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Abstract

Background: In an electronic health context, combining traditional structured clinical assessment methods and routine electronic
health—based data capture may be a reliable method to build a dynamic clinical decision-support system (CDSS) for suicide
prevention.

Objective: The aim of this study was to describe the data mining module of a Web-based CDSS and to identify suicide repetition
risk in a sample of suicide attempters.

Methods: We analyzed a database of 2802 suicide attempters. Clustering methods were used to identify groups of similar
patients, and regression trees were applied to estimate the number of suicide attempts among these patients.

Results: We identified 3 groups of patients using clustering methods. In addition, relevant risk factors explaining the number
of suicide attempts were highlighted by regression trees.

Conclusions: Data mining techniques can help to identify different groups of patients at risk of suicide reattempt. The findings
of this study can be combined with Web-based and smartphone-based data to improve dynamic decision making for clinicians.
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Introduction

Suicide Risk Assessment

Over 800,000 people die of suicide every year, and it is
estimated that for each suicide, there may have been >20 other
attempted suicides. A previous attempt is the major predictor
of death by suicide [1]. However, many other outcomes
associated with suicidal behaviors should be considered in the
preventive and therapeutic decision-making process for effective
prevention [2]. Thus, clinical [3], environmental [4], and genetic
[2] suicide risk factors have been intensively studied among
suicide attempters. Indeed, attempters provide data to identify
suicide-related risk factors, and such at-risk patients are a
privileged target for proper prevention and intervention
strategies (eg, by mitigating risk factors or by maintaining
contact with clinical support) [5]. Empirically informed suicide
risk assessment frameworks are useful in guiding the evaluation
and treatment of individuals presenting with suicidal symptoms.
Actual guidelines recommend the systematic identification of
risk factors based on risk assessment scales [6]. Nevertheless,
the limits of actual risk assessment procedures may be a false
reassurance for clinicians, and the conflation of risk assessment
and risk prediction may be confusing to clinicians [7]. Therefore,
there is an urgent need for an innovative tool that could integrate
both empirical and structured assessment to support decision
making in suicide prevention.

Clinical Decision-Support Systems

Decision-support tools help providers in their decision-making
process. The use of these tools has been on the rise in recent
years owing to their ability to bring evidence-based medicine
to the point of care. A clinical decision-support system (CDSS)
is a health information system that is integrated into electronic
health records (EHR), enabling easy and effective use by
physicians [8]. The CDSS incorporates individual patient data,
a rule engine, and a medical knowledge base to produce a
patient-specific assessment or recommendation of a management
plan [9]. The CDSS usually relies on the processing of clinical
data gathered into EHRs. However, these techniques have been
poorly explored in mental health and the suicide-prevention
setting [10].

Thus, there is still an important need to develop a CDSS that
supports clinician decision makers to choose, for example, the
most appropriate treatment, the nature of a psychosocial strategy,
or the duration of treatment in suicide prevention strategies. A
key feature of such a CDSS is to identify a patient’s risk in terms
of a repeated attempt, the number of reattempts, or suicide death
within a period of time. The development of both passive and
active collection of patients’ data provides the opportunity to
improve clinician knowledge and thus determine risk factors
and relevant combinations of risk factors [11].
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Aims

This study aims to combine data from EHRs to provide support
to decision making for clinicians in suicide prevention. We
present the main results of a data mining process on a sample
of suicide attempters to first identify groups of similar patients
and then identify risk factors associated with the number of
suicide attempts. We hypothesize that a data mining process
helps to better characterize the population of suicide attempters
by identifying the most relevant groups of patients and their
associated risk factors for suicide reattempt (or other variables
of interest). The ultimate goal is to build a CDSS for clinician
decision support and propose a personalized prevention and
intervention strategy to each patient.

Methods

Patient Recruitment

Suicide attempters aged >18 years were recruited from
consecutive admissions to the Emergency Department or
specialized Acute Care Unit of three university hospitals
(University Hospital Ramon y Cajal, Madrid, Spain; Fundacion
Jimenez Diaz, Madrid, Spain; and Academic Hospital of
Montpellier, Montpellier, France) between 1994 and 2006.
Owing to their specific characteristics [12,13], major suicide
repeaters were excluded. One of the hospitals is part of the
Spanish National Health System and the other, the French
National Health System; both hospitals provide medical
coverage for all emergencies in a catchment area covering a
population of around 500,000 people in Madrid and 400,000 in
Montpellier. After providing a complete description of the study
to participants, written informed consent was obtained. Trained
psychiatrists or psychologists interviewed all patients before
discharge. The study was approved by the local research ethics
committees in Madrid and Montpellier (CPP Montpellier
Sud-Méditerranée IV, CHU Montpellier). The research followed
the Code of Ethics of the World Medical Association
(Declaration of Helsinki). Protocols and assessment procedures
in both centers are based on the Columbia Suicide History Form
[14].

Procedure and Clinical Assessment

The French or Spanish version of the Mini-International
Neuropsychiatric Interview (MINI) [15] was used to obtain
Axis I Diagnostic and Statistical Manual of Mental Disorders
- 4th edition diagnoses. Psychiatric diagnoses were classified
in the following categories: mood disorder (specifying
depression or Dbipolar disorder), anxiety disorders,
obsessive-compulsive disorder, alcohol or drug misuse,
psychotic disorders, eating disorders, somatoform disorders,
and adjustment disorders. The lifetime diagnosis was determined
using a best-estimate procedure. The psychiatrist in charge of
the patient’s care assigned the diagnosis based on MINI
interviews, medical records, and information from relatives,
when available.
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Suicide risk was assessed using the Suicide Intent Scale [16],
a semistructured 15-item rating scale yielding a global score
that indicates the severity of suicidal intent. The Risk-Rescue
Rating Scale [17] is a 10-item interviewer-administered scale
designed to assess the lethality and intent of a suicide attempt,
measuring the life risk derived from it, and the likelihood of a
rescue intervention at the time of the attempt.

Statistical Methods

A robust data-qualification process was performed to ensure
data quality and consistency before statistical analyses. Although
data were intended to be collected according to the same clinical
procedures, quality variations were expected between the
hospitals. Missing data were identified, and a variable was
retained only when the completion rate reached 70%. When
needed, new variables were created. For instance, 34 answers
of the Barratt Impulsiveness Scale survey, version 10 (BIS10),
were treated to build 3 scores of impulsiveness in terms of motor
impulsivity, attentional impulsivity, or nonplanning impulsivity
[18]. For each question of the BIS10, the score ranged from 1
(low impulsivity) to 4 (high impulsivity). The total score ranges
from 34 to 136 points. The subscores ranged from 11 to 44
points for motor and attentional impulsivity and from 12 to 48
points for nonplanning impulsivity.

Unidimensional and two-dimensional analyses for both
quantitative and qualitative variables were carried out. In
addition, Fisher-Snedecor procedures were used to compare the
two subgroups (male vs female) when needed. An unsupervised
approach was used to extract homogeneous patterns from the
data without any prior hypothesis. The approach is based on a
multiple correspondence analysis (MCA) of qualitative variables
to reduce the dimensionality. It consists of representing patients
in a factorial space where each dimension is a combination of
initial variables. Quantitative variables (eg, age) are not used
during the calculations but are projected onto the factorial space.
Hierarchical Clustering on Principal Components is then
performed from the patients’ representation in the initial factorial
space. Hierarchical clustering has many advantages, including
the construction of a hierarchical tree called dendrogram that

https://mental.jmir.org/2019/5/e9766/

RenderX

Berrouiguet et al

enables a visual interpretation of the dataset. The dendrogram
depicts the emergence of groups of patients who share common
risk patterns. In addition, it facilitates discussion between
statisticians and practitioners to choose the optimal number of
clusters. Each cluster was then interpreted through the
association between the cluster and the list of qualitative and
quantitative variables (V test). In the second step, the focus was
on the variable of interest—the number of suicide attempts.
Recursive partitioning has been used as a multivariable
procedure that classifies individuals (patients) by successively
splitting into subpopulations. Furthermore, a regression tree
was built, and the number of suicide attempts was explained by
different binary tests on predictive variables.

Results

Population Description

From the original database, the first step relied on data
qualification. Several redundancies (eg, duplicated surveys or
alternative coding) were observed among 263 initial variables.
Subsequently, a completion threshold was applied to the
resulting variables, and only 23 variables satisfied a 70%
minimum completion rate. Three additional variables related to
the types of impulsivity (as described above) were added. With
respect to the 2802 initial patients, we decided to keep only
suicide attempters with a 100% completion rate for the 26
variables. In the final filtering, 5 variables were disregarded for
redundancy or useless purpose (the type of patients, assessment
date, source, and year and day of birth). This rigorous process
ensured high data quality for both patients and variables; it also
provided a final dataset of 681 patients and 21 variables.
Participants were predominantly young (mean age 40.1 years),
female, employed, and married. Most patients included in the
final analysis had a history of mental disorders, including major
depression (482/681, 70.8%), bipolar disorder (160/681, 23.0%),
dysthymic disorder (30/681, 4.4%), obsessive-compulsive
disorder (58/681, 8.5%), and alcohol misuse (178/681, 26.1%)
(Table 1).
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Table 1. Clinicosociological main features of the postfiltering dataset of 681 suicide attempters.

Features Value

General features
Qualitative variables, n (%)
Sex
Female 493 (72.4)
Male 188 (27.6)

Marital status

Single 239 (35.1)
Married 240 (35.2)
Separated or divorced 181 (26.6)
Widowed 21 (3.1)
Children
No 272 (39.9)
Yes 409 (60.1)
Education
Low 31 (4.6)
Intermediate 368 (54.0)
High 282 (41.4)
Employment
Employed 451 (66.2)
Unemployed 110 (16.2)
Incapacity 41 (6.0)
Retired 79 (11.6)
Quantitative variable, age (years), median (Q1-Q3) 40.6 (28-49.6)

Clinical features
Qualitative variables, n (%)
History of mental disorder
No 6(0.9)
Yes 675 (99.1)
History of family suicidal behavior
No 424 (62.3)
Yes 257 (37.7)
Lifetime major depression
No 199 (29.2)
Yes 482 (70.8)
Lifetime bipolar disorder
No 521 (76.5)
Yes 160 (23.5)
Lifetime dysthymic disorder
No 651 (95.6)
Yes 30 (4.4)
Lifetime obsessive-compulsive disorder

No 623 (91.5)
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Features Value
Yes 58 (8.5)
Lifetime eating disorder
No 571 (83.8)
Yes 110 (16.2)
Lifetime alcohol-drug misuse
No 465 (68.3)
Yes 216 (31.7)
Lifetime substance misuse
No 586 (86.0)
Yes 95 (14.0)
Lifetime alcohol abuse
No 503 (73.9)
Yes 178 (26.1)
Quantitative variable
Number of suicide attempts, median (Q1-Q3) 2 (1-3)

Barratt Impulsiveness Scale survey - version 10, scores (range)

Motor impulsivity
Attentional impulsivity

Nonplanning impulsivity

26 (22-30)
27 (23-30)
28 (24-31)

Principal Outcome: Clustering of Patients

The first step of the analysis was to perform an MCA to reduce
the dimension, followed by a hierarchical clustering from the
principal components to highlight groups of homogeneous
patients. The tree structure (in terms of inertia gain) and a
discussion between statisticians and practitioners allowed us to
study patients partitioned into three clusters. Figure 1 shows
the cluster dendrogram and the projection of the three clusters
onto the factor map; the factor map represents a two-dimensional
projection of the first two dimensions only.

We conducted an in-depth analysis of the 3 groups for data
interpretation. Statistical association tests (V tests) enabled
identification of over- or underrepresented modalities in the
three clusters. Cluster 1 was mainly related to an average patient
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profile of women (positive association V test, P<.001) who did
not misuse drugs, substances, or alcohol (P<.001) and without
bipolar disorder (P<.001), but with previous or current episodes
of depression (P<.001) and other mental health disorders
(P=.01). Cluster 3 was, in contrast, associated with men (P<.001)
and drug, substance, and alcohol misuse (P<.001); in this group,
patients were mainly single (P=.01), with no children (P=.006)
and no experience of depression (P=.006). Compared with
clusters 1 and 3, cluster 2 was neutral in terms of gender, but
this group was related to people with a work incapacity (P=.03),
low education level (P=.02), possible bipolar disorder (P<.001),
and no drugs or alcohol misuse (P<.001) and without episodes
of depression or other mental health disorders (P<.001). Thus,
without any prior hypothesis, this unsupervised approach
underlined three homogeneous groups. Gender appeared as a
crucial marker for two of the three groups.
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Figure 1. Hierarchical clustering (left) and multiple correspondence analysis factor map (right) with three projected clusters.
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Secondary Outcome: Identification of Factors
Associated With the Risk of Repeated Suicide Attempts

The second step of the analysis aimed to identify factors
associated with a higher risk of suicide attempts (variable
“number of suicide attempts™) for men and women separately,
following the principal outcome. Figure 2 depicts the regression
tree for male patients, while Figure 3 shows the results for
female patients only. For both groups, we noted that impulsivity
aspects (including the motor section, nonplanning section, and
attentional impulsivity section of the BIS interview) were
relevant factors explaining the number of suicide attempts for

0.00

Factor map

1.0

clustar 1
cluster 2

05 0.0 05 1.0 15
Dim 1 (11.82%)

a patient. Furthermore, higher scores were associated with a
higher number of attempts for patients.

While analyzing both groups, the first conclusion is a clear
difference between genders. For instance, eating disorders are
linked to a higher number of suicide attempts for women (mean
2.9 in women vs 2.3 in men, P=.005), while a history of familial
suicidal behavior (mean 2.8 in men vs 1.7 in women, P<.001)
and the employment status are risk factors for some men. In
particular, unemployed men with higher scores at the BIS
interview were at higher risk of suicide repetition. Older age
and having children were also identified as risks factors.

Figure 2. The decision tree on the variable "number of suicide attempts" according to gender "male". BIS: Barratt Impulsiveness Scale.
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Figure 3. The decision tree on the variable “number of suicide attempts” according to gender “female”
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Discussion

Principal Findings and Integration into a Dynamic
Clinical Decision-Support System

A systematic assessment before discharge from hospital has
allowed building of a large database suitable for modern data
mining techniques. In this study, we identified clusters of suicide
attempters and variables that may explain the repetition of
suicide attempt in suicide attempters. This study shows how a
simple structuration of the assessment of discharged patients
after a suicide attempt may provide relevant data for clustering
methods. The clustering may help clinicians allocate a patient
into a risk cluster. Therefore, it is the first step of the CDSS
design. This model may lead to a stratified approach in decision
making for suicide prevention. Furthermore, analyzing larger
datasets could allow the discovery of new risk factors that are
not currently considered relevant during clinical interviews.
However, we did not propose a model for suicide prediction;
our model mining big databases is a prerequisite toward better
decision making for suicide prevention. Furthermore, this model
could also be applied to other data sources like personal health
records or ecological momentary assessment (EMA).

Our findings are in line with recent studies showing how suicide
risk assessment could lead to patient clustering from a
preventative perspective [19]. Eleven clinically relevant items
related to the characteristics of suicidal behavior were submitted
to a Hierarchical Ascendant Classification; the results showed
that most individuals were included in a cluster characterized
by less lethal means and planning (“impulse-ambivalent”). The
second cluster featured more carefully planned attempts
(“well-planned”), more alcohol or drug use before the attempt,
and more precautions to avoid interruptions. Finally, the third
cluster included individuals reporting more attempts

https://mental.jmir.org/2019/5/e9766/

RenderX

(“frequent”), more often serious or violent attempts, and an
earlier age at the first attempt. In addition, differences across
clusters by demographic and clinical characteristics were found,
particularly with the third cluster whose participants had
experienced high levels of childhood abuse. Overall, a
systematic, structured assessment may help clinicians
characterize suicide risk better and personalize prevention
strategies. We believe that electronic health and data mining
techniques may help us to reach this goal.

In this study, participants were assessed by trained clinicians
before discharge from the ED. Data were captured using
paper-based formularies of the actual MeMind Web-based EHR
[20]; these data could have been captured by our MeMind Web
app [20] designed to gather observational data through an EHR
interface and perform EMA [18,19]. This Web-based software
has two distinct views—the EHR view (for clinicians) and the
EMA view (for patients). The “EHR” view is designed to be
used by doctors and nurses during the face-to-face assessment.
As current EHRs, the app also collects sociodemographic,
diagnostic, and pharmacological treatment information within
the “assessing suicide” protocol. Sociodemographic variables
included age (defined as the age at the index episode), sex,
profession, current working status, marital status, number of
children (if any), and educational level. Moreover, family history
of suicidal behavior, age at the first suicide attempt, and violence
of the suicide attempt were measured. The EMA view for
patients to track their symptoms was not used in this study.
Clinicians and patients can access the Web app either from a
computer or their personal mobile phone. EMA involves
repeated sampling of subjects’ behaviors and experiences in
real time in their natural environment. EMA has been
successfully used for real-time self-reporting of symptoms and
behavior. For example, Husky et al showed the utility and
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feasibility of using EMA to study suicidal ideation [4]. For this
study, patients did not have any access to this interface. Such a
Web app may represent the future of suicide risk assessment,
as it allows data mining of static data (EHR data provided by a
single clinical assessment) and dynamic data (smartphone data
provided by EMA techniques); these data can be processed to
build a dynamic CDSS [19].

Limitations

Focus on Suicide Attempters

In this study, patients were recruited after a suicide attempt. We
postulate that the development of a CDSS would be more
relevant in a population of suicide attempters. Suicide attempters
are also defined as an “indicated population” [2] who warrant
the maximal attention of health care service owing to the risk
of reattempt. Treatment and follow-up strategies are well
described in the guidelines for suicide attempters. Therefore,
we were able to propose treatment to each participant based on
actual recommendations. However, applying these strategies to
samples of patients with suicide ideation but without a history
of suicide attempt would be hypothetical and -ethically
controversial. Owing to the epidemiological specificities of both
populations, a specific model would have to be built for each
population. In terms of multiple suicide attempters, a relevant
perspective is to focus on the temporality of suicide attempts
rather than the absolute number; to achieve this objective, finer
data are needed.

Missing Data: The Data Mining Challenge

This study illustrates the need for high-quality and large
databases for extracting significant patient profiles or risk
factors. In this study, starting from an initial set of 2802 patients
with 263 variables, the data-qualification process resulted in a
final sample of 681 patients with 21 complete variables.
Although this volume of data already ensures statistical
significance, it underlines the importance of better ways to
standardize data collection in participating institutions. The
CDSS quality strongly depends on input data. Moreover, a
critical challenge may be the clinician acceptance of such tools
that directly impact the completion rate of the EHR [21].
Another option could be the integration of other data sources,
such as personal health records and EMA [21]. Overall, the use
of larger databases will refine different profiles of patients and
dynamically improve the personalized prevention strategies,
thanks to the EMA data.

Recommendations for Suicide Prevention
From Guidelines to Clinical Decision-Support Systems

in Suicide Prevention

Guidelines recommend that all patients presenting to the hospital
services with self-harm should receive a psychological
assessment before discharge, to determine the risk of further
reattempt [6]. This assessment should also help clinicians choose
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the most appropriate treatment while considering clinical
guidelines and patient-specific risks factor. However, reviews
have addressed the challenge clinicians working in the
emergency setting face when they rely on these tools to perform
decision making [7]. As EHRs are extensively used in
emergency services and psychiatric departments, we propose
integrating CDSS features regarding an individual’s risks factors
into EHRs.

Toward Dynamic Clinical Decision-Support Systems

Most clinicians have use EHRs daily in emergency services and
psychiatric units. However, few institutions have taken
advantage of recent technological advances opportunities in risk
assessment. Combining electronic health—based assessment
with data mining techniques represents an opportunity to foster
suicide-prevention research. This new paradigm is useful in
providing personalized intervention strategies by itself, but it
also affords the opportunity to identify novel mechanisms to be
targeted in suicide-prevention strategies. In addition, we believe
that computational models can provide data-assisted ideas
emerging from these repositories and will have special appeal
for the empirically minded clinicians [7].

Although studies have highlighted the value of self-reports in
clinical assessment, they are rarely routinely implemented [22].
Internet and mobile technologies are ideal for self-monitoring
assessment and ecological observational studies. Mobile phones
are generally kept on at all times and carried everywhere, making
them an ideal platform for the broad implementation of EMA
technology. For example, Husky et al conducted a study
providing support for the use of EMA in the identification of
suicidal ideation in outpatients [23]. These techniques may help
clinicians identify risky events occurring during follow-up.
Overall, these EMA data could also be mined and integrated
into the decision-making process.

Conclusions

The next step is to take advantage of new technologies and
current developments of Web-based mobile apps to design the
next-generation dynamic CDSS (Figure 4). As emerging mobile
health (mHealth) techniques in suicide prevention strategies
also produce relevant data, this study proposes a new model of
the decision-support system based on the data mining
proceedings from face-to-face assessment and mHealth EMA.
Our strategy relies on the processing of static data (initial
assessment) and dynamic data (EMA) able to instantaneously
deliver to clinicians decision support regarding a specific patient.
Indeed, mHealth apps allow patients to report their physical or
mental health conditions and symptoms, hence providing
dynamic data able to enrich studies, confirming or rejecting
statistical hypotheses [24]. Such dynamic data based on EMA
will form the core of a dynamic decision-support system, which
will adapt its recommendations to patients’ characteristics
(Figure 4).
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Figure 4. The decision-support system based on ecological momentary assessment and data mining.
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