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Abstract—The membership primitive is a classic and funda-
mental problem in many use cases. In networking for instance,
it is useful to check if a given IP address belongs to a black
list or not, in order to allow access to a given server. This has
also become a key issue in very large-scale distributed systems,
or in massive databases. Formally, from a subset belonging to
a very large universe, the problem consists in answering the
question “Given any element of the universe, does it belong to a
given subset?”. Since the access of a perfect oracle answering the
question is commonly admitted to be very costly, it is necessary to
provide efficient and inexpensive techniques in the context where
the elements arrive continuously in a data stream (for example,
in network metrology, log analysis, continuous queries in massive
databases, etc.). In this paper, we propose a simple but efficient
solution to answer membership queries based on a couple of
Bloom filters. In a nutshell, the idea is to contact the oracle only
if an item is seen for the first time. We use a classical bloom filter
to remember an item occurrence. For the next occurrences, we
answer the membership query using a second bloom filter, which
is dynamically populated only when the database is queried. We
provide theoretical bounds on the false positive and negative
probabilities and we illustrate through extensive simulations the
efficiency of our solution, in comparison with standard solutions
such as a classic bloom filter.

Index Terms—data stream, membership query, bloom filter

I. INTRODUCTION

A basic but fundamental task in computer science is to
decide efficiently if a given element belongs to a set or not.
In network monitoring for instance, the set can represent a
blacklist of IP addresses that are forbidden to access a given
server. In real systems, it is required to be able to test the
authorization with the lowest delay. In medical informatics,
the detection of unknown adverse drug effects (ADE) from
electronic health records can be done by checking if a given
ADE belong to an existing database of known ADEs. The
dynamic aspect of the health data production requires the use
of efficient monitoring solutions.

More generally, we want to be able to test the membership
to a given set B of items received as a stream. We consider
that we have access to an oracle OB, which is able to answer
any membership query in an exact manner. An easy solution
consists in querying OB for each item of the stream. However,
querying OB is typically very costly and resource consuming,
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because it is stored remotely or it is a very large database,
implying a high latency.

To reduce the querying cost, a classic static solution is to
summarize this set beforehand, and to query the perfect oracle
only in cases where the summary is not precise enough. The
use of a Bloom filter [1] is a well-known solution to compactly
represent a set of items. Without going into details, the idea
of a bloom filter is to map every item of B to several locations
in a bit array using hash functions. Deciding if a given item
belongs to B is done by checking if the corresponding bits in
the array are set to 1. A recent survey on bloom filters and their
many variations can be found in [2]. Despite a negative answer
gives the guarantee that ui 6∈ B, there is a non-zero probability
that the Bloom filter answers positively for ui 6∈ B, leading
to a false positive. If we want to avoid such false positive,
we can query OB only if a positive answer occurs, instead of
accessing it for each item.

However, such simple approach presents several drawbacks:
(1) the communication cost remains important (2) we must
load the whole database beforehand, even if only a subset of
B appears in the stream. This could lead to a waste of memory
in case of a large database.

A lot of efforts has been done to propose solutions that
minimize the false positive probability, that is the probability
that an item u 6∈ B is considered as belonging to B. For
example, several works propose to introduce false negative
to reduce the false positive probability [3], [4], but they also
require to load B entirely. Existing works propose filters that
deal with dynamic sets [5] and can be use to represent only
the items in B seen so far in the stream. However such a naive
solution leads to a high communication cost since we have to
check for each received item which is not in the filter if it
belongs to B or not.

a) Contributions: In this paper, we propose an approx-
imate oracle which guarantees a very low false positive
probability while keeping a low memory consumption. The
idea is to dynamically add discovered items in B to our oracle,
avoiding the need to load the whole set. This is done by
querying the oracle only if an item is seen for the first time.
This idea is especially interesting when the number of distinct
items is low.

Unhappily, our solution as in [3], [4] may produce false
negatives, that is items that belong to B for which the oracle



answers negatively. The false negative probability can be
parametrized as a trade-off with the false positive probability.
However, having no false negative is not a strong requirement
in many use cases. In ADE detection use case for instance,
a false negative item will imply the monitoring of an already
known ADE and thus a small waste of resources. However
a false positive item corresponds to an unknown ADE, with
a potential sanitary risk, and we definitively want to avoid
such error. Other applications in which reducing the number
of false positives while introducing false negatives is beneficial
are presented in [3], such that file distribution in peer-to-peer
systems or resource routing.

b) Road map: After having introduced some back-
grounds (Section Section II) and discussed about related works
(Section III), we present in Section IV our solution called
Dynamic Appending Bloom Filter. In Section V, we give
theoretical bounds on the false positive and negative proba-
bilities. In Section VI, we discuss time and communication
cost. Finally, we present in Section VII extensive simulations
to evaluate our proposal on different distributions. We also
evaluate a variation of our solution inspired from the sliding
window streaming model.

II. PRELIMINARIES

A. Model

The universe U contains U items and we denote by B the
size of the set B ⊆ U . We consider that a stream S of m items
is received. Answering a membership query consists, for any
item u of S, to determine if u belongs to B.

Let St = u1, . . . , ut be the items received at time t, thus
Sm = S. The set of distinct items in St is denoted by Dt and
we denote by dt the cardinality of Dt. Similarly, we define
the set D̂t = St ∩ B of cardinality d̂t as the set of distinct
items belonging to B in St.

B. Membership oracle

A membership oracle O is a compact representation of a
set B ⊆ U with access to a primitive O.lookup(u), returning
a boolean value for any item u ∈ U . If the oracle is perfect,
then O.lookup(u) return true if and only if u ∈ B, for every
u ∈ U . Otherwise the oracle is approximate. A false positive
is any item u ∈ U such that u 6∈ B but O.lookup(u) is true. A
false negative is similarly defined as an item u ∈ U such that
O.lookup(u) is false for item u ∈ B. Hence the false positive
(resp. negative) probability of O is the probability that an item
is classified as a false positive (resp. negative).

An important notion is also the false positive rate with is
defined as the ratio of the number of items which are false
positive, to the total number of items of S which do not
belong to B. Intuitively, if we have a false positive probability
of f , then on average fm items will be wrongly detected
as positives. However, if an item u is a false positive and
occurs many times in S, then the false positive rate can drop
significantly. Hence having a strong guarantee on the false
positive rate is desirable. Similarly, we introduce the notion
of false negative rate, which corresponds to the ratio of the

number of false negative to the number of item belonging to
B in S.

C. Bloom Filter

A bloom filter BF [1] is an approximate oracle using a bit
array ABF of size n and k independent random hash functions
{h1, . . . , hk}, mapping items from U to an index in [0, n −
1] chosen uniformly at random. For each inserted item u ∈
B and every hash function hi, ABF [hi(u)] is set to 1. The
membership primitive BF.lookup(u) is easily implemented
by returning true if ABF [hi(u)] = 1 for every i ∈ [1, k] and
false otherwise.

For the purpose of the theoretical proofs, we introduce the
notion of masks. The mask HBF (u) of item u is defined as a
binary array of size n such that HBF (u)[hi(u)] = 1 for every
i, 0 otherwise. The membership query can be solved by doing
a bitwise AND operation between HBF (u) and ABF and by
checking if the resulting array HBF (u) ∧ ABF = HBF (u).
Let HBF (X) =

∨
x∈X HBF (x) be the result of a bitwise OR

operation over all items in X . With this in mind, we remark
that u 6∈ B is a false positive if there exists a set X ⊆ B such
that HBF (u) ∧HBF (X) = HBF (u). We say that u collides
with X and we denote this event by u ∼BF X .

It is clear that the false negative probability is equal to
0, since for any item u ∈ S(O) the bits are set to 1
implying that BF.lookup(u) returns true. However the false
positive probability is strictly positive if at least one item has
been inserted in the filter. Let p(n, k, d) be the false positive
probability of such a bloom filter when d ≥ 1 items have
been inserted. Since the hash functions are independent and
uniform, we can easily deduce the following:

p(n, k, d) =

(
1− n0(d)

n

)k
(1)

where n0(d) denotes the number of 0-bits after the in-
sertions of d items. We have n0(0) = n and clearly n0(d)
is a decreasing function. Hence p(n, k, d) is an increasing
function in d, for a given n and k. Suppose now that d
and k are given. It has been proven in [6] that p(n, k, d) ≤
(1− (1− 1/n)dk+(k−1)/2)k, which confirms the intuition that
the false positive probability increases when n decreases.

III. RELATED WORKS

A. Trade-off between false positives and negatives

Solutions already provide a tradeoff between false positive
and false negative probabilities [3], [4]. The retouched bloom
filter proposed in [3] is a classical bloom filter with the
additional feature that some bits can be cleared, that is set
to 0. By doing this, the false positive probability naturally
decreases but at the cost of introducing false negative. To
select the bits to clear, the authors suppose that the set of
encountered false positive items is known beforehand and they
focus the clearing on these items. This assumption is too strong
in the context of data streams, where the item distribution is
not known a priori. The generalized bloom filter [4] is also
very similar to the classical bloom filter. There are k1 hash



functions h1 . . . hk1 and k2 hash functions g1 . . . gk2 . When
item u is inserted, every bit at position hi(u) is set to 1 and
every bit at position gi(u) is set to 0. If hi(u) = gj(u) then
the bit is set to 0. This solution introduces false negative but
the authors show that the false positive probability depends
only on the number of hash functions. However applying this
solution in our context would imply the load of the whole
database, implying a uselessly large memory consumption.

B. Dynamic oracles

The dynamic bloom filter DBF [5] was introduced to
represent dynamic sets. At the begin, there is only one BF
into which items are inserted. When the occupancy of the BF
overreaches a predefined threshold, then a new BF is created
in order to receive new items, and so on. This solution is really
interesting when ones do not have any idea about the size of
the set. However, the use of a simple bloom filter presents
better performances if the size of the set is known. Moreover,
it has been shown in [7] that the false positive probability
grows linearly with the size of the dynamic set, for a given
amount of memory.

In [7], the authors present an oracle to represent a dynamic
set with a bounded false positive probability f given as input,
independently of the size of the set. This impressive result
comes with an important memory cost in memory. Indeed, the
total number of bits can theoretically reach O

(
− kU

ln(1−f1/k)

)
if the item distribution is uniform. However extensive simula-
tions (not shown in the extended abstract) tends to demonstrate
that in practice the solution consumes only slightly more space
than DBF, since the distribution in real world data set are more
skewed.

C. Adaptivity

Most of the bloom filters variations focus on minimizing the
false positive probability or finding a good trade-off between
false positive and false negative. However, few works deal
with the minimization of the false positive rate. In [8], the
authors present the adaptive cuckoo filter, which learns from
the answers of the perfect oracle and removes false positive
items from the data-structure. Simulations over real datasets
show a reduction on the false positive rate in practice. In [9],
the authors use similar techniques to build an adaptive oracle
called the broom filters with strong theoretical guarantees.
More precisely, they prove that the probability that an item is
a false positive (even if S is chosen by an adversary learning
from perfect oracle answers) is bounded by a constant ε < 1.
However, these works suppose that the perfect oracle is queried
after each positive answers from the filters, which can not fit
reasonably in our context.

IV. DYNAMIC APPENDING

A. Intuition

Depending on the skewness of item distributions and the
length of S, the number of items that belong to B and appear
in S can be very low. In such case, using a simple solution such
a bloom filter containing the whole set B seems not optimal.

Instead, a natural idea is to append a newly received item u to
the filter if u belongs to B. For the same amount of memory,
this dynamic version of the bloom filter will naturally provide
a better precision for the first items of S, since the number of
bits at zero is greater than the one with the naive solution.
The counterpart is that this solution implies to query the
perfect oracle OB after each item reception, even if u occurs
several times in S. To reduce the communication cost, a simple
solution could be to remember which item has been seen so
far and to query OB only if a new distinct item is received.
The communication cost is then reduced from m to d (in the
worst case). The communication saving is even more important
when the item distribution is skewed. However, remembering
exactly which item has been seen could lead to slow solutions,
with high memory cost.

We propose a membership oracle called the Dynamic Ap-
pending Bloom Filter (DABF). The idea of DABF is based
on the use of a pair of Bloom filters, denoted by β and β′,
significantly smaller in size than the classic solution using a
unique static bloom filter. The first bloom filter is used to
memorize if an element has already been seen in the past,
by gradually populating it online. The second bloom filter
is used to determine if an already received element belongs
to the considered subset. Thus, the memory cost becomes
proportional to the number of distinct items in the stream that
belong to the subset. The communication cost is proportional
to the number of distinct items in the stream.

B. Algorithm description

We denote by n and n′ the sizes of the bit arrays of β and
β′ respectively and we use S and S′ to denote their represen-
tative sets. In the following, we present the implementation of
the primitive DABF.lookup(ui) when an item ui is received:

• If β.lookup(ui) return false, add ui to β and send a
membership query to OB.

– If OB.lookup(ui), add ui to β′.
– In any case, return OB.lookup(ui).

• If β.lookup(ui), return β′.lookup(ui)

Since the filters are populated dynamically, we use notations
βt and β′ to refer to their states after the reception and
processing of item ut. St and S′t represent the set of items
added respectively to β and β′ at time t. Initially, S0 and
S′0 are both empty. We define DABFt as the combination of
βt and β′t.

We do not suppose that both filters use the same set of hash
functions but we suppose that every hash function is perfectly
random (it draws an index uniformly at random from [1, n]),
which is a classic assumption in the literature. We can also use
2-universal random hash functions instead, which are easily
implementable and provide strong theoretical guarantees. We
denote by k and k′ the number of hash functions for β and
β′ respectively.

Moreover, the false positive (resp. negative) probability of
DABF at time t is denoted by pt (resp. qt).



C. Extension to the streaming model

We can naturally extend this algorithm to a streaming model
in the following manner. Let us denotes by F0 = 〈β, β′〉
and F1 = 〈β, β′〉 two identical DABF’s, initially empty. The
idea is to fill both filters and to alternately flush them at
the end of the window. Let w be the number of items in
a window and suppose, for presentation purpose, that m is
a multiple of w. Let Wi, with i ∈ [0,m/w], be the window
including items uiw+1 . . . u(i+1)w. We proceed as follows. For
the first w items, we only fill F0. Then for any window Wi we
fill both filters and we use filter F(i−1 mod 2) to answer the
membership queries. At the end of the window, we flush filter
F(i−1 mod 2). By doing this, we are able to answer the queries
in foreground while maintaining a more up-to-date structure in
the background, reducing the impact of the flushing overhead.

V. IMPACT OF THE DYNAMIC

In the case of DABF, the false positive and negative prob-
abilities evolve over time. Indeed the two bloom filters that
compose our structure are initially empty and are filled on
the fly when items are received. In this section, we provide
bounds on pt and qt for an item u received at time t, taking
into account that ut is the first occurrence of u or not.

A. First occurrence

In the following, we consider the first occurrence of each
distinct item u ∈ Dt.

The special case t = 1 is easily treated as follows: since
both bloom filters are empty, we get ¬β.lookup(u1) so OB
is queried implying that u1 is correctly classified. In the
following, we suppose that t > 1.

Before presenting our main theorem, we show that false
negatives can arise when using our oracle.

Proposition 1. Let u ∈ B and suppose that there is a set of
items X such that v 6∈ B for every v ∈ X and HDABF (u) ∧
HDABF (X) = HDABF (u). Then there is a stream and a time
t such that at least one false negative occurs a time t′ > t.

Proof. Let x = |X|. Consider a stream S such that the x first
items correspond to items in X and suppose that ux+1 = u.
We deduce that β.lookup(ux+1) return true, implying that
OB is not queried and u is not added to β′. Since X ∩B = ∅,
β′ is empty, so β′.lookup(ux+1) returns necessarily false,
implying that DABF.lookup(ux+1) returns false.

Our results are summarized by the following theorem.

Theorem 1. Let u be an item received at time t such that no
previous occurrence of u has been received.
• If u ∈ B, then qt = p(n, k, |St−1|)(1− p(n′, k′, |S′t−1|)).
• If u 6∈ B, then pt = p(n, k, |St−1|)p(n′, k′, |S′t−1|).

Proof. If ¬β.lookup(u), then OB is queried so the false
positive or negative probability is 0 in any case.

Let Eβ denotes the event ”βt−1.lookup(u) returns true”,
E¬β′ (resp. Eβ′ ) denotes the event ”β′t−1.lookup(u) returns

false (resp. true)” and let E¬DABF (resp. EDABF ) denotes the
event ”DABFt−1.lookup(u) returns false (resp. true)”.

An item u ∈ B is a false negative if Eβ ∧ E¬β′ occurs.
We have Pr(Eβ ∧ E¬β′) = Pr(Eβ) · Pr(E¬β′ | Eβ) =
p(n, k, |St−1|)(1− p(n′, k′, |S′t−1|)).

An item u 6∈ B is a false positive if Eβ ∧ Eβ′ oc-
curs. We have Pr(Eβ ∧ Eβ′) = Pr(Eβ) · Pr(Eβ′ | Eβ) =
p(n, k, |St−1|)p(n′, k′, |S′t−1|). This concludes the proof.

The following propositions aim at showing the link between
the precision of β and the precision of β′. The idea is that
if β is more accurate, then more items will be added to β′,
degrading its precision.

Proposition 2. The number X ′t of false positive from β at
time t is lower bounded by

∑d̂t
i=1(1− (1− 1/n)ki)k.

Proof. Let Xi be an indicator random variable with value 1 if
item ui ∈ B is a false positive for β, and value 0 otherwise.
The false positive probability is given by (1−n0(i)/n)k, where
n0(i) holds for the number of 0 cells. Hence E[Xi] = (1 −
n0(i)/n)k.

Let Yi be the indicator variable set to 1 if cell i is empty.
The probability that cell i is empty is given by (1 − 1/n)ki,
so in expectation we get E[Yi] = (1− 1/n)ki. Since n0(i) =∑n
j=1 Yj , we deduce from the linearity of expectation that

E[n0(i)] = n(1− 1/n)ki.
Using Jensen inequality, we get that (1 − E[n0(i)]/n)k ≤

E[(1 − n0(i)/n)k] = E[E[Xi]] = E[Xi] = (1 − n0(i)/n)k.
Let X =

∑d̂t
i=1Xi be the number of false positive from

β that belong to B in St. Then we get X ≥
∑d̂t
i=1(1 −

E[n0(li)]/n)k ≥
∑d̂t
i=1(1− (1− 1/n)ki)k.

Proposition 3. The false positive probability pt is bounded by
p(n′, k′, d̂t(1− (1− (1− 1/n)k)k).

Proof. From Proposition 2, we know that the number of false
positive from β is at least

∑d̂t
i=1(1−(1−1/n)ki)k >

∑d̂t
i=1(1−

(1 − 1/n)k)k > d̂t(1 − (1 − 1/n)k)k. It implies that |S′t| =
d̂t − X ′t ≤ d̂t − d̂t(1 − (1 − 1/n)k)k, which concludes the
proof.

B. Item repetition

In the previous analysis, we considered the first occurrence
of distinct items. However, it is highly probable that an item
is seen several times in S, especially if the distribution is
heterogeneous. The probabilities are varying from an item
to an other, depending on the stream received so far. In the
following, we use the notation tu to denote the time at which
the first occurrence of u has been seen in S.

Lemma 1. Let FNt ⊆ B be the set of items such that
DABF.lookup(u) is false for every u ∈ FNt. Then we have,
for any t ≥ tu, for any u ∈ B, u ∈ FNt =⇒ u ∈ FNtu .

Proof. The proof is by contraposition. Suppose that u ∈ B is
received at time tu for the first time and DABFtu .lookup(u)
is true, implying that u 6∈ FNtu . We have two cases:



1) If ¬βtu .lookup(u) then OB is queried and u is added to
β′. Then u 6∈ FNtu and u 6∈ FNt, for any t > tu, since
β′t.lookup(u) will always answers true by definition.

2) If βtu .lookup(u) (i.e., u is a false positive of βtu ), then,
as u 6∈ FNtu , it implies that β′tu .lookup(u) is true. Since
the bits are never cleared, we deduce that any further
occurrence of u will also be correctly classified.

We deduce that u 6∈ FNtu implies that u 6∈ FNt, for any
t ≥ tu. By contraposition, we deduce that u ∈ FNt implies
that u ∈ FNtu , for any t ≥ tu, which concludes the proof.

Theorem 2. Let u be an item received at time t such that
tu 6= t.
• If u ∈ B, then qt ≤ qtu .
• If u 6∈ B, then pt = p(n′, k′, S′t−1).

Proof. Consider that u ∈ B is received at time t and the first
occurrence of u is received at time tu. Thanks to Lemma 1, we
know that any false negative at time t was also a false negative
when its first occurrence has occurred. In other words, we have
FNt ⊆ FNtu . This implies that Pr(u ∈ FNt) ≤ Pr(u ∈
FNtu), leading to the statement.

Consider now that u 6∈ B is received at time t. First, it is
obvious that the reception of item u implies no modification
on β′. Moreover, since u has already been seen so far,
β.lookup(u) will necessarily return true, implying that the
false positive probability of DABF depends only on the false
positive probability of β′, which is p(n′, k′, |St−1|).

VI. TIME AND COMMUNICATION COMPLEXITY

The reception of each item implies to update our structure
and to potentially communicate with the perfect oracle OB.
The time complexity only depends on the time required to
probe the k bits of each bloom filters bit array. If we suppose
that the probing operation is done in constant time, we deduce
that the time complexity is O(k).

The communication complexity, measured as the number
of time OB is queried, depends on dm, that is the number of
distinct items in the stream. However, we remark that any false
positive item for β implies that OB is not queried. We deduce
that the exact number of communications is C = dm − Nm,
where Nm is the number of false positive produced by β.

We prove the following lower bound on C.

Proposition 4. Let dm be the number of distinct items in S.
The number of communications with OB is at least

dm

(
1−

(
kdm
n

)k)
.

Proof. Let Xi the binary random variable with value 1 if item
ui ∈ B is a false positive for β, and value 0 otherwise and let
X =

∑di
j=1Xj .

E[Xi] =

(∑i
j=1 z(j)

n

)k

where z(j) holds for the number of bits switched from 0 to
1 at time j. From this, we deduce that

E[X] =

di∑
j=1

(∑j
l=1 z(l)

n

)k
≤
(

1

n

)k di∑
j=1

(
j∑
l=1

z(l)

)k

≤
(

1

n

)k di∑
j=1

(
j∑
l=1

k

)k

≤
(

1

n

)k di∑
j=1

(jk)k

≤ (di)
k+1

(
k

n

)k
We deduce that dm − Xm ≥ dm − (dm)k+1

(
k
n

)k
, which

concludes the proof.

VII. PERFORMANCE EVALUATION

c) Performance measures: In our simulations, we mea-
sure the precision and the recall of our solution. Formally,
let Pt ⊆ Dt be the set of distinct items in St for which
DABF answers positively. The precision is given by |Pt∩B|

|Pt|
and the recall is given by |Pt∩B|

|D̂t|
. It is possible that either Pt

or D̂t are empty, implying a division by zero. In such case, the
chosen convention is to set the corresponding measure at 1.
This can be justified by the fact that if Pt (or D̂t) is empty, then
it means that we can not misclassified an item. Moreover, we
want to specify that an item u is added to Pt if DABF answers
positively for at least one of its occurrence in St.

We also present in some simulations the number of commu-
nications initiated with OB. Finally we are interested in the
false positive and negative rates FPRt and FNRt. Let N̄t
be the multiset of all items which appear in St items (with
potential repetitions) which do not belong to B. We similarly
define P̄t for items belonging to B. We define F̄P t and ¯FN t

as the multisets of items in St which are respectively false
positives and false negatives. We define the false positive rate
as follows:

FPR =

{
|F̄P t|/|N̄t|, |N̄t| > 0

0, |N̄t| = 0
We define the false negative rate as follows:

FNR =

{
| ¯FN t|/|P̄t|, |P̄t| > 0

0, |P̄t| = 0

d) General simulation set up: We consider a universe U
of size U = 104 which consists of integers in range [0, U−1].
The size B = |B| is chosen among the set {10, 100, 1000}
and items in B are sampled uniformly at random among U
at the beginning of each simulation. In each simulation, we
generate 500 streams following a Zipf’s law of parameter
α ∈ {0.5, 1.0, 2.0, 3.0}. In the simulation descriptions that
follow, the item distribution is denoted by zipf-α. The
results correspond to the average precision or recall among
the 500 runs.
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Fig. 1. Evolution of precision and recall with the variation of ratio n/n′. (B = 100, N = 500, α = 0.5)

e) Bloom filter implementation: The corner stone of our
solution is to use classic static bloom filters. To implement
these data structures, we have made the following choices.

First, we know from [10] that the false positive probability
of a classic static bloom filter of size n that receives d distinct
items is minimized when the number of random hash functions
is k = n

d ln 2. Since n
d ln 2 is generally not an integer, a typical

choice is to take bnd ln 2c as value for k, in order to minimize
the computational cost of the hash functions. The number
of items added to β corresponds to the number of distinct
items d in S. Since we do not make any assumptions on the
items distributions, we must assume that d = U = |U| if the
stream is large enough. This leads to k = 1 for n < 2U/ ln 2,
which is not optimal at early times when the real number of
items in β is really low. As a trade-off, we have chosen to set
k =

⌊
n
103 ln 2

⌋
for β, whatever is the value of n. This setting

provides better results for the first items of S. For bloom filter
β′, a natural upper bound is B so we have set k′ =

⌊
n′

B ln 2
⌋

.
For every item u, we use a pseudo-random number gener-

ator with a seed set at u. Then we generate k random values
in range [0, n − 1], where n is the size of the corresponding
bloom.

As a baseline, we implement a simple solution called 1bf
which simply consists in a single bloom filter populated with
the whole set B. For the 1bf solution with N bits of memory,
we use

⌊
N
B ln 2

⌋
hash functions and we also use a pseudo-

random number generator for the probes.

A. Single window

In this section, we present simulations with the basic
version of DABF, that is without using a sliding window. The
generated streams are of size m = 4000 in all simulation.

f) Memory partitioning: In this first simulation, we aim
at determining the best way to partition a given amount of
memory among our two bloom filters. Let N be the total
amount of memory we can afford, then we set n = N · 0.1 · i
(for i ∈ [1, 9]) and n′ = N − n. In Figure 1, we present the
results for a zipf-0.5 distribution, B = 100 and N = 500.
The results are similar for others values of B or N .

After only few dozens of items insertions, the precision
becomes proportional to the memory given to β, while the

opposite can be notice for the recall. This confirms our theo-
retical analysis on the false positive and negative probability.

g) Impact of the memory: In this simulation, we choose
the ratio θ = n/n′ = 1/9 for the memory partitioning, in
order to optimize the precision of our solution. As we argue
above, maximizing the precision is fundamental in many use
cases. However, this heuristic can be set differently, as a user
parameter. We vary the skewness parameter of the Zipf’s law
and the overall memory N provided to the structure.

We focus on the case B = 100 and we vary the memory
N from 1000 to 2000 bits, by step of 200. The results are
summarized in Figure 2.

Let first analyse the case α = 0.5. For the precision,
DABF is optimal with only 1000 bits of memory. However
the recall drops quickly due to the high number of distinct
items. The first bloom filter β is indeed saturated with only few
decades of items, implying a high number of false negative,
which degrades the recall. On the other hand, 1bf is optimal
in term of precision with 2000 bits and always produces an
optimal recall (as bloom filters avoid false negatives).

In the case α = 2.0 however, the performances of DABF are
greatly improved. The precision of our solution is already
optimal with N = 1000 and the recall decreases slowly. If
we consider the first 1000 items, the recall never goes below
0.9, even with 1000 bits. Please notice that it is possible to
opt for a trade-off by choosing a ratio θ = 0.5. This leads
to a precision greater than 0.9 while slowing down the recall
decrease (cf. Figure 1).

Consider now the case B = 1000, with θ = 1/9 as for
case B = 100. The results are summarized in Figure 3. We
can notice that the precision is nearly optimal with only N =
4000 bits using DABF , even for zipf-0.5 distribution.
As a comparison, the 1bf solution provides a precision of
about 0.4 for the same value of N . However, as for the case
B = 100, the recall with DABF is quickly decreasing when
the distribution is zipf-0.5. Even for N = 10000, the recall
drops below 0.7 after less than 1000 insertions. In comparison,
1bf provides a precision above 0.9 for N ≥ 10000 while
keeping a perfect recall. In the case α = 2.0 however, our
solution clearly outperforms 1bf , with a near perfect precision
and a recall of more than 0.89 with only 4000 bits of memory.
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Fig. 2. Impact of the memory with a ratio θ = 1/9 and B = 100.
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Fig. 3. Impact of the memory with a ratio θ = 1/9 and B = 1000.
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Fig. 4. Results with the sliding window version (α = 2, N = 1000, B =
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B. Sliding window

In order to maintain an up-to-date state of our data structure
and to avoid the recall drop, we study the sliding window
version. We vary the size of the window from 100 to 1000
by step of 100. We focus our study on the zipf-2.0
distribution, N = 1000 and B = 100. The size of the streams
is m = 40000. Here N corresponds to the overall amount
of memory, including the two DABF of the sliding window
version. The results are summarized in Figure 4.

The top figure presents the precision and recall for different
values of the windows size. As baselines, we also present the
precision of 1bf and the recall of DABF without using the
sliding window mode (nowin). The middle figure represents
the communication cost, measured in term of number of
communications initiated with OB. Finally the bottom figure
represents the false negative rate, depending on the window
size, with DABF. The false positive rate is 0 even with a
window of size 1000. On the top figure, we observe that the
recall is inversely proportional to the size of the window,
which makes sense since flushing more often the bloom

filters improves their accuracies. This impacts directly the
communication cost, as illustrated by the middle figure, which
is inversely proportional to the window size. We highlight here
that the communications can be easily reduced by querying
the oracle if at least one of the filters need to contact him and
making the answer available for both filters. The precision
with DABF is close to 1 even with a sliding window of 1000
items. As a comparison, 1bf converges to approximately 0.5.

Finally the bottom figure shows that the false negative rate
is really stable, whatever is the size of the window. With
a window of 1000 bits, the false negative rate is close to
0.2, meaning that 20% of negative answers corresponds to
misclassified items that belong to B. But this represent a very
small number of distinct items for skewed distributions.

VIII. CONCLUSION AND FURTHER WORKS

We have presented a simple but efficient solution to evaluate
the membership of items in a stream to a given set B. The main
idea is to summarize only the subset of items in B present in
the stream instead of representing the whole set. This leads
to a notable space saving in comparison with basic solutions
such as a bloom filter. We keep a good precision and recall,
especially for skewed distributions.

In the current version of the solution, we are using two
bloom filters: one to remember which item has already been
seen and a second to summarize the subset of items in B which
have been already seen. Especially, as we make no assumption
on the items distribution, we must use a large enough amount
of memory to handle any scenario. An interesting perspective
is to use solutions for representing dynamic sets such as [5]
or [7] and evaluate the interest on the memory consumption in
comparison with the use of simple bloom filters. This should
be especially promising for the first bloom filter β of DABF .
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