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Recognition of Activities of Daily Living via Hierarchical Long-Short
Term Memory Networks

Maxime Devanne!, Panagiotis Papadakis' and Sao Mai Nguyen'

Abstract—1In order to offer optimal and personalized assis-
tance services to frail people, smart homes or assistive robots
must be able to understand the context and activities of users.
With this outlook, we propose a vision-based approach for
understanding activities of daily living (ADL) through skeleton
data captured using an RGB-D camera. Upon decomposition
of a skeleton sequence into short temporal segments, activities
are classified via a hierarchical two-layer Long-Short Term
Memory Network (LSTM) allowing to analyse the sequence at
different levels of temporal granularity. The proposed approach
is evaluated on a very challenging daily activity dataset wherein
we attain superior performance. Our main contribution is a
multi-scale, temporal dependency model of activities, founded
on a comparison of context features that characterize previous
recognition results and a hierarchical representation with a
low-level behaviour-unit recognition layer and a high-level units
chaining layer.

I. INTRODUCTION

The improvement in quality of life combined with a
declining birth rate results in an increasingly ageing popu-
lation, particularly in Europe. Together with seniors’ need
for staying longer in their homes, this drives the need
for a development of personal assistance technologies to
improve a person’s autonomy. Relatedly, human behaviour
understanding is essential in enabling a system to provide
consistent assistance to people in a timely manner. This
becomes nowadays feasible via smart sensors or cameras
combined with powerful algorithms for real-time tracking
of human body.

However, understanding human behaviour is still a difficult
task due to the variability and the complexity of human
activities of daily living (ADL) [36]. Indeed, ADL are
characterized by various combinations of atomic movements
which complicates their understanding at a higher level.
Humans seem to organize their behaviour and the accom-
panying perception into small, compositional structures or
building blocks of behaviour or behavioural primitives. Neu-
romodelling [15], [12] and behaviour learning [13], [32]
studies have outlined a hierarchical representation of motion
based on a low-level representation of action units, simpler
activities, and a high-level structure to chain these unit blocks
into more complex action sequences.
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Based on theses considerations, we attempt to leverage
this hierarchical representation in this study. Towards this
goal, we propose a vision-based approach for daily activity
recognition from skeleton features extracted from an RGB-D
sensor, that allows to account for the previous constraints (see
Fig. 1 for an overview of our approach). The contributions
of this work are summarized as follows:

o« We study how to decompose a continuous stream of
body movement into action units. By comparing several
methods, we conclude that a fixed-window decomposi-
tion is more stable and effective

o« We propose two methods to chain action units: by
augmenting the skeleton features with context features
that capture previous recognition results, and by a
hierarchical two-layer LSTM. In order to handle the
hierarchical and temporally abstracted nature of daily
activities characterized by varying composition of ac-
tions, the first layer captures the dynamics within each
action unit, while the second layer models the evolution
of these action units describing the entire daily activity.
Our analysis shows that the hierarchical structure is
more effective for recognition of complex activities.

II. STATE OF THE ART IN ACTIVITY RECOGNITION

Visual behaviour analysis and understanding has been
widely investigated in the last two decades. In related litera-
ture, human behaviour may refer to different types of human
movements from gestures and actions to daily activities.
However, boundaries between different types of movements
are not always easily identifiable. Hence, recent taxonomies
have been proposed by considering motion complexity and
duration, converging towards similar definitions for human
movements [6], [35]. In this work, we are particularly
interested in activities of daily living carried out by a person
at home in an ambient assisted living context. Based on those
taxonomies, such daily activities are mainly related to the
term of ’activity’.

In the following we review some relevant vision-based
approaches addressing the issue of human activity under-
standing. Assuming that extraction of relevant human body
information has been previously done using approaches such
as [31] or [5], in this study we focus on the way of character-
izing human movement for the purpose of recognition. Such
approaches can be grouped in three different categories: rule-
based approaches, stochastic approaches and deep learning
approaches.
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Fig. 1: Overview of our approach. A) A video sequence is decomposed into fixed-length temporal segments. B) Human
pose features are extracted from each frame and combined with a context feature from the activity label of the previous
temporal segment. C) A first LSTM layer captures the dynamics within each temporal segment. D) A second LSTM layer
models the evolution of the temporal segments in order to recognize activities of daily living (ADL)

A. Rule-based approaches

Rule-based approaches are inspired by the natural lan-
guage processing community and are based on the definition
of rules or set of attributes that describe an activity. Com-
monly, the occurrence of some attributes is used to build
semantic grammars describing activities. These grammars
represent the co-occurrence of objects-actions or actions-
activities. They are then used during testing to estimate
the probability of activities from observed attributes. For
instance, Yang et. al. [28] propose a rule-based approach to
make a robot learn kitchen activities from human demonstra-
tions. The authors employed visual features to characterize
different types of objects as well as different grasping types.
The grammar is built from occurrence of these features
during kitchen activities. Conversely, Tayyub et. al. [33] pro-
posed to automatically learn a stochastic grammar describing
the hierarchical structure of complex activities from anno-
tations acquired from multiple annotators. During testing,
they recognized low-level actions using visual features and
Support Vector Machines [34] and then inferred the most
likely activity hierarchy that generates these actions.

B. Stochastic Approaches

Many researchers modelled human motion as a stochastic
process where the movement can be seen as a sequence of
successive states. Inspired by the efficiency of the popular
Hidden Markov Model (HMM), a hierarchical extension has
been proposed in [27] to handle the motion complexity of
activities. The authors proposed a two-level HMM where
actions are modelled as a succession of poses and activities
as successive actions states. Stochastic processes have also
been employed as a means for mapping the raw action

sequences to a lower-dimensional latent space and enforcing
intra-class similarity and inter-class dissimilarity, facilitating
the recognition of simple actions [25], [24]. More complex
models such as Dynamic Bayesian Networks have been
proposed to mainly consider several variables per time,
contrarily to HMM, so as to differentiate each joint [26]
or the pose and the object [9]. A similar consideration of
both human motion and possible objects within short time
intervals is proposed in [18] where a Conditional Random
Field (CRF) is proposed to anticipate further activities. While
these stochastic approaches performed well for relatively
simple activities, their ability to model long-term dependen-
cies as required for daily activities has not been evaluated.
Finally, more recent approaches drawing a parallel between
activity understating from videos and document analysis
are based on the unsupervised Latent Dirichlet Allocation
(LDA). LDA models the probability that a video (document)
is generated from a set of actions (topics) where each action
(topic) is a distribution of words from a codebook. They are
employed for activity recognition [37] and forgotten action
detection [38].

C. Deep Learning Approaches

Deep learning and neural networks became very popular
in computer vision for pattern recognition and especially
action/activity recognition. Based on the success of Con-
volutional Neural Networks (CNN) for extracting relevant
features from images [29], several researches proposed to
employ such features for the task of action/activity recog-
nition. For instance, Cho et. al. [7] employed CNN to
first compute features on each frame and then to recognize
actions from the word embedding representation of the entire



video. As CNN perform well on images, Liu et. al. [21]
first proposed to represent 3D skeleton sequences as large
2D images by replacing the three channels of images by
the three coordinates of joints and then employed CNN to
perform action recognition. Another family of deep learning
techniques called Recurrent Neural Networks (RNN) has also
been employed for human motion analysis as such networks
are particularly efficient to model temporal sequences. Es-
pecially, the RNN variant called Long-Short Term Memory
model [16] is able to model time series while keeping track of
previous observations which is useful for the task of human
motion analysis. As a result, several works addressed the
task of action/activity recognition by using skeleton features
and multi-layers (deep) LSTM [39], [8]. Differently, Du
et. al. [11] proposed a spatial hierarchical LSTM so as to
consider different combinations of body parts separately.
Instead of considering different spatial scales, Lee et. al. [19]
investigated different temporal scales trough sliding windows
and ensemble LSTM. Another extension of LSTM has been
proposed in [22] by the inclusion of an attention mechanism
in order to learn which joints are more relevant as a function
of activities. Finally, a combination of CNN for extracting
features and LSTM for temporal modelling has also been in-
vestigated [20]. The majority of these approaches have been
efficiently applied on relatively simple and short activities,
i.e. actions including interactions with objects, from the NTU
RGB+D dataset [30]. However, the understanding of more
complex activities such as daily activities and the issue of
continuous analysis are not addressed in these works.

III. PROPOSED APPROACH
A. Human Skeleton Features

In this work, we focus on activities of daily living (ADL)
observed using RGB-D sensors. Such sensors allow the
use of powerful algorithms to extract in real-time a 3D
human skeleton representing the position and the orientation
of different body parts. For instance, the Microsoft Kinect
v2 [23] provides the 3D position of 25 joints forming a
human skeleton. Fig. 2 shows the structure of the skeleton
detected using Kinect. In this work, we focus our analysis
on upper body joints, using J = 12 joints (we discard the
neck joint because it is not very informative as well as finger
joints because they are very noisy).

To allow invariance to scale and translation (i.e. subjects’
size and position), we employ normalized relative positions.
For a given joint j, its normalized Cartesian position P;
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Fig. 2: Structure of the skeleton captured by Kinect v2 [23]

is computed relatively to the Spine Base absolute position
p1 and normalized using the length Ly, of the spine
bone (between Spine Shoulder joint and Spine Mid joint):
P; = (pj —psb)/ Lspine. This row feature vector is computed
for all joints except the Spine Base joint (j=1). In addition,
we compute velocity features by computing the difference
between the current joint position at frame ¢ and its position
in the previous frame ¢ — 1. V; = Pj — P;_l. The row
velocity feature vector is computed for all joints. As a result,
a skeleton pose x; at frame t can be represented as:

xt:[v'la‘/Q;PQa"'vVvaJ}T (1)

which is a 69-dimensional feature vector. Note that the data
extracted from the Kinect sensor are first processed using
a Butterworth filter to remove noise before computing the
human skeleton features described above.

B. Temporal Segments

Human activities are mainly characterized by motion
whose complexity is much higher compared to actions [6].
Indeed, activities are characterized by combinations of
atomic actions in various order. To address this issue, a
finer temporal analysis is often required [35]. In this work,
we propose to decompose the entire activity sequence into
a set of short temporal segments instead of treating an
activity as an integral, inseparable instance. This facilitates
the understanding of motion and allows to handle variations
in the execution of an activity. In addition, it is more suitable
for an online continuous analysis required in the context of
daily activity analysis where the temporal limits of an activity
are never known. We investigate two different approaches
based on the use of fixed-length temporal windows and on
an automatic segmentation into motion units.

For the first approach, the entire activity sequence is
decomposed into short temporal windows of size W'S. Since
our goal is to represent the complex motion sequence as
a more comprehensible set of segments and thus reduce
the number of features used for activity recognition, we
consider successive and non overlapping segments. Knowing
the ground truth label of each training sequence of an activity,
the frames of the segmented windows are appointed the same
label. As a result of the segmentation, the last segment of
an activity is often smaller than the window size WS, as
illustrated in Fig. 3. For a test sequence, we simply segment
it into successive windows of eaual W S.
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Fig. 3: Illustration of the fixed-length window segmentation

As an alternative to the fixed-window segmentation
scheme, we divide the continuous sequence into motion
units by automatically detecting salient motion changes. We
consider two existing approaches based on Principal Com-
ponent Analysis [2] and standard deviation within an sliding
window [10]. While these approaches are efficient for simple
movements like actions, their efficiency on more complex



movements like daily activities is not straightforward. More
details about the two comparison of the two approaches can
be found in Section IV-B.2.

C. Activity Classification using LSTM

The temporal segmentation of training sequences de-
scribed above results in a set of temporal segments charac-
terizing a part of an activity, each segment being associated
with a ground truth activity label. In order to consider
the dynamics of temporal segments and perform activity
recognition, we propose to employ a Long-Short Term
Memory Recurrent Neural Network (LSTM) [16]. LSTMs
are a special kind of RNN that are able to learn long-term
dependencies through the addition of memory cells and have
proven their effectiveness for temporal sequences. It has been
successfully used for action recognition using skeleton data.
In this work we propose to adapt it for activity recognition.

For the sake of completeness, we briefly recall the main
idea underlying the functionality of an LSTM. In particular,
the memory cell contains several parameters and gates in-
cluding an input gate i,, a forget gate f;, an input modulation
gate gy, an output gate o, an internal state c; and an output
state hy. The LSTM transition equations are:

iy = o(Uizy + Wihi—1 + b;) (2)
Ji=0Uszi +Wyrai_1 +by) 3)
gt = tanh(Ugzy + Wohi—1 + by) 4)
ot = o(Upws + Wohi—1 + b,) @)
ct=ftOc1+9: O (6)

ht = o © tanh(cy) @)

where ® indicates element-wise product, x; is the input to
the network at time step ¢ and h;_; is the hidden state at time
step t—1. Also note that o corresponds to a sigmoid function
and tanh to the hyperbolic tangent function. During training,
the parameters b, U and W of cell gates are optimized.
We employ a conventional LSTM architecture with a
LSTM layer, a fully connected layer and a softmax layer. In
this work, we want to take advantage of LSTM to capture the
dynamics of temporal segments and classify each temporal
segment as an activity. As a result, the input of our LSTM
is a temporal segment and the output is the activity label.

D. Temporal Dependency between Segments

By representing temporal windows with human motion
features, the LSTM classifies each segment independently
to what happened earlier in the sequence. For activity
recognition, such information could be very helpful. For
instance, the activity “putting back to fridge” should not
occur before the activity “taking from fridge”. To integrate
such implicit information, we propose two strategies, (i)
adding classification information of the previous segment in
the feature of the current segment (see section III-D.1) and
(i) adding a second LSTM layer to model the dynamics of
temporal segments (see section III-D.2).

1) Context Features: Inspired by the work of Dupont
et.al on document analysis [14], we propose to consider
information of the previous temporal segment. We perform
this by increasing the dimension of the human pose features
of the current segment s by concatenating it with a one-hot
context vector C*~1 corresponding to the classification of
the previous temporal segment s — 1, as illustrated in Fig. 1.

The size of the context vector C*~! is equal to the total
number of activity classes. If the previous temporal segment
is labelled as the n-th class, then the n-th element of C5!
is equal to 1 and O elsewhere. In the case where the frame
belongs to the first temporal window (s = 1), the context
vector C! is a vector of zeros signifying that this activity
occurs in the beginning of the sequence. The resulting feature
vector at frame ¢ belonging to segment s is F; = [z5,C*1].

This process is done for all training sequences as we know
the ground truth activity labels. During testing, the context
vector is the output of the softmax layer corresponding to
class probabilities of the previous temporal segment.

2) Two Layers Hierarchical LSTM: The second proposed
strategy amounts to the addition of a second LSTM network
in order to capture and model the dynamics of consecutive
temporal segments characterizing an activity. The inputs of
the second LSTM# are the last hidden states of the first
LSTM for each temporal segment, as illustrated in Fig. 1.
The superscript H is used to distinguish the second LSTM.
Thus the transition equations (2-5) of the second LSTM are:

it = o(UFhy + WHRE | +bH) (®)
[ =oUf hy + Wiy +bf) ©)
gf" = tanh(Uhy + WHRI | + b1 (10)
off = (Ul h + WHRE | + ) (11)

where h; corresponds to the last hidden state of the first
LSTM after a forward pass of the entire temporal segment.

This hierarchical model allows to handle the complexity of
an activity by considering both the dynamics characterizing
motion units (first layer) and the evolution of such motion
units characterizing the whole activity (second layer). We
trained each layer independently. The first layer is trained as
described in section III-C in order to optimize the recognition
of each temporal segment being part of an activity. The
second layer is trained in the same way using the ground
truth label of each temporal segment.

IV. EXPERIMENTAL RESULTS

We evaluate our method for ADL recognition and compare
its effectiveness against state-of-the-art approaches.

A. Experimental Dataset and Protocol

We evaluate our approach on the challenging human com-
plex activity RGB-D dataset Watch-n-Patch [37], consisting
of 458 videos of about 230 minutes in total recorded by
the Kinect v2. Each video in the dataset contains 2 to 7
activities that may involve interaction with different objects.
7 subjects perform daily activities in 8 offices and 5 kitchens
with backgrounds recorded from different viewpoints. It is
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cells

composed of fully annotated 21 types of activities (10 in
the office, 11 in the kitchen) interacting with 23 types of
objects. The main difficulty of this dataset is that complex
tasks can be different combinations of activities and with
varying order, and some activities occur simultaneously such
as fill-kettle and boil-water, while other activities occur in a
fixed order such as turn-on-monitor and turn-off-monitor and
other occur in random order.

We follow the same experimental set-up of [37] using
the same selection of training and testing sequences. In
order to evaluate the performance of our approach, two
measures are used: a frame-level accuracy (Frame Acc) and a
segment-level accuracy (Segment Acc). An activity segment
is considered as correctly recognized if the intersection/union
of the ground truth and the recognition is greater than 40%.

B. Model Settings Evaluation

First, we evaluate the effectiveness of the proposed ap-
proach with respect to different model parameters, segmen-
tation strategies and model architectures. All evaluations are
performed on the kitchen dataset using frame-based accuracy.

1) Latent space dimensionality: We evaluate the dimen-
sionality of activities by measuring the performance of our
model by varying the number of hidden units in the LSTM
cell. In Fig. 4, we plot both the accuracy as well as the
training time with respect to the number of hidden units.

We can observe that we obtain the best accuracy with 500
hidden units. However, if we analyse the training duration,
we can observe that choosing a smaller number of hidden
units results in a large reduction of training time while main-
taining comparable performance. Using 200 hidden units
could therefore be a good trade-off between accuracy and
computational burden.

2) Temporal segment evaluation: This evaluation aims to
automatically determine a timespan for activity recognition.
We compare the fixed-length window strategy with automatic
segmentation approaches, as described in section III-B, and
analyse which method is more appropriate for segmenting
movements for daily activity recognition. Such evaluation is
performed on both training and testing accuracy. To highlight
the impact of the segmentation strategy, we use our one-
layer model without hierarchy. For the fixed-length windows
method, we use W.S = 15. Results are reported in Table I.

TABLE I: Evaluation of temporal segmentation methods

Method Training acc. (%) | Test acc. (%)
PCA 23.9 10.4
STD 87.3 37.3
Windows 100 49.0

TABLE II: Evaluation of the window size parameter

WS 5 10 15 20 25 30
Acc. (%) 43.5 45.0 49.0 47.9 45.8 42.3
Time ~6,5h ~6,8h =~75h =~7,8h =84h =7,3h

We can see that the fixed-length windows method is
more effective for both training and testing than automatic
segmentation methods. We empirically observed that for sim-
ilar activity sequences, the automatic segmentation methods
may result in very different segmentations. For instance, the
activity “pouring” can be segmented into “take bottle”, “pour
water” and “put bottle” for one sequence. For the same
activity from another sequence, the segments “take bottle”
and “pour water” may be merged together due to the noisy
skeleton data. While automatic methods performed well for
simpler movements like actions, they seemed less appropriate
for the task of daily activities.

Finally, to complete the evaluation on the temporal seg-
mentation, we evaluate the impact of the window size pa-
rameter. The choice of this parameter is crucial and depends
on the task, as discussed in [1]. We compute the accuracy of
our one-layer model with respect to various windows lengths.
Results are reported in Table II.

We can notice that we obtain better results with a win-
dow’s length of 15 frames which according to Watch-n-Patch
dataset information [37] corresponds to 2.7 seconds. Despite
the fact that activities are complex and the understanding
of movements depends on the past and the context, this
evaluation seems to indicate that taking into account more
information from the past decreases the performance of our
system. We believe this to be caused by the overwhelming
amount of information provided to the LSTM.

3) Model architecture evaluation: Since activity recogni-
tion is highly non Markovian and depends on the context
that can trace back further than 2.7 seconds, we propose
to take into account this contextual information through two
alternatives: (i) reusing the activity label of the previous time
segment as input information for our recognition system, and
(i1) using a hierarchical 2-layer architecture to represent a
high-level representation of chaining action units. The impact
of modelling temporal dependencies between segments and
the comparative results of variants of our model that differ by
the number of layers used (either 1-layer or 2-layer) and the
consideration of the context feature are reported in Table III.

TABLE III: Comparison of variants of our model

Method Accuracy (%) | Training time
1-layer without context feature 45.2 ~ 7.5h
1-layer with context feature 49.0 =~ 7.5h
2-layers without context feature 58.0 =~ 8h
2-layers with context feature 58.9 ~ 8h

By analysing these results, we first observe that using the




hierarchical model with two layers allows to significantly
increase performance compared to the 1-layer model. This
shows that the hierarchical model is indeed relevant in
capturing motion complexity of daily activities. In addition,
we can observe that the use of context feature results in
a small but not negligible improvement of the performance
when we use a model with only one layer. This demonstrates
that considering temporal dependencies between successive
segments is important for recognizing daily activities. When
a hierarchical model is employed, the improvement of using
context feature is trivial. As the hierarchical model captures
dynamics of successive temporal segments and thus temporal
dependencies, providing context information does not appear
to contribute with additional discriminative information.

To emphasize the difference between our 1-layer and 2-
layer models, we report the confusion matrices in Fig. 5.
We can observe a confusion between the opposite ac-
tivities ’fetch-from-fridge’/’put-back-to-fridge’ and ’fetch-
from-oven’/’microwaving’ when the 1-layer model is em-
ployed (Fig. 5a). As temporal segments are analysed inde-
pendently, the model is not able to use the context from the
past to differentiate these opposite activities. Conversely, the
2-layers model differentiates these activities (Fig. 5b). This
shows the importance of tackling non-Markovian properties
of daily activities recognition. In our proposal, we modelled
the temporal dependencies between movement segments
mainly through our hierarchical LSTM model.

C. Comparison with State-of-the-art

We quantitatively compare our hierarchical LSTM model
(H-LSTM) with state-of-the-art approaches on the Warch-
n-Patch dataset. To the best of our knowledge the existing
methods evaluated on this dataset are: Hidden Markov Model
(HMM) [3], Latent Dirichlet Allocation (LDA) [4], Causal
Topic Model (CaTM) [37] and Watch-Bot Topic Model
(WBTM) [38]. All results are reported from [38]. For our
method, we use a fixed-length segmentation with a window
size WS = 15 and 500 units of the LSTM cell. We train
our model using the ADAM optimization algorithm [17]
with 1000 epochs. With a non optimized Matlab code and a
computer with an Intel Core i5 CPU of 2,6 GHz and 8 Gb
of RAM, training time is approximately 8 hours. For testing,
we run our recognition model at 110 frames per second.
We compute both the frame and segment accuracies. The
comparative evaluation provided in Table IV shows a clear
overall advantage of the proposed method.

V. CONCLUSION

In this paper, we proposed a vision-based approach for rec-
ognizing activities of daily living. We employ a temporally
hierarchical model composed of two LSTM layers to analyse
human body movement and recognize complex activities. To
jointly consider the increased motion complexity of activities
and allow online continuous observation, we decompose the
entire skeleton sequence into short temporal segments. We
employ a hierarchical model based on LSTM networks to
analyse human body evolution and recognize the performed
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Fig. 5: Confusion matrix obtained with the proposed method
when using a 1-layer model (5a) and a 2-layers model (5b)

TABLE 1IV: Evaluation of our hierarchichal LSTM model
(H-LSTM) in comparison with state-of-the-art.

Method [ Frame Acc (%) | Segment Acc (%)
kitchen
HMM [3] 20.3 17.2
LDA [4] 14.0 6.7
CaTM [37] 34.0 29.0
WBTM [38] 39.2 332
H-LSTM 58,9 38.8
office
HMM [3] 27.3 19.4
LDA [4] 18.4 12.2
CaTM [37] 38.5 329
WBTM [38] 41.2 35.2
H-LSTM 58.0 40.2

activities. Experiments on a very challenging dataset demon-
strate the effectiveness of our approach in comparison to
state-of-the-art approaches. Due to an unavoidable hetero-
geneity among the compared approaches (e.g. consideration
of objects, supervision, etc), our future work will consist in
a more systematic evaluation of each factor.

Our main contribution through the proposal of this hier-
archical LSTM is to highlight the importance of modelling
temporal dependencies between behaviour units through the
exploration of two methods. Firstly, we considered a con-
text input to take into account the activity label of the
previous time segment and longer time-scale recognition
layer. Secondly, we proposed a hierarchical representation of
behaviours based on a low-level representation of behaviour



units and a higher-level representation of chaining behaviour
units. Our analysis suggests that the effects of the high-level
layer are more important than the effects of the context.
In the future, we also plan to extend our model with an
attention mechanism as its effectiveness has been proven for
simple movements such as actions. Finally, we further wish
to explore objects in the vicinity of human activities and
human-object interactions, as an additional context feature.
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