, 2005. 

[60] A. N. Steinberg, C. L. Bowman, and F. E. White, "Revisions to the JDL data fusion 

model," in The Joint NATO/IRIS Conference, Quebec City, 1998. 

[61] E. Blasch, E. Bossé, and D. A. Lambert, High-level Information Fusion Management 

and Systems Design: Artech House, 2012. 

[62] D. L. Hall and J. M. Jordan, Human-Centered Information Fusion: Artech House, 

2010. 

[63] D. L. Hall and S. A. H. McMullen, Mathematical Techniques in Multisensor Data 

Fusion: Artech House, 2004. 

[64] W. W. Eckerson, Secrets of Analytical Leaders: Technics Publications, 2012. 

[65] D. Kiron, R. Shockley, N. Kruschwitz, G. Finch, and M. Haydock, "Analytics: The 

widening divide," MIT Sloan Management Review, vol. 53, pp. 1-22, 2011. 

[66] H. W. Park and L. Leydesdorff, "Decomposing social and semantic networks in 

emerging “big data” research," Journal of Informetrics, vol. 7, pp. 756-765, 2013. 



   

 

   

   

 

   

   

 

   

    Éloi Bossé and Basel Solaiman    
 

    

 

 

   

   

 

   

   

 

   

       
 

[67] N. Sheikh, Implementing Analytics: A Blueprint for Design, Development, and 

Adoption: Newnes, 2013. 

[68] I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and 

techniques: Morgan Kaufmann, 2005. 

[69] M. R. Endsley, "Toward a theory of situation awareness in dynamic systems," 

Human Factors: The Journal of the Human Factors and Ergonomics Society, vol. 

37, pp. 32-64, 1995. 

[70] J. Llinas, "Reexamining information fusion-decision making inter-dependencies," in 

Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2014 

IEEE International Inter-Disciplinary Conference on, 2014, pp. 1-6. 

[71] P. Pirolli and S. Card, "The sensemaking process and leverage points for analyst 

technology as identified through cognitive task analysis," in Proceedings of 

international conference on intelligence analysis, 2005, pp. 2-4. 

[72] P. L. Pirolli, Information foraging theory: Adaptive interaction with information: 

Oxford University Press, 2007. 

[73] J. Roy, "A knowledge-centric view of situation analysis support systems," TR 2005-

419) DRDC Valcartier. Technical Report2007. 

[74] L. J. Fülöp, G. Tóth, R. Rácz, J. Pánczél, T. Gergely, Á. Beszédes, et al., "Survey on 

complex event processing and predictive analytics," in Proceedings of the Fifth 

Balkan Conference in Informatics, 2010, pp. 26-31. 

[75] G. Cugola and A. Margara, "Processing flows of information: From data stream to 

complex event processing," ACM Computing Surveys (CSUR), vol. 44, p. 15, 2012. 

[76] F. Wang, S. Liu, P. Liu, and Y. Bai, "Bridging physical and virtual worlds: complex 

event processing for RFID data streams," in Advances in Database Technology-

EDBT 2006, ed: Springer, 2006, pp. 588-607. 

[77] W. Pedrycz, Granular computing: analysis and design of intelligent systems: CRC 

Press, 2013. 

[78] W. Pedrycz and S.-M. Chen, "Information Granularity, Big Data, and Computational 

Intelligence," ed: Springer, 2014. 

[79] W. Sulis, "Archetypal Dynamics," in Formal descriptions of developing systems. 

vol. 121, J. Nation, I. Trofimova, J. Rand, and W. Sulis, Eds., ed: Kluwer Academic 

Publishers, 2003, pp. 180-227. 

[80] D. Nicholson, "Defence Applications of Agent-Based Information Fusion," The 

Computer Journal, vol. 54, pp. 263–273, 2011. 

[81] A. Guitouni, "A Time Sensitive Decision Support System for Crisis and Emergency 

Management," NATO RTO-IST-086, C3I for Crisis, Emergency and Consequence 

Management. 

[82] J. Llinas, "A survey and analysis of frameworks and framework issues for 

information fusion applications," in Hybrid Artificial Intelligence Systems, ed: 

Springer, 2010, pp. 14-23. 

[83] J. Llinas, R. Nagi, D. Hall, and J. Lavery, "A multi-disciplinary university research 

initiative in hard and soft information fusion: Overview, research strategies and 

initial results," in Information Fusion (FUSION), 2010 13th Conference on, 2010, 

pp. 1-7. 

[84] D. L. Hall, M. McNeese, J. Llinas, and T. Mullen, "A framework for dynamic 

hard/soft fusion," in Information Fusion, 2008 11th International Conference on, 

2008, pp. 1-8. 



   

 

   

   

 

   

   

 

   

    Fusion of Information and Analytics: A Discussion on Potential Methods to 

Cope with Uncertainty in Complex Environments (Big Data and IoT) 
   

 

 

    

 

 

   

   

 

   

   

 

   

       
 

[85] R. R. Yager, "Hard and soft information fusion using measures," in 2010 IEEE 

International Conference on Intelligent Systems and Knowledge Engineering, 2010. 

[86] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large 

clusters," Communications of the ACM, vol. 51, pp. 107-113, 2008. 

[87] M. Olson, "Hadoop: Scalable, flexible data storage and analysis," IQT Quarterly, 

vol. 1, pp. 14-18, 2010. 

[88] W. Laura, "A Practical Guide to Big Data: Opportunities, Challenges & Tools," 

Dassault Systèmes, Paris2012 2012. 

[89] D. A. Lambert, "A blueprint for higher-level fusion systems," Inf. Fusion, vol. 10, 

pp. 6-24, 2009. 

[90] P. Maupin and A.-L. Jousselme, "Interpreted systems for situation analysis," in 

Proceedings of the 10th International Conference on Information Fusion 

(FUSION2007) Quebec City, Canada, 2007. 

[91] R. Farahbod, U. Glasser, E. Bossé, and A. Guitouni, "Integrating abstract state 

machines and interpreted systems for situation analysis decision support design," in 

Information Fusion, 2008 11th International Conference on, 2008, pp. 1-8. 

[92] P. Valin, E. Bossé, A. Guitouni, H. Wehn, and J. Happe, "Testbed for Distributed 

High–Level Information Fusion and Dynamic Resource Management," in Int. Conf. 

on Info Fusion, 2010. 

[93] M. A. Solano, S. Ekwaro-Osire, and M. M. Tanik, "High-Level fusion for 

intelligence applications using Recombinant Cognition Synthesis," Information 

Fusion, vol. 13, pp. 79-98, 2012. 

[94] S. Chandana, H. Leung, E. Bosse, and P. Valin, "Fuzzy cognitive map based 

situation assessment for coastal surveillance," in Information Fusion, 2008 11th 

International Conference on, 2008, pp. 1-6. 

[95] B. Solaiman, É. Bossé, L. Pigeon, D. Gueriot, and M. C. Florea, "A conceptual 

definition of a holonic processing framework to support the design of information 

fusion systems," Information Fusion, vol. 21, pp. 85-99, 2015. 

[96] H. Paggi, E. Bossé, M. C. Florea, and B. Solaiman, "On the use of holonic agents in 

the design of information fusion systems," in Information Fusion (FUSION), 2014 

17th International Conference on, 2014, pp. 1-8. 

[97] W. H. Sulis, "Archetypal Dynamics: An Approach to the Study of Emergence," in 

Formal Descriptions of Developing Systems, NATO Science Series Volume 121, 

2003, pp. 185-228. 

[98] W. Sulis, "Causal Tapestries," Bulletin of the American Physical Society, vol. 56, 

2011. 

[99] W. Sulis, "A Process Model of Quantum Mechanics," Ph.D Ph.D, Physics, 

University of Waterloo Waterloo, Ontario 2014. 

[100] D. Lambert and C. Nowak, "The Mephisto Conceptual Framework," Defence 

Science and Technology Organisation, DSTO-TR-2162, Australia2008. 

[101] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning About Knowledge: 

The MIT Press, 2003. 

[102] E. Börger and R. F. Stärk, Abstract State Machines: A Method for High-level System 

Design and Analysis; with 19 Tables: Springer, 2003. 



   

 

   

   

 

   

   

 

   

    Éloi Bossé and Basel Solaiman    
 

    

 

 

   

   

 

   

   

 

   

       
 

[103] R. Farahbod, U. Glässer, and M. Vajihollahi, "Specification and validation of the 

business process execution language for web services," in Abstract State Machines 

2004. Advances in Theory and Practice, ed: Springer, 2004, pp. 78-94. 

[104] W. Sulis, "Archetypal dynamics, emergent situations, and the reality game," 

Nonlinear dynamics, psychology, and life sciences, vol. 14, pp. 209-238, 2010. 

[105] É. Bossé, A. Guitouni, and P. Valin, "An essay to characterize information fusion 

systems," in Proceedings of the 9th International Conference on Information Fusion 

(FUSION2006), Firenze, Italy, 2006. 

[106] J. R. Talburt, Entity resolution and information quality: Morgan Kaufmann, 2011. 

[107] J. H. Bernstein, "The data-information-knowledge-wisdom hierarchy and its 

antithesis," NASKO, vol. 2, pp. 68-75, 2011. 

[108] J. Roy and A. B. Guyard, "A knowledge-based system for multiple hypothesis 

sensemaking support," in Information Fusion (FUSION), 2011 Proceedings of the 

14th International Conference on, 2011, pp. 1-8. 

[109] C. Laudy, "Introducing semantic knowledge in high level information fusion, Ph. D. 

Thesis, Université Pierre et Marie Curie, Paris, France," Ph. D. Thesis2010. 

[110] J. Pearl, Probabilistic reasoning in intelligent systems networks of plausible 

inference: Morgan Kaufmann Publishers, 1988. 

[111] G. Shafer, A Mathematical Theory of Evidence: Princeton University Press, 1976. 

[112] A. P. Dempster, "Upper and lower probabilities induced by a multivalued mapping," 

The annals of mathematical statistics, pp. 325-339, 1967. 

[113] L. Zadeh, "Fuzzy Sets as the Basis for a Theory of Possibility," Fuzzy Sets and 

Systems, vol. 1, pp. 3-28, 1978. 

[114] D. Dubois and H. Prade, Possibility Theory: An Approach to Computerized 

Processing of Uncertainty: Plenum Press, 1988. 

[115] C. L. Bowman and A. N. Steinberg, "Systems Engineering Approach for 

Implementing Data Fusion Systems," in Handbook of Multisensor Data Fusion, M. 

E. Liggins, D. L. Hall, and J. Llinas, Eds., ed: CRC Press, 2009, pp. 561-596. 

[116] M. M. Kokar, J. A. Tomasik, and J. Weyman, "Formalizing classes of information 

fusion systems," Information Fusion, vol. 5, pp. 189–202, 2004. 

[117] I. Standard, "8402," Terminology. Good mark, vol. 30, 1994. 

[118] J. A. O'brien and G. M. Marakas, Introduction to information systems vol. 13: 

McGraw-Hill/Irwin, 2005. 

[119] R. Y. Wang and D. M. Strong, "Beyond accuracy: what data quality means to data 

consumers," Journal of Management Information Systems, vol. 12, pp. 5-34, 1996. 

[120] J. M. Juran and J. A. De Feo, Juran's quality handbook: the complete guide to 

performance excellence: McGraw Hill, 2010. 

[121] M. Bovee, R. P. Srivastava, and B. Mak, "A conceptual framework and belief‐

function approach to assessing overall information quality," International journal of 

intelligent systems, vol. 18, pp. 51-74, 2003. 

[122] M. Helfert, "Managing and measuring data quality in data warehousing," in 

Proceedings of the World Multiconference on Systemics, Cybernetics and 

Informatics, Florida, Orlando, 2001, pp. 55-65. 

[123] E. Lefebvre, M. Hadzagic, and É. Bossé, "On Quality of Information in Multi-Source 

Fusion Environments," Advances and Challenges in Multisensor Data and 

Information Processing, p. 69, 2007. 

[124] G. Rogova and E. Bossé, "Information quality effects on information fusion," DRDC 

Valcartier, Tech Rept2008. 



   

 

   

   

 

   

   

 

   

    Fusion of Information and Analytics: A Discussion on Potential Methods to 

Cope with Uncertainty in Complex Environments (Big Data and IoT) 
   

 

 

    

 

 

   

   

 

   

   

 

   

       
 

[125] G. Rogova and É. Bossé, "Information quality in information fusion," in 

Proceedings of the 13th International Conference on Information Fusion 

(FUSION2010) Edinburg, UK, 2010. 

[126] E. Blasch, P. Valin, and É. Bossé, "Measures of Effectiveness for High-Level 

Information Fusion," in High-Level Information Fusion Management and Systems 

Design, E. Blasch, É. Bossé, and D. A. Lambert, Eds., ed Boston: Artech House, 

2012, pp. 331-348. 

[127] E. Blasch, P. C. Costa, K. B. Laskey, H. Ling, and G. Chen, "The URREF ontology 

for semantic wide area motion imagery exploitation," in Aerospace and Electronics 

Conference (NAECON), 2012 IEEE National, 2012, pp. 228-235. 

[128] E. Blasch, A. Josang, J. Dezert, P. C. Costa, and A.-L. Jousselme, "URREF self-

confidence in information fusion trust," in Information Fusion (FUSION), 2014 17th 

International Conference on, 2014, pp. 1-8. 

[129] E. Blasch, K. B. Laskey, A.-L. Jousselme, V. Dragos, P. C. Costa, and J. Dezert, 

"URREF reliability versus credibility in information fusion (STANAG 2511)," in 

Information Fusion (FUSION), 2013 16th International Conference on, 2013, pp. 

1600-1607. 

[130] P. C. Costa, K. B. Laskey, E. Blasch, and A.-L. Jousselme, "Towards unbiased 

evaluation of uncertainty reasoning: the URREF ontology," in Information Fusion 

(FUSION), 2012 15th International Conference on, 2012, pp. 2301-2308. 

[131] J. Abellán and A. Masegosa, "Requirements for total uncertainty measures in 

Dempster–Shafer theory of evidence," International journal of general systems, vol. 

37, pp. 733-747, 2008. 

[132] J. Abellán and S. Moral, "Measuring total uncertainty in Dempster-Shafer theory of 

Evidence: properties and behaviors," in Fuzzy Information Processing Society, 2008. 

NAFIPS 2008. Annual Meeting of the North American, 2008, pp. 1-6. 

[133] G. J. Klir and M. J. Wierman, Uncertainty-Based Information: Elements of 

Generalized Information Theory: Physica-Verlag HD, 1999. 

[134] C. Liu, A.-L. Jousselme, É. Bossé, and D. Grenier, "Measures of uncertainty for 

fuzzy evidence theory "  Technical Report DRDC-Valcartier TR2010-223, 2011 

2010. 

[135] C. Liu, " A general measure of uncertainty-based information," Ph.D, Electrical and 

Computer Engineering, Université Laval, Québec, 2004. 

[136] J. Abellán, G. Klir, and S. Moral, "Disaggregated total uncertainty measure for 

credal sets," International Journal of General Systems, vol. 35, pp. 29-44, 2006. 

[137] A. Burkov, S. Paquet, G. Michaud, and P. Valin, "An empirical study of uncertainty 

measures in the fuzzy evidence theory," in Information Fusion (FUSION), 2011 

Proceedings of the 14th International Conference on, 2011, pp. 1-8. 

[138] J. Abellán and É. Bossé, "Drawbacks of Uncertainty Measures Based on the 

Pignistic Transformation," IEEE Transactions on Systems, Man, and Cybernetics: 

Systems, 2016. 

[139] R. Breton, E. Bosse, R. Rousseau, and S. Tremblay, "Framework for the Analysis of 

Information Relevance (FAIR)," in Cognitive Methods in Situation Awareness and 

Decision Support (CogSIMA), 2012 IEEE International Multi-Disciplinary 

Conference on, 2012, pp. 210-213. 



   

 

   

   

 

   

   

 

   

    Éloi Bossé and Basel Solaiman    
 

    

 

 

   

   

 

   

   

 

   

       
 

[140] M. Hadzagic, M. St-Hilaire, P. Valin, and E. Shahbazian, "Reliability and relevance 

in the Thresholded Dempster-Shafer algorithm for ESM data fusion," in Information 

Fusion (FUSION), 2012 15th International Conference on, 2012, pp. 615-620. 

[141] F. Pichon, D. Dubois, and T. Denœux, "Relevance and truthfulness in information 

correction and fusion," International Journal of Approximate Reasoning, vol. 53, 

pp. 159-175, 2012. 

[142] M. Gahegan, R. Agrawal, A. Jaiswal, J. Luo, and K. Soon, "Measures of Similarity 

for Integrating Conceptual Geographical Knowledge: Some Ideas and Some 

Questions," in COSIT: Workshop on semantic similarity measurements, 2007. 

[143] L. I. Kuncheva, "Using measures of similarity and inclusion for multiple classifier 

fusion by decision templates," Fuzzy sets and systems, vol. 122, pp. 401-407, 2001. 

[144] A. Zimmermann, A. Lorenz, and R. Oppermann, "An operational definition of 

context," in Modeling and using context, ed: Springer, 2007, pp. 558-571. 

[145] A. Dey, "Understanding and Using Context," Personal and Ubiquitous Computing, 

vol. 5, pp. 4-7, 2001. 

[146] O. Lassila and D. McGuinness, "The role of frame-based representation on the 

semantic web," Linköping Electronic Articles in Computer and Information Science, 

vol. 6, p. 2001, 2001. 

[147] E. P. Blasch, E. Dorion, P. Valin, E. Bossé, and J. Roy, "Ontology alignment in 

geographical hard-soft information fusion systems," in Information Fusion 

(FUSION), 2010 13th Conference on, 2010, pp. 1-8. 

[148] Y. Kalfoglou and M. Schorlemmer, "Ontology mapping: the state of the art," The 

knowledge engineering review, vol. 18, pp. 1-31, 2003. 

[149] P. Shvaiko and J. Euzenat, "Ontology matching: state of the art and future 

challenges," Knowledge and Data Engineering, IEEE Transactions on, vol. 25, pp. 

158-176, 2013. 

[150] A. Zimmermann, M. Krötzsch, J. Euzenat, and P. Hitzler, "Formalizing ontology 

alignment and its operations with category theory," in Proc. 4th International 

conference on Formal ontology in information systems (FOIS), 2006, pp. 277-288. 

[151] N. F. Noy, "Tools for mapping and merging ontologies," in Handbook on ontologies, 

ed: Springer, 2004, pp. 365-384. 

[152] F. J. McNeill, A. Bundy, and M. Schorlemmer, "Dynamic ontology refinement," 

University of Edinburgh, 2006. 

[153] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov, "Ontology versioning and 

change detection on the web," in Knowledge Engineering and Knowledge 

Management: Ontologies and the Semantic Web, ed: Springer, 2002, pp. 197-212. 

[154] J. Heflin and J. Hendler, "Dynamic ontologies on the web," in AAAI/IAAI, 2000, pp. 

443-449. 

 

 

 

 

 

 

 


