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Abstract:  

Recently, Yager and Petry were proposing a quality-based methodology to combine data provided by 

multiple probabilistic sources to improve the quality of information for decision-makers. This paper offers 

a sort of companion paper that adapts this methodology to possibilistic sources. Possibility theory is 

particularly well suited to cope with incomplete information from poor-data sources. The methodology and 

algorithms used for the probabilistic approach are adapted for the possibilistic case. Both approaches are 

then compared by the means of a numerical example and four experimental benchmark datasets: one, the 

IRIS data set, being data-poorer than the three other ones (Diabetes dataset, Glass dataset and Liver-disorder 

dataset). A vector representation is introduced for a possibility distribution as in the probabilistic case and, 

the Gini's formulation of entropy is being used. However, the Gini’s entropy has to be used differently than 

with the probabilistic case. This has an impact on the selection of subsets.  A fusion scheme is designed to 

select the best-quality subsets according to two information quality factors: quantity of information and 

source credibility. Results obtained from comparison of both approaches on the four experimental 

benchmarks confirm the superiority of the possibilistic approach in the presence of information scarcity or 

incompleteness.    

Keywords: Information fusion, quality of information, possibility theory, Gini entropy, source credibility, 

uncertainty. 
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1. Introduction 

Yager and Petry [1] propose a quality-based methodology to combine data provided by multiple sources in 

order to improve the quality of information essential to decision-makers in the execution of their tasks.  A 

task can be the estimation of a parameter or, for instance, to perform an inference process about the 

occurrence of events. Yager and Petry’s approach is schematized in Figure 1 using four interrelated 

functional blocks (a-d):  

(a) Modelling of the data and information sources; 

(b) Quality-based information criteria; 

(c) Ranking of subsets ranking;  

(d) Fusion and Subset Selection Process.  

The methodology proposed by Yager & Petry is making use of quality-based criteria (block b) in a fusion 

process (block c) to identify the most valuable set of information (block d) to be used in the execution of a 

task. For instance, the task is to infer a parametric description for an object, a physical process or an event, 

given measurements tainted with uncertainty. A measure is being defined to quantify the notion of source 

credibility that is exploited in the fusion process to provide high-quality fused values for decision-making 

with reduced uncertainty based on the selection the best credible subset of the sources. Full details 

concerning Figure 1 blocks (a-d) can be found in [1].   

Probability theory is a powerful modelling tool to represent empirical knowledge about random phenomena. 

The empirical knowledge is generally obtained by sensor observations (hard sensors) and probability theory 

is an ideal tool to formalize that kind of uncertainty where evidence is based on outcomes with enough 

independent random experiments. However, in the problem of multi-source information fusion where the 

information can come not only from hard sensors but also from soft sources such as expert knowledge, 

contextual knowledge, computing with words [2] and human-source in general [3, 4] , then the information 

is better modelled either by imprecise probabilities [5], by evidence theory [6], by fuzzy sets [7] and namely, 

in this paper, by a possibilistic approach [8]. 
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Figure 1. Intelligent quality-based approach of Yager & Petry for probabilistic sources 
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This paper considers the case of possibilistic sources. It follows the same methodology than in [1] depicted 

in Figure 1 but the blocks (a-d) have now been translated with the mathematical tools of the possibility 

theory as shown in Figure 2. In addition, a comparison of both approaches, probabilistic (Figure 1) and 

possibilistic (Figure 2), is being done through the processing of four experimental benchmark datasets: IRIS, 

Diabetes, Glass and Liver-disorder. 

The paper is organized as follows. Section 2 discusses the related work and scope. Sections 3 to 7 have 

corresponding sections in [1]. Section 3 is about vector representation of possibility distributions. Section 4 

details the use of entropy with possibility distributions. Section 5 is about information in maximally certain 

and uncertain distribution. Section 6 discusses the uniform fusion of possibility distributions while Section 

7 follows on weighted average fusion. Finally, Section 8 presents the results of a comparison of both 

approaches: probabilitic [1] and possibilitic. For convenience, some important notations with their 

descriptions are presented in Table 1. 

Table 1. List of important notations with their related descriptions. 

Notations Descriptions 

𝜋 The Possibility distribution 

𝜋(𝑗) Possibility measure, where 𝑗 = 1 to 𝑛 

𝑛 The size of the possibility distribution 

𝜃12 The angle between two possibility distributions 𝜋1 and 𝜋2 

𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) The compatibility degree between 𝜋1 and 𝜋2 

𝑐𝑜𝑛𝑓(𝜋1, 𝜋2) The conflict degree between two possibility distributions 𝜋1 and 𝜋2 

𝐶𝑟𝑒𝑑(𝜋) The credibility measure of a possibility distribution π 

𝑆𝐸 The separability measure 

𝑃 Probability distribution 

𝑝(𝑗) Probability measure, where 𝑗 = 1 𝑡𝑜 𝑛 

𝐺(𝜋) The Gini’s entropy of a possibility distribution π 

‖𝜋‖ The norm of a possibility distribution π 
1

‖𝜋‖2
 

The 𝑁𝑒𝑔𝐸𝑛𝑡 (Negative Entropy) of a possibility distribution π 

‖𝑃‖2 The 𝑁𝑒𝑔𝐸𝑛𝑡 (Negative Entropy) of a probability distribution P 

𝑤 Weight value 

𝑅 A linear aggregation 

𝑡 The number of the information sources 

𝑍 A set of possibility distributions 

𝐵 A subset of possibility distributions from 𝑍 

𝜋𝐵 The possibility distribution of the subset 𝐵 

𝐷𝑜𝑚(𝐵𝑖, 𝐵𝑗) A Boolean variable corresponding to the dominance concept 

𝑁𝐷 Non-dominated subsets 

𝑚 The number of features 

 



 

5 

  

 

 

Figure 2. An intelligent quality-based approach for possibilistic sources 
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2. Scope and Related Work  

Several research studies have been proposed in the literature in the field of multi-source data and information 

fusion systems for low-level fusion (sensors-level) [9-11] and for high-level fusion [4, 12, 13]. This list is 

far from being exhaustive. Most of these studies are focused on ‘fusion systems’ and consider much more 

functions than the ‘merging’ or the ‘combining’ rules of a fusion system. Regarding the merging rules, an 

excellent synthesis of the basic principles for ‘combining’ pieces of imperfect information, regardless of the 

representation formalism (sets, logic, partial orders, possibility theory, belief functions or imprecise 

probabilities), is presented in [14]. They propose to rank the pieces of information to be combined in terms 

of their relative plausibility as well as to identify impossible values. The relative information content and 

the mutual consistency of information pieces that affect the performance of the fusion process are also being 

considered.  

When we refer to an “intelligent quality-based” approach, what is meant by “intelligent” is the 

representation of contextual information items that are being taken into account in the knowledge chain 

processing from data to information to knowledge to decisions and actions [15]. One of the most complete 

treatments (gathering-processing-combining-decision-making) along this chain has been presented in [16, 

17]  for the risk management of natural hazards using beliefs functions and multicriteria decision-making. 

The book [18] provides a formal foundation and implementation strategies allowing to incorporate 

information quality into the information fusion processes to various decision support applications for real-

life scenarios such as remote sensing, medicine, automated driving, environmental protection, crime 

analysis, intelligence, defense and security. In [19], the authors describe the whole process of modelling 

uncertain sensor information. The Dempster–Shafer (DS) theory was chosen to model uncertain sensor 

information. The authors identify suitable measures from DS theory for determining quality criteria to select 

subsets on which Dempster’s rule of combination is being applied.  

Finally, the proposed paper can be considered as a companion paper to [1] in the framework of possibilistic 

sources. It extends the capacity to treat more types of uncertainty (e.g., fuzziness, vague) and then provides, 

by the means of a fusion process, a better quality information to decision-makers.  

3. Vector representation of possibility distributions 

Possibility distributions can also be represented as a n-dimensional vector 𝜋 = [𝜋(1), 𝜋(2), … , 𝜋(𝑛)]. Here, 

 𝜋 is a normal possibility distribution (max(𝜋) = 1) on the space Ω = {𝑥1, 𝑥2, … , 𝑥𝑛  } where 𝜋(𝑗) is the 

possibility of occurrence of  𝑥𝑗. This vector has all its components within the unit interval, 𝜋(𝑗) ∈ [0,1]. A 

possibility distribution and its sum can be higher than 1, so that,  ∑ 𝜋(𝑗) ∈ [0,𝑀]𝑛
𝑗=1  with 𝑀 ≥ 1. In 
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addition, if  𝜋1 and 𝜋2 are two possibility vectors on the space Ω then their dot product, < 𝜋1, 𝜋2 > , a scalar 

value, is:  

 

< 𝜋1, 𝜋2 >  = ∑ 𝜋1(𝑗)𝜋2(𝑗)

𝑛

𝑗=1

 (1) 

In the case where  𝜋1 and 𝜋2 are normal possibility distributions then 0 ≤ (< 𝜋1, 𝜋2 >) ≤ 1. When 𝜋1 and 

𝜋2 are identical, their dot product is: 

 

< 𝜋1, 𝜋2 >  = ∑(𝜋1(𝑗))
2

𝑛

𝑗=1

 (2) 

In the following, the dot product will simply be notated as 𝜋𝑖𝜋𝑘. The norm of a vector is its self dot product, 

also known as the Euclidean length: 

 

‖𝜋‖ = √𝜋𝜋 = (∑(𝜋(𝑗))
2

𝑛

𝑗=1

)

1/2

= (< 𝜋, π >)1 2⁄  (3) 

Using special properties of the possibility distribution vector, 𝜋(𝑗) ∈ [0,1]  and 1 ≤ ∑ 𝜋(𝑗) ≤ 𝑛𝑛
𝑗=1  ,  it can 

be shown that: 

- In the case of total ignorance (T.I): The maximal value of ‖𝜋‖ occurs when all 𝜋(𝑗) = 1, 𝑗 = 1 𝑡𝑜 𝑛 

so ‖𝜋‖ = √𝑛 then ‖π‖2 = n. 

- In the case of complete knowledge (C.K): ∃𝜋(𝑘) = 1, 𝑘 ∈ [1,⋯ , 𝑛] , ∀𝜋(𝑗) = 0, 𝑗 ≠ 𝑘, 𝑗 = 1 𝑡𝑜 𝑛  

then ‖𝜋‖ = 1 and  ‖π‖2 = 1. 

Figure 3 illustrates a possibility vector in the two-dimensional case (n=2). In this figure, each possibility 

distribution is represented as a point. Non-normal distributions have a vector whose its extremity is "strictly" 

inside the square. Normal distributions have obligatorily one extremity on a side of the square. 

 If 𝜋1 and 𝜋2 are two possibility vectors, it is known that the cosine of the angle 𝜃12 between them is 

expressed as in Table 2. This cosine is also the dot product of 𝜋1 and 𝜋2 divided by the vector respective 

norms. The interpretation of the dot product is similar to what is presented in [1]. As in [1], cos 𝜃12 can be 

used as measure of the degree of compatibility, comp, between the two possibility distributions; see Table 

2. The closer the value of 𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) is to one, the more compatible possibility distributions are. 

Furthermore, 1 − 𝑐𝑜𝑚𝑝(𝜋1, 𝜋2),  denoted 𝑐𝑜𝑛𝑓(𝜋1, 𝜋2), is the degree of conflict between two possibility 

distributions. 

- If 𝜋1 and 𝜋2 are orthogonal then 𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) = 0 and 𝑐𝑜𝑛𝑓(𝜋1, 𝜋2) = 1. 

- If 𝜋1 and 𝜋2 are coincident then 𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) = 1 and 𝑐𝑜𝑛𝑓(𝜋1, 𝜋2) = 0. 
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Figure 3. Angle between possibilistic vectors 

Table 2. Comparative equations associated with a vector representation under both frameworks 

Probabilistic Framework Possibilistic Framework 

𝑐𝑜𝑠( 𝜃12) =
𝑝1𝑝2

‖𝑝1‖‖𝑝2‖
 𝑐𝑜𝑠( 𝜃12) =

𝜋1𝜋2

‖𝜋1‖‖𝜋2‖
 

𝑐𝑜𝑚𝑝(𝑝1, 𝑝2) =
𝑝1𝑝2

‖𝑝1‖‖𝑝2‖
, with 

𝑐𝑜𝑚𝑝(𝑝1, 𝑝2) ∈ [0,1] 

𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) =
𝜋1𝜋2

‖𝜋1‖‖𝜋2‖
, with 

𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) ∈ [0,1], 

< 𝑃1, 𝑃2 >= ∑𝑃1(𝑗)𝑃2(𝑗)

𝑛

𝑗=1

=
1

𝑛
∑𝑃2(𝑗) =

𝑛

𝑗=1

1

𝑛
 

 

 

𝑐𝑜𝑚𝑝(𝑃1, 𝑃2) =

1

𝑛

‖𝑃2‖ (𝑛
1

2)
=

(
1

𝑛
)
1

2⁄

‖𝑃2‖
                 

=
1

√𝑛

1

‖𝑃2‖
 

 

< 𝜋1, 𝜋2 > = ∑𝜋1(𝑗)𝜋2(𝑗)

𝑛

𝑗=1

 

                   = 1∑ 𝜋2(𝑗)
𝑛
𝑗=1 , 

where ∑ 𝜋2(𝑗)
𝑛
𝑗=1 ∈ [0, 𝑛] 

 

𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) =
∑ 𝜋2(𝑗)

𝑛
𝑗=1

‖𝜋2‖ (𝑛
1

2)
                     

=
1

‖𝜋2‖

1

(𝑛1/2)
∑𝜋2(𝑗)

𝑛

𝑗=1

 

                   =
1

‖𝜋2‖

1

√𝑛
∑𝜋2(𝑗)

𝑛

𝑗=1

 

 
 

We see that the conflict takes its maximal value when 𝜋1 and 𝜋2  are orthogonal and takes its minimum 

value when 𝜋1 and 𝜋2  are coincident. 

- Complete knowledge (C.K): consider 𝜋1 and 𝜋2  being two certain possibility distributions on the same 

element i  like ∃𝜋1(𝑖) = 1, 𝜋2(𝑖) = 1, ∀𝜋1(𝑗) = 0, 𝜋2(𝑗) = 0  𝑗 ≠ 𝑖, 𝑗 = 1 𝑡𝑜 𝑛  so 𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) = 1 

and 𝑐𝑜𝑛𝑓(𝜋1, 𝜋2) = 0. 
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- Total ignorance (T.I): if one of the distributions, 𝜋1, has 𝜋1(𝑗) = 1, ∀𝑗 = 1,… , 𝑛.. In this case, ‖𝜋1‖ =

√𝑛. Consider now 𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) where 𝜋2  is that uniform possibility distribution with 𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) =

𝜋1𝜋2

‖𝜋1‖‖𝜋2‖
. For this case, the comparative equations are given in the last row of Table 2.  

There are two special cases of 𝜋2 that worth to be commented. 

- The case of total ignorance (T.I): if  𝜋2 is a uniform possibility distribution, all 𝜋2(𝑗) = 1, 𝑗 = 1 𝑡𝑜 𝑛. 

In this case, ‖𝜋2‖ = √𝑛 and ∑ 𝜋2(𝑗)
𝑛
𝑗=1 = 𝑛 and 𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) =

1

√𝑛

1

√𝑛
𝑛 = 1. 

- The case of complete knowledge (C.K): if 𝜋2 is a certain possibility distribution, ∃𝜋2(𝑗) = 1,   for one 

element, then ‖𝜋2‖ = 1 and ∑ 𝜋2(𝑗)
𝑛
𝑗=1 = 1. In this case, 𝑐𝑜𝑚𝑝(𝜋1, 𝜋2) =

1

√𝑛
. 

We illustrate three cases of possibility distributions (when n=2) in Figure 4: 1) orthogonality between two 

distributions, 2) complete knowledge and, 3) the total ignorance distributions. Certain possibility 

distributions, 𝜋1 and 𝜋2, are completely conflicting and 𝜋3 is an uncertain possibility distribution.  Then, in 

this case, the distributions are: 𝜋1(1) = 1,  𝜋1(2) = 0, 𝜋2(1) = 0,  𝜋2(2) = 1, 𝜋3(1) = 1,  𝜋3(2) = 1.  

 

Figure 4. Illustration of orthogonal, complete knowledge and the total ignorance distributions 

4. The use of entropy with possibility distributions 

Entropy is an important concept for measuring uncertainty associated with a probability distribution. With 

𝑃, a probability distribution defined on the space Ω = {𝑥1, 𝑥2, … , 𝑥𝑛  } with  𝑝𝑗 , the probability associated 

with 𝑥𝑗, then the common measure of entropy is the Shannon entropy defined as: 

 

𝐻(𝑃) = −∑𝑝(𝑗)

𝑛

𝑗=1

ln( 𝑝(𝑗)) (4) 

 

1 

1 

1 


3
 

Orthogonal 

distributions 
Total Ignorance  

distribution (T.I) 

Complete 

Knowledge (C.K) 


2
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According to Klir [20], maintaining a link between a possibility and a probability distribution is important. 

The uncertainty of a possibility distribution 𝑈(𝜋) and the entropy of a probability distribution 𝐻(𝑃) must 

be equal, so 𝑈(𝜋) = 𝐻(𝑃). 

 
𝑈(𝜋) = 𝑆𝑃(𝜋) + 𝐷(𝜋)     (5) 

 

𝑆𝑃(𝜋) = ∑(𝜋(𝑗) − 𝜋(𝑗 + 1))

𝑛

𝑗=2

ln 𝑗 (6) 

 

𝐷(𝜋) = ∑(𝜋(𝑗) − 𝜋(𝑗 + 1))

𝑛

𝑗=2

ln (
𝑗

∑ 𝜋(𝑘)
𝑗
𝑘=1

) (7) 

 

Finally, 𝑈(𝜋) ∈ [0, ln(𝑛)], and the maximal uncertainty happens when all 𝜋(𝑗) = 1 so 𝑈(𝜋) = ln(𝑛). The 

minimal uncertainty occurs when one 𝜋(𝑗) = 1 and all other 𝜋(𝑗) = 0, hence 𝑈(𝜋) = 0. Larger is 𝑈(𝜋), 

larger is the uncertainty. The other side of uncertainty is certainty or information. Smaller 𝑈(𝜋) is then more 

information is convoyed by a possibility distribution. This is desirable for decision-making. The maximal 

entropy occurs when all  𝑝(𝑗) = 1 𝑛⁄   then 𝐻(𝑃) = ln( 𝑛). The minimal entropy occurs when one 𝑝(𝑗) = 1 

and all other 𝑝(𝑗) = 0 then 𝐻(𝑃) = 0. For Shannon entropy, we also have 𝐻(𝑃) ∈ [0, ln(𝑛)]. For the same 

reasons evoked in [1], we use an alternative formulation for entropy called the Gini’s entropy defined in 

[21, 22] for the probabilistic framework and given in Table 3. By analogy, we define the Gini’s entropy for 

a possibility distribution π on  by : 

 𝐺(𝜋) = 1 − 𝑵𝒆𝒈𝑬𝒏𝒕, where 𝑵𝒆𝒈𝑬𝒏𝒕 =
1

‖𝜋‖2 and ‖𝜋‖2 = ∑ (𝜋(𝑗))
2𝑛

𝑗=1  
(8) 

It can be shown that: 

- In the case of total ignorance (T.I): The Gini’s entropy assumes its minimal value 𝐺(𝜋) = 1 −
1

𝑛
  when 

all 𝜋(𝑗) = 1, 𝑗 = 1,… , 𝑛.,  

- In the case of complete knowledge (C.K): The Gini’s entropy assumes its maximal value 𝐺(𝜋) = 0 

when only one 𝜋(𝑗) = 1 and all other 𝜋(𝑗) = 0. 

The bigger 𝐺(𝜋) is then the larger uncertainty is conveyed by the possibility distribution. The closer 𝐺(𝜋) 

is to zero, the more certainty resides in the knowledge so more information is provided. Thus, to increase 

certainty or information, we must decrease 𝐺(𝜋) and, according to equation (8), increase 𝑁𝑒𝑔𝐸𝑛𝑡.  

𝑁𝑒𝑔𝐸𝑛𝑡 is defined differently for probabilistic and possibilistic frameworks, as it is shown in Table 3. 

However, it has the same variation domain, being [
1

𝑛
, 1] and even the same behaviour according to 

information quantity variations. In both probabilistic and possibilistic frameworks, 𝑁𝑒𝑔𝐸𝑛𝑡 is linked to 

information quantity. 
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Table 3. Domains of variation of 𝑵𝒆𝒈𝑬𝒏𝒕 for both frameworks  

Probabilistic Framework Possibilistic Framework 

𝐺(𝑝) = 1 − 𝑵𝒆𝒈𝑬𝒏𝒕 

where 𝑵𝒆𝒈𝑬𝒏𝒕 = ‖𝑝‖2 

𝐺(𝜋) = 1 − 𝑵𝒆𝒈𝑬𝒏𝒕 

where 𝑵𝒆𝒈𝑬𝒏𝒕 =
1

‖𝜋‖2 

Complete Knowledge (C.K):  𝑵𝒆𝒈𝑬𝒏𝒕 = 1 

Total Ignorance (T.I): 𝑵𝒆𝒈𝑬𝒏𝒕 =
1

𝑛
 

1

𝑛
≤ 𝑵𝒆𝒈𝑬𝒏𝒕 ≤ 1 

Complete Knowledge (C.K):  𝑵𝒆𝒈𝑬𝒏𝒕 = 1 

Total ignorance (T.I): 𝑵𝒆𝒈𝑬𝒏𝒕 =
1

𝑛
 

1

𝑛
≤ 𝑵𝒆𝒈𝑬𝒏𝒕 ≤ 1 

 

 

 

 

 

 

 

Let us now examine the variation of 𝜋2 with respect to the quantity of information contained in the 

possibility distribution. Assume 𝜋1 and 𝜋2 are two possibility vectors on the space   and that the relations 

between them are given as in Table 4 below. In fact, if you replace respectively 𝑝1 by 𝜋1 and 𝑝2 by 𝜋2  as 

shown in Table 4, the analysis provided in Section 3 of Yager & Petry [1] stands as well for a possibilistic 

framework.   

Table 4. Comparative equations associated with the use of entropy under both frameworks 
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Probabilistic Framework Possibilistic Framework 

𝐺(𝑝) = 1 − ∑(𝑝(𝑗))2

𝑛

𝑗=1

 𝐺(𝜋) = 1 −
1

∑ (𝜋(𝑗))2𝑛
𝑗=1

 

𝑝2(1) = 𝑝1(1) − 𝛼 

𝑝2(2) = 𝑝1(2) + 𝛼 

𝑝2(𝑗) = 𝑝1(𝑗) 𝑓𝑜𝑟 𝑗 = 3 𝑡𝑜 𝑛 

For 𝛼 ≥ 0. We have ∑ (𝑝2(𝑗))
2𝑛

𝑗=1 = 

(𝑝1(1) − 𝛼)2 + (𝑝1(2) + 𝛼)2 + ∑(𝑝1(𝑗))
2

𝑛

𝑗=3

 

Since  

(𝑝1(1) − 𝛼)2 = (𝑝1(1))
2
− 2𝛼𝑝1(1) + 𝛼2  

and (𝑝1(2) − 𝛼)2 = (𝑝1(2))
2
− 2𝛼𝑝1(2) + 𝛼2    

then we get ∑ (𝑝2(𝑗))
2𝑛

𝑗=1 − ∑ (𝑝1(𝑗))
2

=𝑛
𝑗=1

2𝛼 (𝑝1(2) − 𝑝1(1))
2
+ 2𝛼2 

= 2𝛼 ((𝑝1(2) − 𝑝1(1)) + 𝛼) 

𝜋2(1) = 𝜋1(1) − 𝛼 

𝜋2(2) = 𝜋1(2) + 𝛼 

𝜋2(𝑗) = 𝜋1(𝑗) 𝑓𝑜𝑟 𝑗 = 3 𝑡𝑜 𝑛 

For 𝛼 ≥ 0. We have  
1

∑ (𝜋(𝑗))2𝑛
𝑗=1

= 

(𝜋1(1) − 𝛼)2 + (𝜋1(2) + 𝛼)2 +
1

∑ (𝜋(𝑗))2𝑛
𝑗=3

 

Since 

(𝜋1(1) − 𝛼)2 = (𝜋1(1))
2
− 2𝛼𝜋1(1) + 𝛼2  

and  

(𝜋1(2) − 𝛼)2 = (𝜋1(2))
2
− 2𝛼𝜋1(2) + 𝛼2 

then we get  
1

∑ (𝜋2(𝑗))
2𝑛

𝑗=1

−
1

∑ (𝜋1(𝑗))
2
 𝑛

𝑗=1

=

2𝛼(𝜋1(2) − 𝜋1(1))
2
+ 2𝛼2 

= 2𝛼 ((𝜋1(2) − 𝜋1(1)) + 𝛼) 

5. Information in maximally certain and uncertain distribution 

Two probability distributions on 𝑋: 𝑃 = [𝑝1, 𝑝2, ⋯ , 𝑝𝑛] and 𝑄 = [𝑞1, 𝑞2, ⋯ , 𝑞𝑛] , are considered in Section 

4 of  Yager and Petry [1].  The objective is to calculate the information associated with the linear aggregation 

R, that is:  𝑅 = 𝑤1𝑃 + 𝑤2𝑄,  R is a probability distribution when 𝑤1 + 𝑤2 = 1.  For each component 𝑟𝑗 of 

𝑅, we have,  𝑟𝑗 = (𝑤1𝑝𝑗 + 𝑤2𝑞𝑗).  The details are in [1]. For the possibilistic case, the information, 

associated with 𝜋, according to the value of the weights  𝑤1 and 𝑤2, is calculated in order to study the 

impact of the weights on the distribution 𝜋. Three different cases are considered:  

1. 𝜋1 and  𝜋2 are two certain possibility distributions,  

2. 𝜋1 and  𝜋2 are both maximally uncertain distributions, and  

3. 𝜋1 is a distribution completely certain and 𝜋2 is a distribution completely uncertain.  

To perform the information associated with 𝜋, we calculate: 

 
‖𝜋‖2 = ∑(𝑤1𝜋1(𝑗) + 𝑤2𝜋2(𝑗))

2
𝑛

𝑗=1

= ∑(𝑤1
2(𝜋1(𝑗))

2
+ 𝑤2

2(𝜋2(𝑗))
2
+ 2𝑤1𝑤2𝜋1(𝑗)𝜋2(𝑗))

𝑛

𝑗=1

 (9) 
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 ‖𝜋‖2 = 𝑤1
2 ∑ (𝜋1(𝑗))

2
+ 𝑤2

2 ∑ (𝜋2(𝑗))
2

𝑛

𝑗=1
 + 2𝑤1𝑤2 ∑ 𝜋1(𝑗)𝜋2(𝑗)

𝑛

𝑗=1
 

𝑛

𝑗=1
 (10) 

 ‖𝜋‖2 = 𝑤1
2‖𝜋1‖

2 + 𝑤2
2‖𝜋2‖

2 + 2𝑤1𝑤2 < 𝜋1, 𝜋2 > (11) 

 

We do not repeat here all derivations for the possibilistic representation when they are similar to those of 

the probabilistic framework. We only list in Table 5 where there are differences. We invite the reader to 

consult Section 4 of Yager and Petry [1] for details. 

 

Table 5. Comparative equations associated with the calculation of ‖𝜋‖2 

Probabilistic Framework Possibilistic Framework 

𝑃 = ∑ 𝑤𝑖𝑝𝑖
𝑡
𝑖=1  with 𝑝(𝑗) = ∑ 𝑤𝑖𝑝𝑖(𝑗)

𝑡
𝑖=1  

If  𝑤𝑖 ∈ [0,1] and ∑ 𝑤𝑖
𝑡
𝑖=1 = 1, then p is also 

a probability distribution vector. 

(Case when 𝑤1 = 𝑤1 = 1 2⁄ ) 

𝜋 = ∑ 𝑤𝑖𝜋𝑖
𝑡
𝑖=1  with 𝜋(𝑗) = ∑ 𝑤𝑖𝜋𝑖(𝑗)

𝑡
𝑖=1  

If 𝑤𝑖 ∈ [0,1] and ∑ 𝑤𝑖
𝑡
𝑖=1 = 1, then π is also a 

possibility distribution vector. 

(Case when 𝑤1 = 𝑤1 = 1 2⁄ ) 

If 𝑃1 and 𝑃2 are two certain probability 

distributions, then ‖𝑃1‖ = 1 and ‖𝑃2‖ = 1 and 

there are two cases of interest.  

1) If 𝑃1 and 𝑃2 are completely compatible, 

𝑃1(𝑗) = 𝑃2(𝑗) = 1 for some j. Here 

𝑐𝑜𝑠( 𝑃1, 𝑃2) = 1 and  

‖𝑃‖2 =
1

4
(1) +

1

4
(1) +

1

2
(1) = 1.  

2) If  𝑃1 and 𝑃2 are completely conflicting, 

𝑃1(𝑗) = 1,  𝑃2(𝑘) = 1 for  𝑗 ≠ k, then 

𝑐𝑜𝑠( 𝑃1, 𝑃2) = 0 and ‖𝑃‖2 =
1

4
+

1

4
+ 0 =

1

2
. 

If 𝜋1 and 𝜋2 are two certain possibility distributions, 

then ‖𝜋1‖ = 1 and ‖𝜋2‖ = 1 and there are two cases 

of interest.  

1) If 𝜋1 and 𝜋2 are completely compatible, 𝜋1(𝑗) =

𝜋2(𝑗) = 1 for some j. Here 𝑐𝑜𝑠( 𝜋1, 𝜋2) = 1 and 

‖𝜋‖2 =
1

4
(1) +

1

4
(1) +

1

2
(1) = 1 

2) If 𝜋1 and 𝜋2 are completely conflicting, 𝜋1(𝑗) =

1, 𝜋2(𝑘) = 1 for  𝑗 ≠ k, then  𝑐𝑜𝑠( 𝜋1, 𝜋2) = 0 and 

‖𝜋‖2 =
1

4
+

1

4
+ 0 =

1

2
. 

 

If 𝑃1 and 𝑃2 are both maximally uncertain 

distributions, they have 𝑃1(𝑗) = 𝑃2(𝑗) =

1

𝑛
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗. Here ‖𝑃1‖ = ‖𝑃2‖ = (1 𝑛⁄ )1 2⁄  

and since we have shown in this case that 

𝑐𝑜𝑠( 𝑃1, 𝑃2) = 1 then  

‖𝑃‖2 =
1

4

1

𝑛
+

1

4

1

𝑛
+

1

2
(
1

𝑛
)
1/2

(
1

𝑛
)
1/2

1 =
1

𝑛
 

If 𝜋1 and 𝜋2 are both maximally uncertain 

distributions, they have 𝜋1(𝑗) = 𝜋2(𝑗) = 1 for all j. 

Here‖𝜋1‖ = ‖𝜋2‖ = (𝑛)1 2⁄ and since we have 

shown in this case that 𝑐𝑜𝑠( 𝜋1, 𝜋2) = 1 then  

‖𝜋‖2 =
1

4
(𝑛) +

1

4
(𝑛) +

1

2
(𝑛

1
2) (𝑛

1
2)1 = 𝑛 . 
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If 𝑃1 is completely certain distribution, 

‖𝑃1‖ = 1, and 𝑃2 is completely uncertain 

distribution, ‖𝑃2‖ = (
1

𝑛
)
1/2

, then 𝑃1𝑃2 =
1

𝑛
 

and ‖𝑃‖2 =
1

4
(1) +

1

4

1

𝑛
+

1

2

1

𝑛
=

3+𝑛

4𝑛
 

If 𝜋1 is completely certain distribution, ‖𝜋1‖ = 1, 

and 𝜋2 is completely uncertain distribution, 

 ‖𝜋2‖ = (𝑛)1 2⁄ , then < 𝜋1, 𝜋2 > = 1 and 

‖𝜋‖2 =
1

4
(1) +

1

4
(𝑛) +

1

2
(1) =

1+𝑛+2

4
=

3+𝑛

4
 . 

 

  

Let us now consider the general case where we have t possibility distributions 𝜋1, 𝜋2, … , 𝜋𝑡 where 𝜋𝑖 =

[𝜋𝑖(1), 𝜋𝑖(2), … , 𝜋𝑖(𝑛) ] with  𝜋 =
1

𝑡
∑ 𝜋𝑖

𝑡
𝑖=1  and where each component of 𝜋 is being defined as:  

𝜋(𝑗) =
1

𝑡
∑ 𝜋𝑖(𝑗)

𝑡
𝑖=1  . 

 

Table 6. Comparative equations associated with the calculation of ‖𝜋‖2 for t distributions 

Probabilistic Framework Possibilistic Framework 

‖𝑃‖2 = ∑ (𝑝(𝑗))
2𝑛

𝑗=1  = ∑ (
1

𝑡2) (𝑝1(𝑗) +𝑛
𝑗=1

𝑝2(𝑗)+. . . +𝑝𝑖(𝑗))
2
  

‖𝑃‖2 = ∑
1

𝑡2
(‖𝑃𝑖‖)2 + ∑ ∑

1

𝑡2 < 𝑃𝑖, 𝑃𝑘 >𝑡
𝑘=1
𝑘≠𝑖

𝑡
𝑖=1

𝑛
𝑖=1   

‖𝑃‖2 = ∑
1

𝑡2
(‖𝑃𝑖‖)2 +

2

𝑡2
∑ ∑ < 𝑃𝑖 , 𝑃𝑘 >

𝑡

𝑘=𝑖+1

𝑡−1

𝑖=1

𝑛

𝑖=1

 

‖𝜋‖2 = ∑ (𝜋(𝑗))
2𝑛

𝑗=1 = ∑ (
1

𝑡2) (𝜋1(𝑗) +𝑛
𝑗=1

𝜋2(𝑗)+. . . +𝜋𝑖(𝑗))
2
  

‖𝜋‖2 = ∑
1

𝑡2
(‖𝜋𝑖‖)2 + ∑ ∑

1

𝑡2 < 𝜋𝑖, 𝜋𝑘 >𝑡
𝑘=1
𝑘≠𝑖

𝑡
𝑖=1

𝑛
𝑖=1   

‖𝜋‖2 = ∑
1

𝑡2
(‖𝜋𝑖‖)

2 +
2

𝑡2
∑ ∑ < 𝜋𝑖, 𝜋𝑘 >

𝑡

𝑘=𝑖+1

𝑡−1

𝑖=1

𝑛

𝑖=1

 

 

Let us take a look at the formula   ‖𝜋‖2 = ∑
1

𝑡2
(‖𝜋𝑖‖)2 +

2

𝑡2
∑ ∑ < 𝜋𝑖, 𝜋𝑘 >𝑡

𝑘=𝑖+1
𝑡−1
𝑖=1

𝑛
𝑖=1   and consider the 

situation where we have two categories of possibility distributions:  complete knowledge and total ignorance 

distributions:  

- One being a certainty distribution; only one of its components is one (complete knowledge).  

- The other is a pure uncertainty distribution; here, all elements are 1 (total ignorance).  

First, for  𝜋𝑖 that has certainty, then 𝑁𝑒𝑔𝐸𝑛𝑡 = 1. In contrast, for any 𝜋𝑖 that is pure uncertainty, we have 

shown that 𝑁𝑒𝑔𝐸𝑛𝑡 =
1

𝑛
. Table 7 below gives results for the calculations of the dot product. Table 8 below 

presents the calculations of 𝑁𝑒𝑔𝐸𝑛𝑡 in a mixed case i.e. that 𝑡1 of the distributions are pure certainty and 

𝑡2 are pure uncertainty.  
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Table 7. Comparative equations associated with the dot product under both frameworks 

Probabilistic Framework Possibilistic Framework 

If both 𝑝𝑖 and 𝑝𝑘 represent certainty then  

if they agree on the certainty element < 𝑝𝑖 , 𝑝𝑘 >= 1 

and if they disagree, then < 𝑝𝑖 , 𝑝𝑘 > = 0.  

If one of  < 𝑝𝑖, 𝑝𝑘 > is pure uncertainty,  

for example 𝑝𝑖, then: 

- if the other distribution 𝑝𝑘 is certainty, we have  

< 𝑝𝑖 , 𝑝𝑘 >= ∑ 𝑝𝑖(𝑗)𝑝𝑘(𝑗)𝑛
𝑗=1 = 1

1

𝑛
=

1

𝑛
. 

- if the other distribution is all pure uncertainty, we 

get < 𝑝𝑖 , 𝑝𝑘 >= ∑ 𝑝𝑖(𝑗)𝑝𝑘(𝑗)𝑛
𝑗=1 =

𝑛

𝑛2 =
1

𝑛
. 

- if one of 𝑝𝑖or 𝑝𝑘 is pure uncertainty then 

 < 𝑝𝑖 , 𝑝𝑘 >=
1

𝑛
. 

If both 𝜋𝑖 and 𝜋𝑘 are certainty then if they agree on 

the certainty element  < 𝜋𝑖, 𝜋𝑘 > = 1 and if they 

disagree < 𝜋𝑖, 𝜋𝑘 > = 0.   

If  one of < 𝜋𝑖, 𝜋𝑘 > is pure uncertainty,  

for example 𝜋𝑖, then: 

- if the other distribution 𝜋𝑘 is certainty, we have 

 < 𝜋𝑖, 𝜋𝑘 > = ∑ 𝜋𝑖(𝑗)𝜋𝑘(𝑗)
𝑛
𝑗=1 = 1.  

- if the other distribution is all pure uncertainty, we 

get < 𝜋𝑖, 𝜋𝑘 > = ∑ 𝜋𝑖(𝑗)𝜋𝑘(𝑗)
𝑛
𝑗=1 = 𝑛.. 

- if we have only one possibility distribution that is 

certain then < 𝜋𝑖, 𝜋𝑘 > = 1 or  

- if all possibility distributions are certain and they 

agree on the certainty element then < 𝜋𝑖, 𝜋𝑘 > = 1. 

Table 8. Comparative equations associated with  ‖𝜋‖2  in mixed case under both frameworks  

Probabilistic Framework Possibilistic Framework 

‖𝑃‖2 =
1

𝑡2 [𝑡1 +
1

𝑛
(𝑡 − 𝑡1) +

1

𝑛
((𝑡 − 𝑡1)(𝑡 + 𝑡1 −

1)) + ∑ 𝑔𝑗(𝑔𝑗 − 1)𝑛
𝑗=1 ]  

‖𝑃‖2 =
1

𝑡2 [𝑡1 + ∑ 𝑔𝑗(𝑔𝑗 − 1)𝑛
𝑗=1 +

1

𝑛
((𝑡 − 𝑡1)(𝑡 +

𝑡1))]  

‖𝑃‖2 =
1

𝑡2 [𝑡1 + ∑ 𝑔𝑗(𝑔𝑗 − 1)𝑛
𝑗=1 +

1

𝑛
(𝑡2 − 𝑡1

2)]  

In the special case where all the pure certain 

distributions agree, 𝑔1 = 𝑡1 and all other 𝑔𝑗 = 0 ,  

we get 

‖𝑃‖2 =
1

𝑡2 [𝑡1 + 𝑡1(𝑡1 − 1) +
1

𝑛
(𝑡2 − 𝑡1

2)] 

‖𝑃‖2 =
1

𝑡2 [𝑡1
2 +

1

𝑛
(𝑡2 − 𝑡1

2)] 

𝑁𝑒𝑔𝐸𝑛𝑡 =
1

𝑡2 [𝑡1
2 +

1

𝑛
(𝑡2 − 𝑡1

2)] 

‖𝜋‖2 =
1

𝑡2 [𝑡1 + 𝑛(𝑡 − 𝑡1) + 𝑛((𝑡 − 𝑡1)(𝑡 + 𝑡1 −

1)) + ∑ 𝑔𝑗(𝑔𝑗 − 1)𝑛
𝑗=1 ]  

‖𝜋‖2 =
1

𝑡2 [𝑡1 + ∑ 𝑔𝑗(𝑔𝑗 − 1)𝑛
𝑗=1 + 𝑛((𝑡 − 𝑡1)(𝑡 +

𝑡1))]   

‖𝜋‖2 =
1

𝑡2 [𝑡1 + ∑ 𝑔𝑗(𝑔𝑗 − 1)𝑛
𝑗=1 + 𝑛(𝑡2 − 𝑡1

2)]   

In the special case where all the pure certain 

distributions agree, 𝑔1 = 𝑡1 and all other 𝑔𝑗 = 0 we 

get 

‖𝜋‖2 =
1

𝑡2
[𝑡1 + 𝑡1(𝑡1 − 1) + 𝑛(𝑡2 − 𝑡1

2)] 

‖𝜋‖2 =
1

𝑡2
[𝑡1

2 + 𝑛(𝑡2 − 𝑡1
2)] 

𝑁𝑒𝑔𝐸𝑛𝑡 =
𝑡2

[𝑡1
2 + 𝑛(𝑡2 − 𝑡1

2)]
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6. Uniform fusion of possibility distribution 

The fusion of multi-source probabilistic information has been detailed in Section 5 of Yager and Petry [1]. 

This section discusses the main differences between both approaches. Assume 𝑋 is a variable that takes its 

value in the space Ω = {𝑥1, 𝑥2, … , 𝑥𝑡  }. Let 𝜋𝑖 be a possibility distribution on  representing the information 

provided by source i regarding the value of 𝑋 so that, each 𝜋𝑖 = [𝜋𝑖(1), 𝜋𝑖(2), … , 𝜋𝑖(𝑛) ] with t possibility 

distributions, 𝜋𝑖, for 𝑖 = 1 𝑡𝑜 𝑡, then the basic uniform fusion of these distributions is a possibility 

distribution π  as given in Table 9. 

Table 9. Equations for the fusion of distributions for both frameworks 

Probabilistic Framework Possibilistic Framework 

𝑃 =
1

𝑡
∑ 𝑃𝑖

𝑡
𝑖=1  with 𝑃(𝑗) =

1

𝑡
∑ 𝑃𝑖(𝑗)

𝑡
𝑖=1  𝜋 =

1

𝑡
∑ 𝜋𝑖 

𝑡
𝑖=1 with 𝜋(𝑗) =

1

𝑡
∑ 𝜋𝑖(𝑗)

𝑡
𝑖=1  

‖𝑃‖2 =
1

𝑡2 [∑‖𝑃𝑖‖
2 + 2∑ ∑ < 𝑃𝑖. 𝑃𝑘 >

𝑡

𝑘=𝑖+1

𝑡−1

𝑖=1

𝑡

𝑖=1

] 

 

‖𝜋‖2 =
1

𝑡2 [∑‖𝜋𝑖‖
2 + 2∑ ∑ < 𝜋𝑖. 𝜋𝑘 >

𝑡

𝑘=𝑖+1

𝑡−1

𝑖=1

𝑡

𝑖=1

] 

 

The total number of terms being combined: 

𝑡 +
2(𝑡)(𝑡−1)

2
= 𝑡2 and 𝑁𝑒𝑔𝐸𝑛𝑡 = ‖𝑃‖2 ∈ [0,1]. 

The total number of terms being combined: 

 𝑡 +
2(𝑡)(𝑡−1)

2
= 𝑡2 and 𝑁𝑒𝑔𝐸𝑛𝑡 ∈ [0,

1

𝑛
] 

𝐴𝑣𝑒𝐶𝑜𝑛𝑓(𝑃𝑖, 𝑃𝑘)

=
2

(𝑡)(𝑡 − 1)
∑ ∑ (1 −

𝑃𝑖𝑃𝑘

‖𝑃𝑖‖‖𝑃𝑘‖
)

𝑡

𝑘=𝑖+1

𝑡−1

𝑖=1

= 1 −
2

(𝑡)(𝑡 − 1)
∑ ∑ (

𝑃𝑖𝑃𝑘

‖𝑃𝑖‖‖𝑃𝑘‖
)

𝑡

𝑘=𝑖+1

𝑡−1

𝑖=1

 

 𝐴𝑣𝑒𝐶𝑜𝑛𝑓(𝜋𝑖, 𝜋𝑘) 

=
2

𝑡(𝑡 − 1)
[∑ ∑ (1 −

𝜋𝑖𝜋𝑘

‖𝜋𝑖‖‖𝜋𝑘‖
)

𝑡

𝑘=𝑖+1

𝑡−1

𝑖=1

] 

= 1 −
2

𝑡(𝑡 − 1)
[∑ ∑ (

𝜋𝑖𝜋𝑘

‖𝜋𝑖‖‖𝜋𝑘‖
)

𝑡

𝑘=𝑖+1

𝑡−1

𝑖=1

] 

 

The objective of fusing t possibility distributions, 𝜋𝑖, 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑡, provided by multiple sources, is to 

obtain a fused estimate that contains the largest amount of information about the value of 𝑋. That means to 

obtain a large value of 𝑁𝑒𝑔𝐸𝑛𝑡. As in the case of the probabilistic framework, pairing possibility 

distributions that are non-conflicting, i.e. a 𝜋𝑖𝜋𝑘 large, tend to increase the information. Alternatively, those 

pairs with small compatibility, i.e. a 𝜋𝑖𝜋𝑘 small, tend to increase 𝑁𝑒𝑔𝐸𝑛𝑡 as well. The explication is given 

in Yager and Petry [1] as that the former pairs affect the value (1
𝑡2⁄ ). We note that 𝑡2 = 𝑡 + 𝑡(𝑡 − 1) is 

the number of possibility distributions plus the number of pairs. Thus while a conflicting pair does not affect 

too much the sum  ∑ ∑ (𝜋𝑖𝜋𝑘)
𝑡
𝑘=𝑖+1

𝑡−1
𝑖=1 ,  it can however augment the value of 𝑁𝑒𝑔𝐸𝑛𝑡 since it is counted in 

the term 𝑡2.   



 

17 

Yager and Petry [1] point out that to only fuse the possibility distributions that have a high compatibility 

provokes a loss of credibility of the fusion. They suggest the use of a set measure that indicates the credibility 

of a fusion based on a simple weighted average of a subset of the distributions. This can be applied to 

possibility distributions as well. 

The fusion process considers the possibility distribution subset 𝐵  of the most credible distributions.  Thus, 

the set measure 𝐶𝑟𝑒𝑑: 2𝑍 → [0,1]  is defined such that for any subset 𝐵 of 𝑍, 𝐶𝑟𝑒𝑑(𝐵) indicates the 

credibility of a fusion based on only the distributions in 𝐵. The credibility of a possibility distribution subset 

requires the following natural properties:  

1. 𝐶𝑟𝑒𝑑(∅) = 0 ;  

2. 𝐶𝑟𝑒𝑑(𝑍) = 1 ; and 

3. 𝐼𝑓 𝐴 ⊆ 𝐵 𝑡ℎ𝑒𝑛 𝐶𝑟𝑒𝑑(𝐴) ≤  𝐶𝑟𝑒𝑑(𝐵). 

The search and rescue example of Yager and Petry [1] that consists of three distributions, and which 

represent information on four spatial locations, is being reused here for the possibilistic case. The decision 

is about finding the location where to rescue? The sources of probabilistic information are, hypothetically, 

from UAVs, surveillance aircraft, and human sources. For the purpose of comparison let us state that the 

sources of possibilistic information on the same locations are from humans. Table 10 shows the comparison. 

As expected, it does not gives the same results since we use normalized distributions in the possibilistic 

framework. The choice of using a framework or another is based upon the nature and characteristics of the 

information sources. Consequently, the analysis presented in Section 5 of Yager & Petry on the use of 𝐶𝑜𝑛𝑓 

and 𝑁𝑒𝑔𝐸𝑛𝑡 for the probabilistic framework also applies here to the possibilistic framework. 

 

Table 10. Calculations of conflicts and information for the example given in Yager and Petry [1] 

Probabilistic Framework Possibilistic Framework 

𝑃1: (. 5, .2, .2, .1);  
𝑃2: (. 4, .3, .2, .1); 
𝑃3: (. 1, .2, .1, .6 ) 

𝜋1: (. 5, .2, .2, .1);                  𝜋1: (1, .2, .2, .1); 
𝜋2: (. 4, .3, .2, .1);                    𝜋2: (1, .3, .2, .1); 
𝜋3: (. 1, .2, .1, .6 )                  𝜋3: (. 1, .2, .1,1 ) 

‖𝑃1‖ = (√. 34) = .583;  𝑁𝑒𝑔𝐸𝑛𝑡 = .34 

‖𝑃2‖ = (√. 3) = .547;  𝑁𝑒𝑔𝐸𝑛𝑡 = .3 

‖𝑃3‖ = (√. 42) = .648;  𝑁𝑒𝑔𝐸𝑛𝑡 = .42 

𝑃1 ⋅ 𝑃2 = .31; 𝑃1 ⋅ 𝑃3 = .17; 𝑃2 ⋅ 𝑃3 = .18 

‖𝜋1‖ = (√1.09) = 1.0440;  𝑁𝑒𝑔𝐸𝑛𝑡 =0.9174 

‖𝜋2‖ = (√1.14) = 1.0677;  𝑁𝑒𝑔𝐸𝑛𝑡 = 0.8772 

‖𝜋3‖ = (√1.06) = 1.0296;  𝑁𝑒𝑔𝐸𝑛𝑡 = 0.9434 

𝜋1 ⋅ 𝜋2 = 1.11; 𝜋1 ⋅ 𝜋3 = .26; 𝜋2 ⋅ 𝜋3 = .28 

Conf(𝑃1, 𝑃2) = 1 −
. 31

. 583 ∗ .547
= 1 −

. 31

. 318
= 1 − .975 = .025 

Conf(𝑃1, 𝑃3) = 1 −
. 17

. 583 ∗ .648
= 1 −

. 17

. 378
= 1 − .450 = .550 

Conf(𝜋1, 𝜋2) = 1 −
1.11

1.0440 ∗ 1.0677

= 1 −
1.11

1.11478
= 1 − 0.9958

= 0.0042 

Normalisation 
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Conf(𝑃2, 𝑃3) = 1 −
. 18

. 547 ∗ .648
= 1 −

. 18

. 354
= 1 − .508 = .452 

Conf(𝜋1, 𝜋3) = 1 −
. 26

1.0440 ∗ 1.0296

= 1 −
. 26

1.0749
= 1 − 0.2419

= 0.7581 

Conf(𝜋2, 𝜋3) = 1 −
. 28

1.0296 ∗ 1.0296

= 1 −
. 28

1.0993
= 1 − 0.2547

= 0.7453 

‖𝑅(𝑃1, 𝑃2)‖
2 =

. 316

. 32
= .988 

‖𝑅(𝑃1, 𝑃3)‖
2 =

. 275

. 38
= .724 

‖𝑅(𝑃2, 𝑃3)‖
2 =

. 27

. 36
= .75 

𝑅(𝑃1, 𝑃2, 𝑃3) = (. 333, .233, .166, .266);  
‖𝑅(𝑃1, 𝑃2, 𝑃3)‖

2 = .264 

 

 ( )1.;2.;25.;1),( 21 =

( )( ) 8989., 21 =NegEnt  

( )1;15.;2.;1),( 31 =

( )( ) 4848., 31 =NegEnt  

( )1;15.;25.;1),( 32 =

( )( ) 4796., 32 =NegEnt  

( )4.;166.;233.;1),,( 321 =

( )( ) 8050.,, 321 =NegEnt  

7. On weighted average fusion 

The previous section shows how to use the distributions and their information content as an initial step for 

choices of possibility distributions.  In this section, we discuss how to use the credibility, 𝐶𝑟𝑒𝑑,  along with 

𝑁𝑒𝑔𝐸𝑛𝑡 for the final fusion taking into account the credibility of fused values using different subsets of 

𝑍 = {𝜋1, 𝜋2, . . . , 𝜋𝑡}. Given a subset 𝐵 of possibility distributions from 𝑍 we can calculate the associated 

fused value, 𝜋𝐵. In particular if |𝐵| is the number of distributions in 𝐵 then  𝜋𝐵 =
1

|𝐵|
∑ 𝜋𝑖𝜋𝑖∈𝐵 , and  ‖𝜋𝐵‖2 ∈

[0,1] is given by: 

 

‖𝜋𝐵‖2 =
1

|𝐵|2

[
 
 
 

∑‖𝜋𝑖‖
2 + 2 ∑ ∑ 𝜋𝑖𝜋𝑘

𝑡

𝑘=𝑖+1
𝜋𝑘∈𝐵

𝑡−1

𝑖=1
𝜋𝑖∈𝐵

𝜋𝑖∈𝐵
]
 
 
 

 (12) 

 

The measure, 𝐶𝑟𝑒𝑑, provides the credibility associated with 𝜋𝐵 and its range is given by 𝐶𝑟𝑒𝑑(𝐵) ∈ [0,1]. 

The decision problem is now to find a fused value that has both high values for 𝐶𝑟𝑒𝑑(𝐵) and for 

𝑁𝑒𝑔𝐸𝑛𝑡(𝜋𝐵). To select which subset to use, authors in [1] use the dominance concept related to the 

credibility and quantity of information. It is expressed as the predicate 𝐷𝑜𝑚(𝐵𝑖 , 𝐵𝑗): 

 𝐷𝑜𝑚(𝐵𝑖 , 𝐵𝑗) = [(𝐶𝑟𝑒𝑑(𝐵𝑖) ≥ (𝐶𝑟𝑒𝑑(𝐵𝑗)) ∧ (𝑁𝑒𝑔𝐸𝑛𝑡 ≥ 𝑁𝑒𝑔𝐸𝑛𝑡) ∧ 𝐶𝑜𝑛𝑑(>,<)] (13) 

 

Where 𝐶𝑜𝑛𝑑(>) is true only if at least one of the “≥”is “>. If 𝐷𝑜𝑚(𝐵𝑖, 𝐵𝑗) is true then 𝐵𝑖  dominates 𝐵𝑗 and 

so 𝐵𝑗 can be removed from consideration. Based on dominance rules, we have a collection of non-dominated 
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fusions where each fusion is determined from a subset of space 𝑍 denoted as 𝐵1, . . . , 𝐵𝑟. For each subset 𝐵𝑗, 

we can calculate its associated fusion 𝜋𝐵𝑗
, also its 𝑁𝑒𝑔𝐸𝑛𝑡(𝐵𝑗) value, its 𝑁𝑒𝑔𝐸𝑛𝑡(𝜋𝐵𝑗

) and its credibility, 

𝐶𝑟𝑒𝑑(𝐵𝑗). The information about 𝑁𝑒𝑔𝐸𝑛𝑡(𝐵) and credibility values are being used to select among these 

possible fusions, the 𝜋𝐵𝑗
. In the following, we consider how to choose the final possibility distribution based 

both on the information quantity and on credibility using the example of the previous section.  

The collection of relevant possibility distributions is 𝑍 = {𝜋1, 𝜋2, 𝜋3}. So there are seven subsets of 𝑍 to 

consider: 𝐵1 = {𝜋1}, 𝐵2 = {𝜋2}, 𝐵3 = {𝜋3}, 𝐵4 = {𝜋1, 𝜋2}, 𝐵5 = {𝜋1, 𝜋3}, 𝐵6 = {𝜋2, 𝜋3}, 𝐵7 =

{𝜋1, 𝜋2, 𝜋3}. In Table 11, we compare credibility functions proposed in [1] for the probabilistic case with 

the credibility function obtained for the possibilistic approach.  

 

Table 11. Credibility functions used for both frameworks 

Probabilistic Framework Possibilistic Framework 

First credibility function: at least two 

distributions included in a subset is used. 

𝐶1(𝐵1) = 𝐶1(𝐵2) = 𝐶1(𝐵3) = 0 

 𝐶1(𝐵4) = 𝐶1(𝐵5) = 𝐶1(𝐵6) = 𝐶1(𝐵7) = 1 

 

- Based on correlation matrix 𝑐𝑜𝑟𝑟(𝜋1, 𝜋2). 

𝐶𝑟𝑒𝑑𝑖 =
1

𝑛−1
∑ 𝑐𝑜𝑟𝑟(𝜋𝑖, 𝜋𝑗)

𝑛
𝑗=1
𝑗≠𝑖

 with 

𝑐𝑜𝑟𝑟(𝜋1, 𝜋2) =
<𝜋1,𝜋2>

‖𝜋1‖.‖𝜋2‖
 

Second credibility function: “most” as the fuzzy 

value 𝑀 

𝑀 = {
0 |𝐵| = 1
.7 |𝐵| = 2
1.0 |𝐵| = 3

 

𝐶2(𝐵1) = 𝐶2(𝐵2) = 𝐶2(𝐵3) = 0 ;  

N/A 

𝐷𝑜𝑚 -assessment 

𝑆𝑢𝑏𝑠𝑒𝑡
𝐵1

𝐵2

𝐵3

𝐵4

𝐵5

𝐵6

𝐵7

𝑁𝑒𝑔𝐸𝑛𝑡
. 34
. 3
. 42
. 315
. 275
. 27
. 264

𝐶1
0
0
0
1
1
1
1

𝐶2
. 0
. 0
. 0
. 7
. 7
. 7
1

 

𝐷𝑜𝑚 -assessment 

𝑆𝑢𝑏𝑠𝑒𝑡
𝐵1

𝐵2

𝐵3

𝐵4

𝐵5

𝐵6

𝐵7

𝑁𝑒𝑔𝐸𝑛𝑡
. 9174
. 8772
. 9434
. 8989
. 4848
. 4796
. 8050

𝐶𝑟𝑒𝑑
. 7937
. 7946
. 4668
. 7952
. 8392
. 8420
. 8697

 

Results : 

C1: non-dominated subsets: 𝑁𝐷 = {𝐵3, 𝐵4} 

C2: non-dominated subsets: 𝑁𝐷 = {𝐵1, 𝐵4, 𝐵7} 

Results: 

𝑁𝐷 = {𝐵1, 𝐵3, 𝐵4, 𝐵7}. 

 {𝐵2, 𝐵5, 𝐵6} ∉ 𝑁𝐷. 
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The dominance principle (Eq.13) is applied to get the results of Table 11. The results obtained with the 

possibilistic approach use the follow statements: 

- 𝑁𝑒𝑔𝐸𝑛𝑡(𝐵4) > 𝑁𝑒𝑔𝐸𝑛𝑡(𝐵2), 𝑁𝑒𝑔𝐸𝑛𝑡(𝐵7) > 𝑁𝑒𝑔𝐸𝑛𝑡(𝐵5), 𝑁𝑒𝑔𝐸𝑛𝑡(𝐵7) > 𝑁𝑒𝑔𝐸𝑛𝑡(𝐵6) 

- (𝐶𝑟𝑒𝑑(𝐵4) > 𝐶𝑟𝑒𝑑(𝐵2), 𝐶𝑟𝑒𝑑(𝐵7) > 𝐶𝑟𝑒𝑑(𝐵5), 𝐶𝑟𝑒𝑑(𝐵7) > 𝐶𝑟𝑒𝑑(𝐵6))  

- 𝐵1, 𝐵3, 𝐵4, 𝐵7 dominate all other subsets 𝐵2, 𝐵5, 𝐵6 ; 

A quick look at the results obtained using Yager & Petry [1] credibility functions as compared to the 

possibilistic approach shows that the most best subsets are selected using the possibilistic framework. Yager 

and Petry [1] propose another approach for obtaining the quality of a fusion by the use of prioritized 

aggregation introduced by Yager [23] where a score associated with a fusion is a weighted sum of its 

credibility and 𝑁𝑒𝑔𝐸𝑛𝑡.  In our case, we start with the set 𝑍 = {𝜋1, 𝜋2, . . . , 𝜋𝑡} and choose a subset 𝐵𝑖 of 𝑍. 

The fusion is performed by taking an equally weighted aggregation of the possibility distributions in 𝐵𝑖.  

In [1], the authors suggest a more general approach based on a non-uniform weighted average of the 

elements in 𝑍. Here, we propose a new weighting approach. The weighted factor of a possibility distribution 

is denoted by 𝑤, which is determined by both the credibility 𝐶𝑟𝑒𝑑 and the separability SE. The weighting 

factor, w, is defined as:  

 
𝑤 =

1

2
(𝐶𝑟𝑒𝑑 + 𝐶𝑟𝑒𝑑 ⋅ 𝑆𝐸−𝐶𝑟𝑒𝑑) (14) 

 

The factor 1 2⁄  is used to normalized 𝑤 and to guarantee that 0 ≤ 𝑤 ≤ 1. The separability degree of two 

possibility distributions is obtained based on Manhattan distance as:  

 

𝑆𝐸 = 1 −

(

 
 1

𝑛 − 1
∑(𝜋𝑖 − 𝜋𝑗)

𝑛

𝑗=1
𝑗≠𝑖 )

 
 

 (15) 

Finally, the functional processes for an intelligent quality-based approach to fuse multi-source possibilistic 

information can be summarized as shown in Figure 5 as an ‘8-step’ methodology. This methodology is 

being used, in the next section, to conduct an empirical comparison between both frameworks. 
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Figure 5. The functional processing (8-step methodology) of the possibilistic approach 

8. Empirical results 

This section details the calculations of the possibilistic approach to get the results presented in the right 

column of Table 11 as well as to illustrate the functional processing of Figure 5. A numerical example is 

shown first. The numerical example is the same than the one presented in the previous section. The second 

part shows an experimentation with four benchmark experimental datasets: IRIS Fisher data set  [24], Pima 

Indians Diabetes [25, 26], Glass data set [27] and Liver-disorders [28]  that have different degrees of 

information quality namely about information incompleteness. 

8.1 Numerical example 

 The set 𝑍, of possibility distributions are considered as the sources of information, 𝑍 = {𝜋1, 𝜋2, 𝜋3}, where 

𝜋1: (. 5, .2, .2, .1);  𝜋2: (. 4, .3, .2, .1); 𝜋3: (. 1, .2, .1, .6 ). In general, for the selection of distributions, if a 

possibility distribution has a small conflict with respect to other distributions, then, that distribution should 

contribute more on the final fusion results than the other distributions that show high conflicts. A weighting 

function must then be defined to reflect that.  To determine the value of each weight, a correlation coefficient 

between two possibility distributions is used that leads to the definition of a credibility measure for each 

distribution. 
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Using the same numerical example of the previous section, the 8-step methodology, illustrated in Figure 5, 

is unfolded the following way: 

 

Step 1: Computation of the credibility measure for each possibility distribution based on one single 

source of knowledge 

The credibility (𝐶𝑟𝑒𝑑) of possibility distribution represents the similarity among distributions. The 

credibility values for the numerical example are computed accordingly to Table 11 and are respectively: 

𝐶𝑟𝑒𝑑(𝜋1) = 0.7103; 𝐶𝑟𝑒𝑑(𝜋2) = 0.7389; 𝐶𝑟𝑒𝑑(𝜋3) = 0.4785 

The credibility measures show that the distributions, 𝜋1 and 𝜋2, are the most credible. 

 

Step 2: Computation of the separability measure for each possibility distribution 

This step is to define weights for each possibility distribution based on the distribution credibility and its 

discriminating power that is represented by the separability measure.  

For the search and rescue example, the values of each degree of separability are: 

𝑆𝐸(𝜋1) = 0.8333; 𝑆𝐸(𝜋2) = 0.8667; 𝑆𝐸(𝜋3) = 0.7667 

 

Step 3: Computation of the weights for possibility distributions 

The determination of weights for the distributions is related to the credibility 𝐶𝑟𝑒𝑑 and the separability 

measure SE which are two information quality-based factors. If both factors can be taken into consideration, 

then a better selection of distribution subsets will result. The credibility and separability weights can be 

derived based on possibility distributions alone, requiring no extra a priori knowledge. The weight factor of 

a possibility distribution is denoted by 𝑤, which is determined by both credibility 𝐶𝑟𝑒𝑑 and separability SE. 

It is defined by: 𝑤 =
1

2
(𝐶𝑟𝑒𝑑 + 𝐶𝑟𝑒𝑑 ⋅ 𝑆𝐸−𝐶𝑟𝑒𝑑). The factor 1 2⁄  is used to normalize 𝑤 and to guarantee 

that 0 ≤ 𝑤 ≤ 1. In our example, the weights are as follow: 

𝑤1(𝜋1) = 0.7594;𝑤2(𝜋2) = 0.7801;𝑤3(𝜋3) = 0.5109 

Step 4: Definition of all subsets of the distribution set Z 

The example consists of 3 information sources, consequently 7 subsets are being constructed:  

 𝑍

𝐵1 = {𝑓
1
}

𝐵2 = {𝑓
2
}

𝐵3 = {𝑓
3
}

|

𝐵4 = {𝑓
1
, 𝑓

2
}

𝐵5 = {𝑓
1
, 𝑓

3
}

𝐵6 = {𝑓
2
, 𝑓

3
}

|
𝐵7 = {𝑓

1
, 𝑓

2
, 𝑓

3
}
|

 

(16) 

 

Step 5: Fusion of the weighted possibility distributions of each subset 

The corresponding distributions of the different subsets (𝐵𝑘=1 𝑡𝑜 7) are given as follow. 
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 𝜋𝐵𝑘
(𝜋𝑖, 𝜋𝑗) = (𝑤𝑖. 𝜋𝑖 + 𝑤𝑗. 𝜋𝑗)/2 (17) 

 

𝐵1 = 𝑤1. 𝜋1 = {0.3797,0.1519,0.1519,0.0759} 

𝐵2 = 𝑤2. 𝜋2 = {0.3120,0.2340,0.1560,0.0780} 

𝐵3 = 𝑤3. 𝜋3 = {0.0511,0.1022,0.0511,0.3065} 

𝐵4 = (𝑤1. 𝜋1 + 𝑤2. 𝜋2) 2⁄ = {0.3459,0.1929,0.1539,0.0770} 

𝐵5 = (𝑤1. 𝜋1 + 𝑤3. 𝜋3) 2⁄ = {0.2154,0.1270,0.1015,0.1912} 

𝐵6 = (𝑤2. 𝜋2 + 𝑤3. 𝜋3) 2⁄ = {0.1816,0.1681,0.1036,0.1923} 

𝐵7 = (𝑤1. 𝜋1 + 𝑤2. 𝜋2 + 𝑤3. 𝜋3) 3⁄ = {0.2476,0.1627,0.1197,0.1535} 

 

Step 6: Computation of the information quantity (𝑵𝒆𝒈𝑬𝒏𝒕) in each subset (𝑩𝒌=𝟏 𝒕𝒐 𝟕) 

This step performs the evaluation of the quality of each subset and selects only subsets that have a large 

degree of 𝑁𝑒𝑔𝐸𝑛𝑡. The information quantity (𝑁𝑒𝑔𝐸𝑛𝑡) of each weighted subset is presented in Figure 6. 

     

Figure 6. Information quantity (𝑵𝒆𝒈𝑬𝒏𝒕) in each weighted subset 

We remark the following: 

1. The subset 𝐵𝑖 with the largest 𝑁𝑒𝑔𝐸𝑛𝑡 provides the most information (in Figure 6, 𝐵1 𝑎𝑛𝑑 𝐵3).  

For example, the subset 𝐵1 gives a large 𝑁𝑒𝑔𝐸𝑛𝑡 value since 𝐵4 fuses 𝜋1 and 𝜋2 that the first 

distribution (𝜋1) and the second distribution (𝜋2) have a small value of conflict.  

2. Fusing a subset 𝐵𝑖 and 𝐵𝑗 with a large value of conflict provides a subset with a small 𝑁𝑒𝑔𝐸𝑛𝑡. 

For example, the fusion of 𝜋1 (represented by 𝐵1) or 𝜋2 (represented by 𝐵2) with 𝜋3  

(represented by 𝐵3) gives a small value of  𝑁𝑒𝑔𝐸𝑛𝑡  as shown by 𝐵5 , 𝐵6. 

 

Step 7: Computation of the credibility measure for each subset (𝑩𝒌=𝟏 𝒕𝒐 𝟕) 

Figure 7 provides the information about the credibility (𝐶𝑟𝑒𝑑) of fused subsets, (𝑩𝒌=𝟏 𝒕𝒐 𝟕). We can 

conclude based on this figure that the subset as 𝐵5, 𝐵6 and 𝐵7 containing at least one credible distribution 

may have a high credibility value. 
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Figure 7. Credibility values of each subset 

Step 8: Selection of the best subsets for the final fusion 

Figure 8 presents the selected subsets to be considered in the final fusion. The selection process is based on 

the dominance concept that uses credibility, (Cred), and negative Entropy (𝑁𝑒𝑔𝐸𝑛𝑡) values. The obtained 

results confirm that all subsets have a good information quantity except the subsets 𝐵2, 𝐵5, 𝐵6. 

𝑆𝑢𝑏𝑠𝑒𝑡
𝐶𝑟𝑒𝑑
𝑁𝑒𝑔𝐸𝑛𝑡

|
𝐵1

0.9174
0.7937

|
𝐵2

0.8772
0.7946

|
𝐵3

0.9434
0.4668

|
𝐵4

0.8989
0.7952

|
𝐵5

0.4848
0.8392

|
𝐵6

0.4796
0.8420

|
𝐵7

0.8050
0.8697

| 

⇓ 

𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡𝑠: 𝑁𝐷 = {𝐵1, 𝐵3, 𝐵4, 𝐵7} 

Figure 8. Subsets selection  

To verify the quality of a subset, it is possible to calculate a score associated with a fusion that is a weighted 

sum of its credibility and its information quantity (𝑁𝑒𝑔𝐸𝑛𝑡). More formally the score of the fusion based 

on the subset 𝐵 is defined as:  

 𝑆𝑐𝑜𝑟𝑒(𝐵𝑘) = 𝑤1𝐶𝑟𝑒𝑑(𝐵𝑘) + 𝑤2𝑁𝑒𝑔𝐸𝑛𝑡 (18) 

 𝑤1

𝑤2
=

𝐶𝑟𝑒𝑑(𝐵𝑘)

1
 

(19) 

 

Normalizing the weights so that 𝑤1 + 𝑤2 = 1 , we get 

 
𝑆𝑐𝑜𝑟𝑒(𝐵𝑘) =

𝐶𝑟𝑒𝑑(𝐵𝑘)

1 + 𝐶𝑟𝑒𝑑(𝐵𝑘)
(1 + 𝑁𝑒𝑔𝐸𝑛𝑡) 

(20) 

The score, associated with each subset, is illustrated in Figure 9. Subsets selected according to the 

dominance rule are represented by the blue bars. Subsets with the highest scores are being selected according 

to the dominance principle. 
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Figure 9. Score values of all subsets  

The complexity of the proposed method depends on the complexity of the credibility measure, 

the complexity of the separability and the complexity of the information quantity measure. The 

complexity of these concepts is of :  

- O(log2(t)), while processed for each source of the t sources of knowledge. 

- O(2t), while processed for all source of knowledge subsets. 

The resulting complexity is equal to the maximum of [O(log2(t)), O(2t) ] that corresponds to 

O(2t). 

8.2 Experimental datasets as benchmark  

This section presents a comparison between both approaches (probabilistic, possibilistic) following the 8-

steps methodology of Figure 5 but this time on real dataset benchmarks. Four dataset benchmarks are being 

used: IRIS Fisher data set  [24], Pima Indians Diabetes [25, 26], Glass data set [27] and Liver-disorders 

[28].  

The Iris dataset consists of 3 classes, 4 attributes and 150 samples, with 50 samples for each class. In this 

paper, the first 35 samples of each class have been used for training. Each class 𝐶𝑖 is being represented by 

the set 𝑍𝑖 = {𝜋1,𝑖, 𝜋2,𝑖, 𝜋3,𝑖, 𝜋4,𝑖} where 𝜋𝑗,𝑖 is the distribution corresponding to a feature 𝑓𝑗.  

The Pima Indians Diabetes is a dataset consisting of 2 classes, 8 attributes and 768 samples, with 500 

samples for the first class and 268 samples for the second one. In this paper, the last 100 samples of the first 

class and the last 50 samples of the second class have been used for training. For the Pima Indians Diabetes 

database, each class 𝐶𝑖 is represented by the set 𝑍𝑖 = {𝜋1,𝑖, 𝜋2,𝑖, 𝜋3,𝑖, 𝜋4,𝑖, 𝜋5,𝑖, 𝜋6,𝑖, 𝜋7,𝑖, 𝜋8,𝑖} where 𝜋𝑗,𝑖 is 

the distribution corresponding to the feature 𝑓𝑗.  

The Glass dataset consists of 2 classes, 9 attributes and 214 samples, where 163 samples are for the first 

class and 51 samples for the second one. In this paper, 58 samples of the first class and 15 samples of the 

second class are used for training. Using the Glass database, each class Ci is represented by the set Zi =

{𝜋1,𝑖, 𝜋2,𝑖, 𝜋3,𝑖, 𝜋4,𝑖, 𝜋5,𝑖, 𝜋6,𝑖, 𝜋7,𝑖, 𝜋8,𝑖, 𝜋9,𝑖} where 𝜋𝑗,𝑖 is the distribution corresponding to feature fj.  
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The Liver-disorders is a dataset consisting of 2 classes, 6 attributes and 326 samples, whose 138 samples 

for the first class and 188 samples for the second one. Using the Liver-disorders database, each class Ci is 

represented by the set 𝑍𝑖 = {𝜋1,𝑖, 𝜋2,𝑖, 𝜋3,𝑖, 𝜋4,𝑖, 𝜋5,𝑖, 𝜋6,𝑖, 𝜋7,𝑖, 𝜋8,𝑖} where 𝜋𝑗,𝑖 is the distribution 

corresponding to feature 𝑓𝑗. 

8.2.1 Probabilistic and possibilistic modeling of the information sources  

Prior to apply the 8-step methodology of Figure 5, the information sources have to be modelled either by 

possibility or probability distributions. The construction of distributions is illustrated in Figure 10 for the 

IRIS data set for both frameworks: four features and three classes (color curves). The estimation process of 

probability distribution 𝑝𝑗,𝑖 from feature 𝑓𝑗 uses a histogram method. Then, the possibility distribution 𝜋𝑗,𝑖 

is inferred from the probability distribution based on the approach of Dubois and Prade [30].  

For both probability and possibility modeling, the resolution of the histogram data that corresponds to the 

number of points 𝑛 (bins) selected to represent the distributions is crucial since it directly impacts on the 

distribution’s shape. For example, in Figure 10 the number of bins used to represent the distributions is 10. 

The total number of available samples is determinant in the choice of the number of bins in the histogram 

to represent classes according to features. Indeed, with a small amount of data, a large number of bins is not 

possible since the modeling of information associated with the feature becomes incorrect. The question now 

is what would be the adequate number of points to represent a feature? 

To answer this question, a method based on the computation of the Shapley Index [31] is proposed in this 

study. The Shapley index is generally used to assess the quality of the feature discrimination for the resulting 

models. The information associated to a class according to feature values is modeled according to five 

different numbers of points 𝑛 selected to quantify feature values, namely 𝑛 = 5, 8, 10, 12 and 15 points. 

The Shapley Index is then calculated corresponding to each number of 𝑛. Figure 11 shows the results of the 

Shapley class discrimination values on the Iris dataset for the possibility modeling. In [32], the authors have 

demonstrated that the feature with the highest Shapley value is the one that has the largest discriminating 

factor between classes. Figure 11 shows that the highest Shapley value is obtained for feature 4 as 𝑛 = 10. 

So, the number of points chosen to represent the probability and the possibility distributions has been fixed 

to 𝑛 = 10. 

With this value of 𝑛 = 10, a comparison of a possibility class and a probability class is illustrated in Figure 

10. It shows that the possibilistic framework gives distributions that have a greater potential to discriminate 

between classes (e.g. feature 2 and feature 4) than for a probabilistic framework.   
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Probabilistic framework Possibilistic framework 

  

  

  

  

Figure 10. Class representations in probabilistic and possibilistic frameworks using the Iris dataset 

 

Figure 11. Shapley index values for class discrimination for the Iris dataset for 𝒏 = 𝟓, 𝟖, 𝟏𝟎, 𝟏𝟐 and 𝟏𝟓 
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8.2.2 Comparison of the 8-step Probabilistic-Possibilistic methodology on real cases  

The 8-step methodology of Figure 5 is now being compared but on real cases for both: the possibilistic and 

the probabilistic frameworks. The 8-steps methodology is listed as: 

Step 1: Computation of the credibility measure for each distribution 

Step 2: Computation of the separability measure for each distribution 

Step 3: Computation of the weights for distributions 

Step 4: Definition of all subsets of each set 𝒁𝒊,    𝐢=𝟏 𝐭𝐨 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐜𝐥𝐚𝐬𝐬𝐞𝐬 

Step 5: Initial fusion of the weighted distributions of each subset 

Step 6: Computation of the information quantity (𝑵𝒆𝒈𝑬𝒏𝒕) in each subset 

(𝑩𝒊,𝒌,    𝒌=𝟏  𝒕𝒐 𝟐𝒎,   𝒎=𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔) 

Step 7: Computation of a credibility measure for each subset (𝑩𝒊,𝒌) 

Step 8: Selection of the best subsets for the final fusion for each set 𝒁𝒊 

 

Before applying the methodology, let us give a primary idea of the dataset information quality. The 

information quantity (𝑁𝑒𝑔𝐸𝑛𝑡) has been calculated for all distributions. Results are tabulated in Figure 12. 

The information quantity (𝑁𝑒𝑔𝐸𝑛𝑡) obtained with the possibilistic framework gives larger values than with 

the probabilistic framework. For the four benchmarks, and based only on 𝑁𝑒𝑔𝐸𝑛𝑡, the possibilistic 

framework seems to offer a better modelling of the information sources and its imperfections than the 

probabilistic one.  

  

(a, Iris dataset) 

  

(b, Iris dataset) 

    



 

29 

(a, Diabetes dataset) (b, Diabetes dataset) 

 

(a, Glass dataset) 

 

(b, Glass dataset) 

 

(a, Liver-disorders dataset) 

 

(b, Liver-disorders dataset) 

Figure 12. Information quantities (𝑵𝒆𝒈𝑬𝒏𝒕) in (a) probabilistic framework and (b) possibilistic 

framework 

Let us now apply the methodology according to both frameworks. 

Step 1: Computation of the credibility measure for each distribution  

The credibility degrees obtained with the possibilistic and the probabilistic frameworks are presented in 

Figure 13. We note different behaviors for credibility values in probabilistic and possibilistic frameworks. 

The credibility is defined as an average correlation value. The mean value is a linear operation. However, 

the correlation is calculated based on the cosine of the angle between the distributions. It is known that the 

cosine is a non-linear operation. So that the correlation is nonlinear.  That nonlinearity is being observed, 

particularly for feature 4 of Iris dataset, for the variation of the credibility measures between the possibilistic 

and the probabilistic framework. For instance, in feature 4 of Iris dataset, the difference of credibility degrees 

between the first and the second class is very important for the probabilistic framework while we cannot see 

the corresponding behavior with the possibilistic framework. Other features like feature 6 of the Diabetes 

dataset and feature 6 of the Glass dataset present the same behavior. 
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(a, Iris dataset) 

 

(b, Iris dataset) 

 

(a, Diabete dataset) 

 

(b, Diabete dataset) 

 

(a, Glass dataset) 

 

(b, Glass dataset) 

  

(a, Liver-disorders dataset) 

 

(b, Liver-disorders dataset) 

Figure 13. Credibility degrees in (a) probabilistic framework and (b) possibilistic framework 
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Step 2: Computation of the separability measure for each distribution  

The separability degrees obtained in the possibilistic framework and the probabilistic framework are 

presented in Figure 14. This operation is linear, so it presents similar behavior for both frameworks. Figure 

14 shows that the separability degree between classes for all features is very close to each other in probability 

framework. However, we observe a much better degree of separability with the possibilistic framework, 

which allows us to better distinguish between classes. 

 

 

(a, Iris dataset) 

 

(b, Iris dataset) 

 

(a, Diabete dataset) 

 

(b, Diabete dataset) 

 

(a, Glass dataset) 

 

(b, Glass dataset) 
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(a, Liver-disorders dataset) 

 

(b, Liver-disorders dataset) 

Figure 14. Separability degrees in (a) probabilistic framework and (b) possibilistic framework 

Step 3: Computation of the weights for distributions 

Weights have been estimated based on credibility and separability degrees. That explains the non-linearity 

in Figure 15. By looking at Figure 12, on the information quantity (𝑁𝑒𝑔𝐸𝑛𝑡), and Figure 15, on the weight 

values, we can see that the weight computation is more sensitive to the variation of the information quantity 

in the possibilistic framework than the probabilistic framework.  For instance, in the probabilistic modeling 

of the Iris dataset, 𝑁𝑒𝑔𝐸𝑛𝑡 generated by the feature 2 for class 3 is larger than the one obtained by the same 

feature in class 2. The weight given for this feature in class 3 is smaller than the one given for the same 

feature in class 2. In the possibilistic modeling, the 𝑁𝑒𝑔𝐸𝑛𝑡 generated by the same feature 2 for class 3 is 

larger than the one obtained by the same feature in class 2. The weight given for this feature in class 3 is 

larger than the one given for the same feature in class 2. 

In the probabilistic modeling of the Diabetes dataset, 𝑁𝑒𝑔𝐸𝑛𝑡 generated by feature 8 for the first class is 

larger than 𝑁𝑒𝑔𝐸𝑛𝑡 for the second class. Contrariwise, the weight given for feature 8 in the first class is 

greatly smaller than the one given for the second class. In the possibilistic modeling, for the same feature 8 

of the same Diabetes dataset, the value  𝑁𝑒𝑔𝐸𝑛𝑡 generated by feature 8 for the first class is greatly larger 

than the 𝑁𝑒𝑔𝐸𝑛𝑡 for the second class.  Also, the weight given for feature 8 in the first class is greatly larger 

than the one given for the second class. 

 

 

(a, Iris dataset) 

 

(b, Iris dataset) 



 

33 

 

(a, Diabetes dataset) 

 

(b, Diabetes dataset) 

 

(a, Glass dataset) 

 

(b, Glass dataset) 

 

(a, Liver-disorders dataset) 

 

(b, Liver-disorders dataset) 

Figure 15. Weight degrees in (a) probabilistic framework and (b) possibilistic framework 

 

Step 4: Definition of all subsets of the distribution set 𝒁𝒊 

The Iris dataset contains 4 features, in this case 15 subsets are possible (𝐵𝑘=1 𝑡𝑜 15). The Pima Indians 

Diabetes dataset contains 8 features, in this case 255 subsets are possible (𝐵𝑘=1 𝑡𝑜 255) . The Glass dataset 

contains 9 features, in this case 512 subsets are possible (𝐵𝑘=1 𝑡𝑜 512). The Liver-disorders dataset contains 

6 features, in this case 64 subsets are possible (𝐵𝑘=1 𝑡𝑜 64). 
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Step 5: Initial fusion of the weighted distributions of each subset 

For each class 𝐶𝑖, once the weight of each feature and the different subsets 𝐵𝑖,𝑘 are defined, we proceed to 

the fusion of the weighted distributions of each subset. Then, the obtained distributions are used to select 

the best subset (s), for each class 𝐶𝑖. 

In next steps (Step6, step 7 and step8), we present by figures (Figure 16, Figure 17 and Figure 18) only 

results obtained for Iris dataset because it contains a low number of subsets which facilitate results 

visualisation and interpretation. 

Step 6: Computation of the information quantity (𝑵𝒆𝒈𝑬𝒏𝒕) in each subset 

(𝑩𝒊,𝒌,    𝒌=𝟏  𝒕𝒐 𝟐𝒎,   𝒎=𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔) 

 

The information quantity (𝑁𝑒𝑔𝐸𝑛𝑡) obtained for each subset in the possibilistic and probabilistic 

frameworks are presented in Figure 16. In addition, the difference between the largest value of 𝑁𝑒𝑔𝐸𝑛𝑡 and 

the smallest one is very small in the probabilistic framework unlike the possibilistic framework where the 

difference is more important. The value of 𝑁𝑒𝑔𝐸𝑛𝑡 for class 3 (yellow curve) is always the weakest one. 

Furthermore, the behavior of 𝑁𝑒𝑔𝐸𝑛𝑡 for the first class (blue curve) is always the strongest one. The 

behavior of 𝑁𝑒𝑔𝐸𝑛𝑡 for the first class and the second class (blue and red curves) are very close. It means 

that the construction of subsets greatly influences the separability between the second and the third class. 

  
(a)                                                                                    (b) 

Figure 16. Information quantity (𝑵𝒆𝒈𝑬𝒏𝒕) of subsets in (a) probabilistic framework and (b) possibilistic 

framework for Iris dataset 

Step 7: Computation of the credibility measure for each subset (𝑩𝒌=𝟏 𝒕𝒐 𝑵) 

The credibility measure obtained for each subset in the possibilistic and probabilistic frameworks are 

presented in Figure 17. It is clear that 𝐶𝑟𝑒𝑑 behavior is nonlinear when comparing both frameworks. For 

example, the first class 𝐶𝑟𝑒𝑑 value is always below the other classes in the probabilistic framework, but in 

the possibilistic framework and especially for the fourth and the ninth subsets, the first class 𝐶𝑟𝑒𝑑 value 

goes up to situate between the second and the third class.  
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(a)                                                                                    (b) 

Figure 17. Credibility measures of subsets in (a) probabilistic framework and (b) possibilistic framework 

for Iris dataset 

 

Step 8: Selection of the best subsets for the final fusion  

As in Step 3, weights are estimated based on the credibility and the separability degrees, which explains the 

non-linearity in Figure 18. In the probabilistic framework, large weight values are applied to all subsets of 

the second class, and small weight values are assigned to a majority of subsets of the first class. In 

possibilistic framework, large weight values are applied to all subsets of the third class, and very similar 

weight values in each subset for the first and second classes.  

 

  
(a)                                                                                    (b) 

Figure18. Weight values of subsets in (a) probabilistic framework and (b) possibilistic framework for Iris 

dataset 

 

Table 12, Table 13, Table 14 and Table 15 present the selected subsets respectively for the four benchmarks 

(Iris, Diabetes, Glass, Liver-disorders) to be considered in the final fusion step. The selection process is 

based on the dominance rule that uses 𝐶𝑟𝑒𝑑 and 𝑁𝑒𝑔𝐸𝑛𝑡 values. Table 12, Table 13, Table 14 and Table 

15 show the results. The selected subsets are not the same in all classes for both frameworks.  
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Table 12. Selected subsets of Iris dataset 

Possibilistic framework 

𝐂𝟏: 𝐒𝐞𝐭𝐨𝐬𝐚 

𝑁𝐷 = {𝐵7, 𝐵9, 𝐵10, 𝐵11, 𝐵14, 𝐵15} 

𝐂𝟐: 𝐕𝐞𝐫𝐬𝐢𝐜𝐨𝐥 

𝑁𝐷 = {𝐵9, 𝐵11, 𝐵14, 𝐵15} 

𝐂𝟑: 𝐕𝐢𝐫𝐠𝐢𝐧𝐢𝐜𝐚 

𝑁𝐷 = {𝐵5, 𝐵11, 𝐵15} 

Probabilistic framework 

𝐂𝟏: 𝐒𝐞𝐭𝐨𝐬𝐚 

𝑁𝐷 = {𝐵1, 𝐵5, 𝐵12, 𝐵15} 

𝐂𝟐: 𝐕𝐞𝐫𝐬𝐢𝐜𝐨𝐥 

𝑁𝐷 = {𝐵3, 𝐵6, 𝐵11, 𝐵15} 

𝐂𝟑: 𝐕𝐢𝐫𝐠𝐢𝐧𝐢𝐜𝐚 

𝑁𝐷 = {𝐵3, 𝐵4, 𝐵6, 𝐵10, 𝐵13, 𝐵15} 

 

Table 13. Selected subsets of Diabetes dataset 

Possibilistic framework 

𝐂𝟏: 𝐓𝐞𝐬𝐭𝐞𝐝 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞 

𝑁𝐷 = {

𝐵5, 𝐵7, 𝐵8, 𝐵28, 𝐵34, 𝐵36, 𝐵53, 𝐵63, 𝐵64, 𝐵79, 𝐵88, 𝐵91, 𝐵102, 𝐵113, 𝐵124, 𝐵138, 𝐵139, 𝐵144, 𝐵154,
𝐵155, 𝐵156, 𝐵168, 𝐵177, 𝐵178, 𝐵179, 𝐵192, 𝐵193, 𝐵194, 𝐵216, 𝐵219, 𝐵221, 𝐵225, 𝐵231, 𝐵240, 𝐵241,

𝐵242, 𝐵245, 𝐵247, 𝐵248, 𝐵251, 𝐵254, 𝐵255

} 

𝐂𝟐: 𝐓𝐞𝐬𝐭𝐞𝐝 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞 

𝑁𝐷 = {
𝐵5, 𝐵6, 𝐵23, 𝐵29, 𝐵64, 𝐵71, 𝐵116, 𝐵117, 𝐵122, 𝐵125, 𝐵165, 𝐵169, 𝐵173, 𝐵176, 𝐵182, 𝐵183, 𝐵205,

𝐵211, 𝐵219, 𝐵220, 𝐵221, 𝐵222, 𝐵225, 𝐵228, 𝐵231, 𝐵236, 𝐵240, 𝐵243, 𝐵247, 𝐵254, 𝐵255 } 

Probabilistic framework 

𝐂𝟏: 𝐓𝐞𝐬𝐭𝐞𝐝 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞 

𝑁𝐷 = {
𝐵5, 𝐵8, 𝐵12, 𝐵15, 𝐵18, 𝐵33, 𝐵34, 𝐵46, 𝐵78, 𝐵81, 𝐵96, 𝐵130,

𝐵135, 𝐵137, 𝐵187, 𝐵201, 𝐵224, 𝐵226, 𝐵230, 𝐵239, 𝐵255
} 

𝐂𝟐: 𝐓𝐞𝐬𝐭𝐞𝐝 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞 

𝑁𝐷 = {𝐵1, 𝐵5, 𝐵15, 𝐵28, 𝐵30, 𝐵78, 𝐵133, 𝐵144, 𝐵196, 𝐵215, 𝐵230, 𝐵242, 𝐵244, 𝐵253, 𝐵255} 
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Table 14. Selected subsets of Glass dataset 

Possibilistic framework 

𝐂𝟏:𝐖𝐢𝐧𝐝𝐨𝐰 − 𝐆𝐥𝐚𝐬𝐬 

𝑁𝐷 = {𝐵3, 𝐵11, 𝐵67, 𝐵150, 𝐵272, 𝐵282, 𝐵292, 𝐵297, 𝐵336, 𝐵398, 𝐵400, 𝐵405, 𝐵419, 𝐵511} 

𝐂𝟐: 𝐍𝐨𝐧 − 𝐖𝐢𝐧𝐝𝐨𝐰 − 𝐆𝐥𝐚𝐬𝐬 

𝑁𝐷 = {𝐵219, 𝐵443, 𝐵484, 𝐵496, 𝐵500, 𝐵511} 

Probabilistic framework 

𝐂𝟏:𝐖𝐢𝐧𝐝𝐨𝐰 − 𝐆𝐥𝐚𝐬𝐬 

𝑁𝐷 = {
𝐵2, 𝐵6, 𝐵8, 𝐵14, 𝐵21, 𝐵23, 𝐵24, 𝐵43, 𝐵60, 𝐵63, 𝐵65, 𝐵106, 𝐵113, 𝐵115,
𝐵116, 𝐵143, 𝐵214, 𝐵217, 𝐵224, 𝐵484, 𝐵486, 𝐵500, 𝐵508, 𝐵510, 𝐵511

} 

𝐂𝟐: 𝐍𝐨𝐧 − 𝐖𝐢𝐧𝐝𝐨𝐰 − 𝐆𝐥𝐚𝐬𝐬 

𝑁𝐷 = {

𝐵8, 𝐵9, 𝐵31, 𝐵36, 𝐵37, 𝐵43, 𝐵45, 𝐵93, 𝐵122, 𝐵123, 𝐵125, 𝐵129, 𝐵211, 𝐵230, 𝐵236,
𝐵245, 𝐵247, 𝐵250, 𝐵255, 𝐵302, 𝐵338, 𝐵367, 𝐵368, 𝐵377, 𝐵426, 𝐵446, 𝐵451, 𝐵456,

𝐵457, 𝐵492, 𝐵496, 𝐵507, 𝐵511

} 

 

Table 15. Selected subsets of Liver-disorders dataset 

Possibilistic framework 

𝐂𝟏: 𝐔𝐧 

𝑁𝐷 = {𝐵23, 𝐵42, 𝐵44, 𝐵57, 𝐵58, 𝐵63} 

𝐂𝟐: 𝐃𝐞𝐮𝐱 

𝑁𝐷 = {𝐵1, 𝐵10, 𝐵22, 𝐵26, 𝐵29, 𝐵35, 𝐵57, 𝐵63} 

Probabilistic framework 

𝐂𝟏: 𝐔𝐧 

𝑁𝐷 = {𝐵5, 𝐵6, 𝐵15, 𝐵16, 𝐵19, 𝐵20, 𝐵31, 𝐵34, 𝐵37, 𝐵40, 𝐵41, 𝐵56, 𝐵62, 𝐵63} 

𝐂𝟐: 𝐃𝐞𝐮𝐱 

𝑁𝐷 = {𝐵3, 𝐵5, 𝐵15, 𝐵28, 𝐵31, 𝐵37, 𝐵40, 𝐵46, 𝐵62, 𝐵63} 

 

To verify the quality of a subset, a score associated with a result of fusion is calculated as in Section 7.1.   

The score associated with each subset is illustrated in Figure 19. Selected subsets according to the 

dominance rule are circled in red. Subsets with the highest scores are selected by the dominance rule 

irrespective of the framework. 
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(a)                                                                                    (b) 

Figure 19. Scores of subsets in (a) probabilistic framework and (b) possibilistic framework for Iris dataset 

Finally, the recognition rate is calculated based on SVM (Support Vector Method) classifier using 10-fold 

cross-validation based on all features, when the SVM classifier is applied without subset selection, or the 

union of the selected subsets for each class whether in the probabilistic or possibilistic framework. The use 

of the possibility theory has shown its advantages in data modeling compared to the probability theory and 

to the SVM classifier as illustrated in Table 16. This advantage is quite important for the IRIS database, this 

is mainly due to the reduced size of this database. In fact, as we have previously noted, the IRIS database 

consists of only 150 samples that are equally divided between the different classes. Then, the samples from 

each class are further divided into two parts, the first one for training and the other for testing. We can then 

conclude that the number of samples is insufficient to build and learn a probabilistic model. On the other 

hand, possibilistic theory and SVM classifier have been able to cope with that poor-data small sample size 

situation to build a model capable of generalizing the classification problem of IRIS.  

The Diabetes database, Glass database and Liver-disorders database contain more samples than the IRIS 

database. The number of samples seems enough to construct a probabilistic model that gives similar 

recognition rates that with possibilistic modeling and with SVM classifier (79.3% versus 80.6% and 78.1% 

for Diabetes database, 94.5% versus 97.3% and 95.3% for Glass database and 66.6% versus 69.9% and 

67.3% for Liver-disorders database). The possibility theory is an uncertainty theory that deal better with 

incomplete information [33] than the probability theory and the classical SVM classifier. This is even more 

confirmed in a scenario where we deliberately impoverish the Diabetes dataset, the Glass dataset and Liver-

disorders dataset. The poorer Diabetes dataset version contains only 50 samples for each class. The poorer 

Glass dataset and Liver-disorders dataset versions contain only 20 samples for each class.  The recognition 

rates, illustrated in Table 16 for the impoverished datasets, show the advantage of the possibility theory in 

data modeling compared to the probability theory and the SVM classifier in poor data environments 

(information incompleteness). Same kind of advantages have been confirmed from results that have been 

obtained for different kind of applications namely in pattern recognition and image segmentation in the 

processing of poor-quality images [32, 34-37]. 
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It is worth mentioning that the size of databases in Table 16 does not exceed 800 samples. We 

notice from Table 16 that for some classes, there is no big difference between the number of 

samples used before and after the database impoverishment scheme. As an example, the number 

of samples from Class 2 of the Diabetes database, initially 50, is reduced to 30 after the 

impoverishment process. Similarly, in the case of Class 2 of the Glass database, the number is 15 

samples before the reduction process and 12 samples after. We also observe an imbalance between 

the number of samples for the classes within the same database. To overcome these inherent 

difficulties to classification of real databases, we propose to make a performance comparison with 

a very large database where the classes are balanced with respect to number of samples.  

 

Table 16. Performance comparison of the possibilistic modelling with the probabilistic one and SVM 

classifier 

 Iris 

dataset 

Diabetes 

dataset 

Impoverished 

Diabetes 

dataset 

Glass 

dataset 

Impoverished 

Glass dataset 

Liver-

disorders 

dataset 

Impoverished 

Liver-disorders 

dataset 

Feature 

number 

4 8 8 9 9 6 6 

Class 

number 

3 2 2 2 2 2 2 

Total 

sample size 

/ Class 

50 500 /C1 

268 /C2 

50 163 /C1 

51 /C2 

20 138 /C1 

188 /C2 

20 

Training  

sample size 

/ Class 

35 100 /C1 

50 /C2 

30 58 /C1 

15 /C2 

12  12 

Possibilistic 96% 80.6% 73% 97.3% 100% 69.9% 71.5% 

Probabilistic 80% 79.3% 63% 94.5% 92.8% 66.6% 64% 

SVM 

Classifier 

96% 78.1% 69% 95.3% 92.5% 67.3% 69% 
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8.2.3 Comparison of Probabilistic-Possibilistic methodology on large sample size  

In this section, a large database, namely Skin dataset, is considered. The Skin database has two 

classes: the Skin class and the non-skin class, both described by three attributes [38] [39]. The total 

sample size of this base is 245057, of which 50859 are skin samples and 194198 are non-skin 

samples. The imbalance between the two classes, Skin and non-Skin, is also present in this 

database. The database is balanced by taking 50 000 samples for each class. The impoverishment 

process is implemented as follows: starting with 40 000 samples per class down to 5 samples per 

class. The sizes considered are then: 50 000, 20 000, 10 000, 5000, 2500, 20, 15, 10 and 5. For 

each size, a Monte Carlo process (1000 draws) has been applied to obtain results for the three 

approaches: the Yager & Petry [1] probabilistic approach, its corresponding possibilistic approach 

(as proposed in this paper) and a classical SVM classifier. 

The following steps have been performed to compare the three approaches: 

• Select data subsets, by the possibilistic approach taking into account the quality of the 

attributes, and then applying the SVM approach in the classification stage;  

• Select data subsets, using the probabilistic approach taking into account the quality of the 

attributes, and then applying the SVM approach in the classification stage.  

• Use of the three attributes of the database, without subset selection and not taking into 

account of attribute quality, and then applying the SVM approach in the classification stage. 

Figure 20. Performance comparison of the possibilistic framework with the probabilistic one and SVM 

classifier using the large size Skin dataset 
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The classification rate is calculated using the principle of cross validation (10 times). An average 

classification rate for 1000 draws of each size has been calculated. Figure 20 illustrates the 

performance achieved by the three approaches for each size. The figure is presented in two parts 

(Portion A, Portion B) where “Portion A” is for large size samples (50000, 20000, 10000, 5000, 

2500, 1000) and “Portion B” is for small size samples (500, 250, 100, 50, 20, 15, 10 and 5).  

In “Portion A” of figure 20, the probabilistic approach gives excellent results in terms of 

classification rates as well as for the possibilistic approach. The performance obtained with the 

classical SVM is less good as compared to the two other ones in “Portion A” but it is known that 

SVM is better designed for small size cases as exhibited in “Portion B”. In “Portion B”, the small 

size cases, the possibilistic approach outperforms gradually the other two methods as the data 

impoverishment augments. This is under the condition where the possibilistic method can be 

exploited at best. Finally, it is worth mentioning that the possibilistic method demonstrates the best 

potential of the three in a context where we would need to reduce the size of the data while 

maintaining excellent performances. 

 

9. Conclusion 

This paper offers a companion paper to Yager and Petry who proposed a quality-based methodology to 

combine data provided by multiple probabilistic sources to improve quality of information for decision-

makers.  In this paper, we adapted the Yager-Petry 8-steps methodology, not identified as such in Yager and 

Petry, to be used with multiple possibilistic sources. The paper offers a side by side development of the 

possibilistic approach with respect to the probabilistic one where both approaches are compared by the 

means of four experimental benchmark datasets: one being data-poorer (IRIS data set) than the others one 

(Diabetes dataset, Glass dataset and Liver-disorders dataset). Results obtained from comparison of both 

approaches confirm the superiority of the possibilistic approach in the presence of less complete 

information. Considering the results of this paper, incompleteness of information is the only aspect that we 

can objectively bring concluding remarks upon. Other aspects will obviously have to be taken into account 

in the choice of a modelling approach in the presence of a diversity of information sources (hard and soft) 

such as the nature and characteristics of the sources as well as the specifics of the domain of applications.   
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