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Prashant Khanduri, Student Member, IEEE, Dominique Pastor, Member, IEEE, Vinod Sharma, Senior
Member, IEEE and Pramod K. Varshney, Life Fellow, IEEE

Abstract—In this work, we propose a new algorithm for
sequential non-parametric hypothesis testing based on Random
Distortion Testing (RDT). The data based approach is non-
parametric in the sense that the underlying signal distributions
under each hypothesis are assumed to be unknown. Our pre-
viously proposed non-truncated sequential algorithm, SeqRDT,
was shown to achieve desired error probabilities under a few
assumptions on the signal model. In this work, we show that
the proposed truncated sequential algorithm, T-SeqRDT, requires
even fewer assumptions on the signal model, while guaranteeing
the error probabilities to be below pre-specified levels and at the
same time makes a decision faster compared to its optimal fixed-
sample-size (FSS) counterpart, BlockRDT. We derive bounds on
the error probabilities and the average stopping times of the algo-
rithm. Via numerical simulations, we compare the performance
of T-SeqRDT to SeqRDT, BlockRDT, sequential probability ratio
test (SPRT) and composite sequential probability ratio tests. We
also show the robustness of the proposed approach compared to
standard likelihood ratio based approaches.

Index Terms—Truncated sequential testing, non-parametric
testing, robust hypothesis testing, random distortion testing
(RDT), sequential probability ratio test (SPRT).

I. INTRODUCTION

In today’s world, many applications are characterized by
the availability of large amounts of complex-structured data.
It is not always possible to fit the data to predefined models
or distributions [2], [3]. Model dependent signal processing
approaches are often susceptible to mismatches between the
data and the assumed model. In cases where the data does
not conform to the assumed model, providing sufficient per-
formance guarantees becomes a challenging task [4], [5].
Therefore, it is important to devise methods that are model-
independent, robust, provide sufficient performance guarantees
for the task at hand and, at the same time, are simple to
implement. In this work, we propose one such algorithm: T-
SeqRDT, for binary hypothesis testing.

Standard binary hypothesis testing problems [6], based on a
fixed number of samples, test the null (H0) versus the alternate
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(H1) hypotheses. The decision is usually made through the
Bayesian, minimax or Neyman-Pearson frameworks. Such
tests are referred to as fixed-sample-size (FSS) tests. However,
a majority of decision making problems are inherently sequen-
tial in nature, i.e, observations are collected sequentially and
are processed one after the other [7]–[10]. In his seminal works
[11], [12], Wald proposed his celebrated sequential procedure,
namely, the sequential probability ratio test (SPRT) for testing
two simple hypotheses. SPRT is optimal in the sense that it
makes a decision faster on average, compared to all the pro-
cedures including FSS tests achieving the same probabilities
of error. However, this optimality is lost in some cases when
there is a mismatch between the assumed and true models for
the underlying hypotheses to be tested [13]–[15], i.e, SPRTs
can have larger stopping times on average compared to FSS
tests that achieve the same error probabilities. To avoid these
scenarios, a truncated version of SPRT was proposed in [15],
where the truncation time was chosen based on the FSS test.
However, the error probabilities achieved by truncated SPRTs
are usually higher than those yielded by non-truncated SPRTs.
In addition, larger truncation times are needed to guarantee
error probabilities below predefined levels. The purpose of the
present work is to propose a truncated sequential algorithm for
non-parametric binary hypothesis testing.

A key motivation in our approach is that SPRT loses its
optimality properties if the hypotheses to be tested are com-
posite [5], [12], [16]–[18]. For composite binary hypothesis
testing problems, variants of SPRT have been developed.
Of particular interest are invariant SPRT (ISPRT), weighted
SPRT (WSPRT) and generalized SPRT (GSPRT) [16]. ISPRT
relies on the principle of invariance [17], [19] to reduce the
composite hypothesis to a simple one, which then makes it
possible to apply Wald’s SPRT [12]. However, this reduction
imposes strong restrictions on the hypotheses to be tested
[16], [20]. On the other hand, WSPRT assigns a suitable
weight function to the unknown parameters [16], although
it is not always possible to upper bound the probabilities
of error and find an appropriate weight function, even in
asymptotic regimes. In contrast, GSPRT approximates the
likelihood ratio by replacing the unknown parameters in the
likelihood by their maximum likelihood (ML) estimates [16],
[21], [22]. Various versions of GSPRT have been proposed in
the literature with different thresholds [23]–[25] and most of
the literature is focused on the design of one-sided tests for
testing single parameter families of distributions. Moreover,
most algorithms are developed for exponential families of
distributions and guarantees are asymptotic, which do not
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upper bound the probabilities of error [16], [23]–[25]. Impor-
tantly, GSPRT based approaches have heavy computational
complexity even for simplest of models and, therefore, are
difficult to implement online [26]. In contrast, in this work,
we consider a two-sided binary hypothesis testing problem
and propose a non-parametric truncated sequential testing
algorithm, namely T-SeqRDT, to solve the hypothesis testing
problem. T-SeqRDT has the following properties:

• The upper bounds on the probabilities of false alarm (PFA)
and missed detection (PMD) are guaranteed to stay below
pre-specified levels even in non-asymptotic regimes, which
is naturally of practical interest. Moreover, the algorithm is
guaranteed to be faster compared to its optimal FSS version,
BlockRDT, to achieve the same performance.

• The underlying signal distribution under each hypothesis
is assumed to be unknown, and importantly, the results
derived do not rely on independence (or i.i.d) assumptions
on the observations either. This makes the algorithm robust
to mismatches in the distributions of the signals, compared
to likelihood ratio based approaches.

• The algorithm is simple in structure with low computational
complexity and, therefore, is easy to implement online.

It must be noted that non-parametric sequential hypothesis
testing approaches have been considered in the past, with
limited to no success, as guaranteeing both PFA and PMD
below certain pre-specified levels may not be feasible for such
non-parametric sequential testing problems [5], [17], [18].
The approaches proposed in [5] are based on approximating
the likelihood ratio by employing estimates of the unknown
parameters to be tested. These approaches impose restrictive
assumptions on these estimates to guarantee robustness and
asymptotic optimality when there is a mismatch between the
assumed and the true distribution. This is of limited use in
practical problems, which are non-asymptotic in nature.

From a general point of view, all the hypothesis testing
procedures discussed above are based on likelihood theory.
As such, they all assume prior knowledge of the distribution
of the observations under each hypothesis, perhaps up to a few
unknown parameters, to derive or approximate the likelihood
ratios. Likelihood ratio based procedures are limited, because,
usually, precise distribution models for the data in play are
not available. Moreover, likelihood ratio based tests are not
robust to model mismatches [5], [16], [20], [27]. In addition,
as described earlier, many approaches in sequential hypoth-
esis testing make stationarity as well as i.i.d. assumptions
on the observed process under each hypothesis [16], [23].
Such assumptions are questionable in practice and emphasize
the need for devising testing approaches that assume little
knowledge of the underlying signals to be tested. In this
respect, the truncated non-parametric sequential hypothesis
test, T-SeqRDT, proposed in this paper and featuring the prop-
erties discussed earlier, results from an alternative sequential
binary hypothesis testing formulation aimed at avoiding the
aforementioned limitations.

To begin with, assume that Y is a one-dimensional ob-
servation, with probability distribution parameterized by ξ.
Consider a two-sided hypothesis testing problem H0 : ξ = ξ0

vs H1 : ξ 6= ξ0. In practice, testing the signal for a precise
value of ξ0 might be too stringent due to measurement errors,
environmental fluctuations other than noise and other factors
[27]. Therefore, it is reasonable to allow for some fluctuations
around ξ0 and design the null hypothesis H0 to test for the
signal in the neighborhood of ξ0. In this respect, we assume
that Y is a corrupted observation of the signal to be tested, Ξ,
and that Ξ is a random distorted version of ξ0 with unknown
distribution. The hypothesis testing problem then becomes:

H0 : |Ξ− ξ0| 6 τ vs H1 : |Ξ− ξ0| > τ (1)

where τ ∈ [0,∞) represents the distortion. Note that, as
discussed earlier, designing an asymptotically optimal GSPRT
might not be feasible. However, one can formulate a WSPRT
by assuming Ξ to be deterministic and observations to be
Gaussian [12, Chapter 4], as discussed later in Section VI.
Problem (1) was first considered in the form of random
distortion testing (RDT) in [27], where the signal of interest,
Ξ, with an unknown distribution, was embedded in i.i.d.
Gaussian noise. The authors showed that the optimal tests
(under certain criteria) were simple in design and, at the
same time, independent of the signal distributions, thereby
did not need the computation of likelihood ratios. To enhance
detection performance with multiple samples, the authors
extended the RDT formulation to FSS tests, BlockRDT, in
[28]. The authors generalized the RDT formulation by re-
placing the signal Ξ, in (1), by its empirical mean over time.
Although the detection performance improved with the number
of samples, the designer had control only over PFA and no
control over PMD. To overcome this limitation, the authors
in [29], [30], extended the RDT formulation to sequential
hypothesis testing and proposed SeqRDT. SeqRDT guarantees
both PFA and PMD to be below certain levels, while making
a decision faster on average. This was achieved by introducing
a few key assumptions on the signal along with a buffer.
Again, just like standard likelihood ratio based approaches,
SeqRDT is not guaranteed to always make a decision faster
compared to BlockRDT [29], [30]. To avoid such scenarios,
we propose a truncated version of SeqRDT, T-SeqRDT, in this
paper. We show that, the proposed algorithm requires fewer
assumptions on the signal compared to SeqRDT, and at the
same time always makes a decision faster compared to its
FSS counterpart, BlockRDT. Similar to truncated SPRT [15],
PFA and PMD of T-SeqRDT can be guaranteed to stay below
pre-specified levels by designing larger truncation times. All
this can be achieved with T-SeqRDT without the need for a
buffer. We provide an analysis of the algorithm and show that
it can be an alternative to the likelihood ratio based approaches
as discussed earlier, when the signal distributions in play
are unknown. The proposed approach is completely data
dependent rather than being model dependent. The proposed
algorithm is robust to model mismatches and is relatively sim-
ple to implement. In addition, the algorithm is able to provide
sufficient performance guarantees with very few assumptions
on the signal to be tested. Preliminary results were presented
in [1] without proofs, for a fixed choice of thresholds and
without control over the stopping time of the algorithm. In
contrast, in the present work, we give the algorithm designer
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freedom to choose the thresholds according to the desired
performance guarantees. We provide complete analysis of the
stopping time and probabilities of error behavior and their
trade-offs with the designed thresholds. Moreover, we provide
a method to choose the thresholds such that the stopping time
is minimized. Summarizing, the main contributions of this
work are as follows:
• We extend the RDT formulation for sequential non-

parametric hypothesis testing and introduce a new truncated
sequential algorithm, T-SeqRDT, to solve the binary hypoth-
esis testing problem.

• We derive bounds on PFA and PMD of T-SeqRDT and show
that the designed thresholds can guarantee pre-specified PFA
and PMD.

• We analyze the average stopping time of T-SeqRDT and
provide insights into the trade-off between the average
stopping time and the error probabilities of T-SeqRDT.

In Section II, we formulate the problem. In Section III, we
present the FSS algorithm, BlockRDT. In Section IV, we
propose the truncated sequential algorithm, T-SeqRDT. In
Section V, we derive the bounds on the error probabilities
and stopping time of T-SeqRDT. In Section VI, we perform
simulations to gain further insights into the behavior of T-
SeqRDT. Finally, in Section VII, we conclude the paper.

Notation: All the random variables are defined on the same
probability space (Ω,F,P). M(Ω,R) denotes the set of all
real random variables defined on (Ω,F). Given U ∈M(Ω,R):
PU (B) = P

[
U ∈ B

]
with

[
U ∈ B

]
= {ω ∈ Ω : U(ω) ∈ B}

when B is a Borel set of R. A domain B of U is any Borel set
B of R such that PU (B) = 1. Given ξ ∈ R and σ ∈ [0,∞),
Z ∼ N(ξ, σ2) implies Z is Gaussian distributed with mean ξ
and variance σ2. The Generalized Marcum Function [31] with
order 1/2 is denoted by [32, Eq. (19) and Remark V.3],

Q 1
2
(|ξ|, η) = P

[
|Z| > η

]
, (2)

for Z ∼ N(ξ, 1). For any (a, b) ∈ [0,∞)× [0,∞),

Q 1
2
(a, b) = 1− Φ(b− a) + Φ(−b− a) (3)

where Φ is the cumulative distribution function (cdf) of Z. We
remind the reader that [31, Theorem 1]:

Lemma 1.1 (Behavior of the Marcum function): Whatever
its order, the Generalized Marcum function — and thus Q 1

2
—

increases with its first argument and decreases with its second.
Given γ ∈ (0, 1) and ρ ∈ [0,∞), λγ(ρ) is defined as the

unique solution in x to Q 1
2
(ρ, x) = γ [27, Lemma 2, statement

(i)], so that:

Q 1
2
(ρ, λγ(ρ)) = γ. (4)

The set of all sequences defined on N (resp. [[1, N ]] =
{1, 2, . . . , N}) and valued in M(Ω,R) is denoted by
M(Ω,R)N (resp. M(Ω,R)[[1,N ]]). Given U in M(Ω,R)N (resp.
U ∈ M(Ω,R)[[1,N ]]), the realization of U at n ∈ N (resp.
n ∈ [[1, N ]]) is called a sample of U and denoted by Un. Each
Un is an element of M(Ω,R). Given N ∈ N, the sample mean
of U over the N samples U1, . . . , UN is 〈U〉N = 1

N

∑N
n=1 Un.

The minimum of two real numbers a1 and a2 is denoted by
a1

∧
a2 and

∧n
i=1 ai denotes the minimum of n real numbers

a1, a2, . . . , an.

II. PROBLEM STATEMENT

Let Ξ = (Ξn)n∈N be an element of M(Ω,R)N. This
discrete time random process models the random mixture of a
distorted signal of interest and possible interferences. Standard
hypothesis testing approaches assume that the random process
under null hypothesis (H0) is generated from an unknown
underlying joint distribution P0, i.e, Ξ = (Ξn)n∈N ∼ P0,
and under alternate hypothesis (H1), by any underlying, yet
unknown, arbitrary joint distribution, other than P0, i.e., Ξ =
(Ξn)n∈N � P0. No assumption is made on the stationarity or
the distribution of Ξ = (Ξn)n∈N. In this respect, the samples
Ξn are not necessarily i.i.d. As pointed out in [29], [30], this
problem is difficult to tackle as very little or no knowledge
of the underlying signal distributions is assumed under both
hypotheses; thereby, likelihood ratio based tests (SPRT or
GSPRT) are not suitable for such problems. As an alternative
to likelihood ratio based approaches, we propose tests based
on RDT [27], where we associate a non-parametric distance
related criterion with each hypothesis which is independent of
the distributions of the actual hypotheses. This non-parametric
criterion serves as a surrogate to the actual hypotheses to be
tested. Next, we present the model in more detail.

We assume that Ξ is observed in additive and independent
Gaussian noise X = (Xn)n∈N. The observation process is
Y = (Yn)n∈N such that Yn = Ξn + Xn for all n ∈ N,
and we write Y = Ξ + X . In our formulation, Ξ mod-
els the distortion around a fixed known and deterministic
model ξ0. We, however, expect that, for N large enough,
the empirical mean 〈Ξ〉N remains close to ξ0 under H0 and
drifts significantly away from ξ0 under H1. Using standard
terminology in statistical inference, we say that this problem is
the testing of the null hypothesis — a random event, actually
— H0 : |〈Ξ〉N − ξ0| 6 τ against the alternate hypothesis
(event) H1 : |〈Ξ〉N − ξ0| > τ , on the basis of observation Y .
The hypothesis testing problem is therefore given as:

Observation : Y = Ξ +X ∈M(Ω,R)N

with


Ξ = (Ξn)n∈N ∈M(Ω,R)N,

X1, X2, . . .
iid∼ N(0, 1),

Ξ and X are independent.

∃N0 ∈ N,
{
H0 : ∀N > N0, 0 6 |〈Ξ〉N − ξ0| 6 τ (a-s)
H1 : ∀N > N0, τ < |〈Ξ〉N − ξ0| 6 τH (a-s)

(5)
where, τ ∈ [0,∞) is the tolerance and τ < τH < ∞. Note,
that the above hypothesis testing model is the same as the
BlockRDT model [28] for a fixed sample size, N (see Section
III). Here, N0 and the tolerances τ and τH are known a
priori based on some prior knowledge (or experience) about
the signal1. The algorithms based on formulation (5) have al-
ready been used for biomedical signal processing applications,
specifically for the detection of Auto-positive end expiratory
pressure (Auto-PEEP) [33]. Moreover, for illustration purpose,
below we give a simple example where formulation (5) can
be easily used.

1This knowledge can follow from machine learning training procedures or
be based on some statistical knowledge of the signal. Discussion of these
procedures is beyond the scope of this work.
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Example 1 (Bounded regime testing): Given ξ ∈ R and h ∈
[0,∞), we say Ξ follows the (bounded) regime (ξ, h) and write
Ξ ∼ (ξ, h) if, for any N ∈ N, |〈Ξ〉N − ξ| 6 h. A sufficient
condition for Ξ ∼ (ξ, h) is that |Ξn−ξ| 6 h (a-s) for any n ∈
N. Suppose Ξ satisfies either H∗0 : Ξ ∼ (ξ0, h0), with (ξ0, h0)
known or H∗1 : Ξ ∼ (ξ1, h1), with (ξ1, h1) possibly unknown.
Say that the regimes (ξ0, h0) and (ξ1, h1) are separate if |ξ1−
ξ0| > h0 +h1. When (ξ0, h0) and (ξ1, h1) are separate, testing
H∗0 against H∗1 when we observe Y is the particular problem
(5) with h0 6 τ < |ξ1 − ξ0| − h1, τH > |ξ1 − ξ0| + h1 and
N0 = 1. This example illustrates that only with the knowledge
of (ξ0, h0) and |ξ1 − ξ0| > h0 + h1, the testing of a given
bounded regime of Ξ is the hypothesis testing problem (5).
Moreover, as shown later for such problems, we can design
optimal FSS tests as well as sequential tests guaranteeing PFA
and PMD below pre-specified levels and that are, at the same
time, faster than the optimal FSS tests. Importantly, these tests
guarantee performance irrespective of the underlying signal
distributions. �

Remark 1: Note that the RDT framework of (1) is the
same as that given in (5) for N = 1. The formulation in (5)
generalizes the RDT framework of (1) for testing with multiple
samples, i.e., for the FSS test, BlockRDT, and sequential
hypothesis testing approaches. An alternative testing problem
would be to use 〈 |Ξn − ξ0|〉N instead of |〈Ξ〉N − ξ0| in
(5). This would allow a larger class of distortions. However,
designing such a test would require stronger assumptions of
|Ξn − ξ0| 6 τ under H0 and |Ξn − ξ0| > τ under H1 for all
n ∈ N in comparison to the condition of (5), where introducing
N0 in (5) gives the designer the flexibility to design the testing
problem for models when the condition |〈Ξ〉N−ξ0| 6 τ (resp.
|〈Ξ〉N − ξ0| > τ ) might not hold true for smaller values of
N ∈ N under H0 (resp. H1). �

Following the standard terminology [16] with a slight
change of notation, we define a sequential test for the binary
hypothesis testing (5) as a pair (T,DN0

), where T is the
stopping time and DN0

is a decision rule taking values in
{0, 1,∞} such that, for each 1 ≤ N ≤ T :

DN0
(N)=


0 H0 is accepted
1 H1 is accepted
∞ repeat the test with N + 1 samples.

(6)

Further, T is defined as

T = inf{N ∈ N : N 6 N0 +W ∗ − 1,DN0(N) 6=∞}. (7)

where the condition N 6 N0 +W ∗ − 1 guarantees that T ≤
N0 +W ∗ and we refer to W ∗ as the truncation window. Note
that W ∗ = ∞ for non-truncated sequential procedures. It is
also worth noticing that FSS tests are particular cases of tests
(T,DN0), with stopping time being a deterministic constant
T = N and DN0

valued in {0, 1}. Given two specified levels
α and β in (0, 1/2), we define the class of tests:

C (α, β)={(T,DN0
) : sup

Ω0

PFA(DN0
)≤α, sup

Ω1

PMD(DN0)≤β}

(8)

with Ω0 ={Ξ ∈M(Ω,R)N : ∀N > N0, |〈Ξ〉N−ξ0| 6 τ (a-s)},
Ω1 ={Ξ ∈M(Ω,R)N : ∀N > N0, |〈Ξ〉N − ξ0| > τ (a-s)} and
where

PFA(DN0)
def
= P [DN0(T ) = 1 ] , under H0, (9)

is the PFA and

PMD(DN0
)

def
= P [DN0

(T ) = 0 ] , under H1. (10)

is the PMD. Throughout, the levels α and β are chosen in
the interval (0, 1/2). The ultimate goal of this work is to
design a truncated sequential test belonging to C (α, β). To
exhibit elements of C (α, β), we will make use of the following
assumption.

Assumption 2.1 (Behavior of |〈Ξ〉N − ξ0| under H1): There
exists τ+ ∈ (τ,∞) such that:

Under H1 : ∀N > N0, |〈Ξ〉N − ξ0| > τ+(a-s). �

Assumption 2.1 states that under H1, the empirical mean of
the signal centered around ξ0 is bounded away from τ . This
assumption is similar in nature to that of the indifference zone
assumed in [16], [23]. Here the region (τ, τ+) represents the
indifference zone. In Sections III and IV, we first define a FSS
test BlockRDT and show that with the use of Assumption 2.1
BlockRDT can be designed so as to belong to C (α, β). Then,
by using BlockRDT, we define the truncated sequential test,
T-SeqRDT, that also belongs to C (α, β).

III. BlockRDT

The BlockRDT framework tests the problem defined in (5)
for a fixed number of samples N > N0. Specifically, suppose
that we have only N samples from our observation Y so
that Y = Ξ + X ∈ M(Ω,R)[[1,N ]] in (5). To solve this
testing problem, the authors in [28], [34] consider all the FSS
tests DN0(N) = T(Y ), where T is any (measurable) map
T : RN → {0, 1}. All such maps T are hereafter called N -
dimensional tests. In the BlockRDT framework [28], [34], we
define the size of a given N -dimensional test T as:

αT = sup
Ξ∈M(Ω,R)[[1,N]]: P[|〈Ξ〉N−ξ0|6τ ] 6=0

P
[
T(Y ) = 1

∣∣ |〈Ξ〉N − ξ0| 6 τ]
and T is said to have level γ ∈ (0, 1) if αT 6 γ. No
Uniformly Most Powerful (UMP) test with level γ exists for
for BlockRDT. By UMP test with level γ, we mean an N -
dimensional test T∗ such that αT∗ 6 γ and P

[
T∗(Y ) =

1 ||〈Ξ〉N − ξ0| > τ
]
> P

[
T(Y ) = 1 ||〈Ξ〉N − ξ0| > τ

]
for any

N -dimensional test T and any Ξ ∈ M(Ω,R)[[1,N ]]. We thus
define the subclass of BlockRDT-coherent tests [34], among
which a “best” test exists. We say that an N -dimensional test
T is BlockRDT-coherent if:
[Invariance in mean] Given y, y′ ∈ RN , if 〈 y〉N = 〈 y′〉N ,
then T(y) = T(y′).
[Constant conditional power] For all Ξ ∈ M(Ω,R)[[1,N ]]

independent of X , there exists a Borel set B such that
|〈Ξ〉N − ξ0| ∈ B (a-s) and, for any ρ ∈ B ∩ (0,∞),
P
[
T(Y ) = 1 | |〈Ξ〉N − ξ0| = ρ

]
is independent of the

distribution of |〈Ξ〉N − ξ0|.
The rationale behind [Invariance in mean] is straightfor-

ward and implies that two different observation processes with
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the same empirical mean must yield the same decision for
T. [Constant conditional power] means that T should not
yield different results for different distributions of |〈Ξ〉N−ξ0|,
conditioned on |〈Ξ〉N − ξ0| = ρ.

Let the class of all BlockRDT-coherent tests with level γ
be denoted by Kγ . This class can be partially pre-ordered
as follows: given T,T′ ∈ Kγ , write that T � T′ if, for any
Ξ ∈M(Ω,R)[[1,N ]], (i) T and T′ satisfy [Constant conditional
power] on the same domain B and (ii) For all ρ ∈ B∩(τ,∞),

P
[
T(Y ) = 1 | |〈Ξ〉N − ξ0| = ρ

]
6 P

[
T
′(Y ) = 1 | |〈Ξ〉N − ξ0| = ρ

]
.

According to [28], [34], the N -dimensional test defined for
every x ∈ RN by:

T∗N,γ (x) =

{
0 if |〈x〉N − ξ0| 6 λγ(τ

√
N)/
√
N

1 otherwise.
(11)

where λγ(τ
√
N)/
√
N is defined using (4), is maximal in Kγ :

for any T ∈ Kγ , T � TN,γ . Let the PFA and PMD of T∗N,γ
for BlockRDT be denoted by PB-RDT

FA (N, γ) and PB-RDT
MD (N, γ),

respectively. We have the following proposition [28], [29].
Proposition 3.1: For any γ ∈ (0, 1) and τ > 0, we have: Q 1

2

(
0, λγ(τ

√
N)
)

6 PB-RDT
FA (N, γ) 6 γ

1−Q 1
2

(
τH
√
N,λγ(τ

√
N)
)
6 PB-RDT

MD (N, γ) 6 1− γ

According to the above proposition, although being optimal
for BlockRDT, T∗N,γ controls PB-RDT

FA (N, γ) efficiently but has
no control over PB-RDT

MD (N, γ).
This implies that, without further assumption and for any

γ ∈ (0, 1), BlockRDT cannot belong to the class C (α, β)
(with PFA(DN0) and PMD(DN0) replaced by PB-RDT

FA (N, γ)
and PB-RDT

MD (N, γ) in (8), respectively) when α, β ∈ (0, 1/2).
However, with Assumption 2.1 the next result implies that we
can control PB-RDT

FA (N, γ) such that BlockRDT is in C (α, β).
Proposition 3.2: For any γ ∈ (0, 1), PB-RDT

FA (N, γ) and
PB-RDT

MD (N, γ) are bounded under Assumption 2.1 as:{
PB-RDT

FA (N, γ) 6 γ,

PB-RDT
MD (N, γ) 6 1−Q 1

2

(
τ+
√
N,λγ(τ

√
N)
)

and the upper bound on PB-RDT
MD (N, γ) decreases to 0 with N .

PROOF: The bound follows from Lemma A.1 and Assumption
2.1. The upper-bound on PB-RDT

MD (N, γ) decreases with N as a
consequence of Lemma B.3.

Proposition 3.2 implies that for γ = α and a sufficiently
large N such that the bound on PB-RDT

MD (N, γ) is below β,
BlockRDT is in C (α, β). Since this N might be very large in
practice, we introduce a novel truncated sequential algorithm,
T-SeqRDT, to control the number of samples.

IV. ALGORITHM: T-SeqRDT

In this section, we propose T-SeqRDT. In T-SeqRDT, if no
decision has been reached until a specified time, the decision
will be forced using BlockRDT [28], since Proposition 3.2
guarantees that we can attain arbitrarily small PMD for a

bounded PFA. The decision variable DN0
(N) for T-SeqRDT is

defined as:

DN0(1) = DN0(2) = . . . = DN0(N0 − 1) =∞,
for N0 6 N < N0 +W ∗,

DN0(N)=


0 if |〈Y 〉N−ξ0|6λL(N)
1 if |〈Y 〉N−ξ0|>λH(N)
∞ if λL(N)< |〈Y 〉N−ξ0|6λH(N)

for N = N0 +W ∗,

DN0(N) =

{
0 if |〈Y 〉N − ξ0| 6 λB-RDT(N)
1 if |〈Y 〉N − ξ0| > λB-RDT(N)

(12)

with decisions taken according to (6) and the stopping time
T defined in (7). At time instant N = N0 +W ∗, with W ∗ ∈
N, the decision is made using BlockRDT, if a decision has
not been made until then. Recall that W ∗ is defined as the
truncation window. The three thresholds λL(N), λH(N) and
λB-RDT(N) must be designed jointly so as to guarantee that T-
SeqRDT is in C (α, β). In any case, λH(N) and λL(N) must
be such that λL(N) < λH(N). Moreover, we want a decision
faster compared to BlockRDT, the optimal FSS counterpart of
T-SeqRDT. The thresholds are chosen with respect to these
constraints.

Another sequential algorithm, SeqRDT, was proposed in
[29], [30] for solving (5). SeqRDT was shown to belong to
class C (α, β) with the help of a buffer along with the upper
and lower thresholds respectively defined as:

λα(τ
√
N)/
√
N and λ1−β(τ

√
N)/
√
N, (13)

to control both PFA and PMD. Along with these thresholds,
the buffer size was designed using τ− and τ+ along with τ
and τH defined in (5), where the meaning of τ− is recalled
in Remark 2 below.

Remark 2: SeqRDT [29], [30] imposed stricter conditions
on the signal compared to T-SeqRDT. Beyond Assumption
2.1, it was assumed in the SeqRDT framework that under H0,
for all N > N0, |〈Ξ〉N − ξ0| 6 τ−(a-s) with τ− ∈ [0, τ).
Therefore, SeqRDT requires more parameters than T-SeqRDT.
In addition, performance bounds were guaranteed by SeqRDT
via the use of a buffer. The buffer size was selected using
τ− and τ+ along with τ and τH defined in (5). In contrast,
T-SeqRDT does not need to know τ− or even τH . It requires
the knowledge of τ and τ+ only to guarantee performance. �

A. Thresholds

SeqRDT [29], [30] is designed to belong to class C (α, β)
via the thresholds (13) and thanks to the use of a buffer.
T-SeqRDT eliminates the need for this buffer, while be-
ing in C (α, β). In view of the similarity between the T-
SeqRDT statistic in (12) to that of BlockRDT in (11), we define
the thresholds similar in structure to those of BlockRDT. The
thresholds λH(N), λL(N) and λB-RDT(N) are designed as:

λH(N) = λH(N,wH) = λα/wH (τ
√
N)/
√
N

λL(N) = λL(N,wL) = λ1−β/wL(τ
√
N)/
√
N (14)

λB-RDT(N) = λB-RDT(N,wBH) = λα/wBH (τ
√
N)/
√
N,
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where wH , wL and wBH give the algorithm designer control
over these thresholds and are equal to or greater than 1. This
constraint is necessary to ensure that T-SeqRDT is a valid se-
quential test, by guaranteeing that λL(N,wL) < λH(N,wH),
as shown in Proposition 4.1 below. In addition, the parameters
wH , wL and wBH must appropriately be chosen so as to
guarantee that T-SeqRDT belongs to C (α, β). To this end,
we study the properties of the thresholds (14) and establish
that they satisfy suitable properties for T-SeqRDT.

Proposition 4.1: wL > 1 and 1 6 wBH 6 wH given:
(i) λL(N,wL) < λB-RDT(N,wBH) 6 λH(N,wH), ∀N ∈ N.
(ii) the thresholds λH(N,wH) and λB-RDT(N,wBH) are de-
creasing in N ∈ N and lower bounded by τ .
(iii) for N large enough, the threshold λL(N,wL) is increasing
in N and upper bounded by τ .
(iv) all the thresholds approach τ as N increases:

lim
N→∞

λH(N,wH)= lim
N→∞

λB-RDT(N,wBH)= lim
N→∞

λL(N,wL)=τ.

PROOF: Since α, β ∈ (0, 1/2), 0< α
wH
6 α
wBH

<1/2<1− β
wL

.
Thus the proof of (i) follows from Lemma B.4. Statements (ii)
and (iii) follow from Lemmas B.5 and B.6, respectively. The
proof of (iv) derives from Lemma B.1.

As discussed earlier, Proposition 4.1 ensures λL(N,wL) <
λH(N,wH), which is made possible by the assumption that
wH , wL and wBH > 1. Moreover, all the thresholds tend to
τ as N increases, which intuitively implies that the chance of
making a decision should be higher for larger N .

Now, we analyze the behavior of the thresholds with respect
to parameters wH , wL and wBH , when N is fixed.

Proposition 4.2:
(i) λH(N,wH) increases when wH increases,
(ii) λL(N,wL) decreases when wL increases,
(iii) λB-RDT(N,wBH) increases when wBH increases,
(iv) lim

wH→∞
λH(N,wH) =∞ and lim

wL→∞
λL(N,wL) = 0.

PROOF: The proof of (i), (ii) and (iii) follows from Lemma
B.4. Statement (iv) follows from (4) and the fact that the
Marcum function (2) is a complementary cdf.

According to Proposition 4.2, λH(N,wH) and λL(N,wL)
grow further away as wH and wL increase. Therefore, thresh-
olds designed with higher values of wH and wL should provide
better PFA(DN0) and PMD(DN0) performance compared to
thresholds tuned with lower wH and wL values, but at the
expense of higher stopping times. For SeqRDT [29], [30],
the error probabilities were controlled via the buffer and no
control over the stopping time was provided. For T-SeqRDT,
the control over the error probabilities is achieved by choosing
the parameters wH , wL and wBH so as to move the thresholds
away from or closer to each other. This gives the designer
control over the average stopping time as well. This will be
discussed in more detail later.

B. Truncation window

The goal of T-SeqRDT is to make a decision faster com-
pared to its FSS counterpart, BlockRDT, while providing suffi-
cient performance guarantees. Thus, it makes sense to base the
choice of the truncation window W ∗ on BlockRDT as follows.
For the threshold λB-RDT(N,wBH) given in (14), Proposition

3.2 induces that PB-RDT
FA (N,α/wBH) is always upper bounded

by α/wBH and hence by α as wBH ≥ 1. Moreover, the upper
bound on PB-RDT

MD (N,α/wBH) is a decreasing function of N .
We thus propose to choose W ∗ = W ∗(wBH , wBL) as:

W ∗ = W ∗(wBH , wBL)

=min

{
W∈N :1−Q 1

2

(
τ+
√
N0+W,λ α

wBH
(τ
√
N0+W )

)
6

β

wBL

}
(15)

with wBL ≥ 1.
Remark 3: Note from Proposition 3.2 that BlockRDT with

λB-RDT(N,wBH) given in (14) for number of samples N =
N0 +W ∗ is in C (α/wBH , β/wBL).

The parameters wH and wL defined earlier are used to
control the upper and the lower thresholds, respectively, via
(14). On the other hand, the parameters wBH and wBL control
the truncation window, W ∗(wBH , wBL), defined in (15) and
the assumption wBL ≥ 1 is required to make sure that the
PMD of T-SeqRDT stays below β (see Theorem 5.2 below).
All the thresholds along with the truncation window, which
are thus controlled by wH , wL, wBH and wBL, govern the
performance of T-SeqRDT. Therefore, we next analyse the
behavior of W ∗(wBH , wBL) with wBH and wBL so that
wBL, wH , wL and wBH can be fixed to guarantee that T-
SeqRDT belongs to C (α, β).

Proposition 4.3: We have
(i) For fixed wBL, W ∗(•, wBL) does not decrease;
(ii) For fixed wBH , W ∗(wBH , •) does not decrease;
PROOF: For any wBH > 1 and any W ∈ N, set:

UBB-RDT
MD (wBH ,W )=1−Q 1

2

(
τ+
√
N0 +W,λ α

wBH
(τ
√
N0 +W )

)
For any wBL > 1,

W ∗(wBH , wBL) = minA(wBH , wBL) (16)

with:

A(wBH , wBL) =

{
W ∈N :UBB-RDT

MD (wBH ,W )6
β

wBL

}
(17)

Proof of (i): Consider wBH 6 w′BH . According to Lemmas
1.1 and B.4, we have:

UBB-RDT
MD (wBH ,W ) 6 UBB-RDT

MD (w′BH ,W ) (18)

Therefore, from (16) and (17), we have A(w′BH , wBL) ⊆
A(wBH , wBL) and thus W ∗(w′BH , wBL) >W ∗(wBH , wBL).

Proof of (ii): Fix wBH . If wBL 6 w′BL, then β
w′BL

6 β
wBL

.
This implies that A(wBH , w

′
BL) ⊆ A(wBH , wBL).

Hence the result.

Proposition 4.3 tells us that the smaller the required PFA and
PMD for truncation by BlockRDT, the larger the truncation
window for T-SeqRDT, which is natural. This will lead to the
trade-off pinpointed in the next section between this truncation
window and the error probabilities of T-SeqRDT. In addition,
the choice of the truncation window using BlockRDT will al-
low for easier comparison between T-SeqRDT and BlockRDT.

Remark 4: Assumption 2.1 is instrumental in choosing
an appropriate truncation window W ∗ for T-SeqRDT (see
Proposition 3.2 and (15)). But, if W ∗ is known a priori, i.e.,
it is available via some preliminary training procedure or prior
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experience, Assumption 2.1 is not needed, while the algorithm
will still achieve the same performance. �

Our next goal is to choose the appropriate thresholds (14)
and window size (15), such that T-SeqRDT is in C (α, β). We
proceed by noticing that (14) and Proposition 4.3 show that
this question is equivalent to choosing appropriate values of
wH , wL, wBH and wBL.

V. ANALYSIS

We calculate bounds on the PFA and PMD of T-SeqRDT.
These bounds are used to derive values for wH , wL, wBH and
wBL that guarantee the required performance. Then, we study
the average stopping time. Finally, we discuss the relationship
between the error probabilities and the average stopping time.

A. False alarm and missed detection probabilities

Since closed form expressions for PFA(DN0
) and PMD(DN0

)
cannot be derived, we instead calculate upper and lower
bounds on these error probabilities, for the thresholds (14).
These bounds provide useful insights into the behavior of T-
SeqRDT. We begin with lower bounds.

Theorem 5.1 (Lower-bounds on PFA(DN0
)&PMD(DN0

)):{
PFA(DN0

) > Q 1
2

(
0, λα/wH (τ

√
N0)

)
,

PMD(DN0
) > 1−Q 1

2

(
τH
√
N0, λ1−β/wL(τ

√
N0)

)
.

PROOF: Since
[
DN0

(T ) = 1
]
⊇
[
DN0

(N0) = 1
]
, (9) implies

that, under H0:

PFA(DN0
) > P

[
DN0

(N0) = 1
]

(a)
= E

[
Q 1

2

(√
N0|〈Ξ〉N0

− ξ0|,
√
N0λH(N0, wH)

)]
(b)

> Q 1
2

(
0, λα/wH (τ

√
N0)

)
where (a) follows from Lemma A.1, (b) from (14), Lemma
1.1 and the fact that under H0, 0 6 |〈Ξ〉N − ξ0| 6 τ (a-
s). Similarly, consider the event

[
DN0

(T ) = 0
]

and follow
the same procedure as above to get the lower bound for
PMD(DN0).

Although the lower bounds play no role in designing the
thresholds, note that they decrease with N0 and approach 0 as
N0 →∞, which follows from Lemma B.3 and B.2.

Theorem 5.2 (Upper-bounds onPFA(DN0
)&PMD(DN0

)):
PFA(DN0

) 6 UBFA 6

(
W∗

wH
+ 1

wBH

)
α,

PMD(DN0) 6 UBMD 6

(
W∗

wL
+ 1

wBL

)
β,

where UBFA and UBMD are given in (19) and (20), respec-
tively, and W ∗ = W ∗(wBH , wBL).
PROOF: We have[
DN0(T ) = 1

]
=
[
DN0(N0) = 1

] N0+W∗⋃
N=N0+1

([
DN0(N) = 1

]
∩
[
DN0(K) =∞, ∀K s.t. N0 6 K 6 N − 1

])
.

Since these events are disjoint, we have

P
[
DN0(T ) = 1

]
= P

[
DN0(N0) = 1

]
+

N0+W∗∑
N=N0+1

P
([

DN0(N) = 1
]

∩
[
DN0(K) =∞, ∀K s.t. N0 6 K 6 N − 1

])
(a)

6 P
[
DN0(N0) = 1

]
+

N0+W∗∑
N=N0+1

P
[
DN0(N) = 1

]
∧( N−1∧

K=N0

P
[
DN0(K) =∞

])
,

(21)

where (a) follows from the Frechet inequality. We bound each
individual probability on the right hand side (rhs) of (21) under
H0. First, for all N0 6 N 6 N0 +W ∗ − 1, we have:

P
[
DN0(N) = 1

] (a)
= E

[
Q 1

2

(√
N |〈Ξ〉N − ξ0|,

√
NλH(N,wH)

)]
(b)

6 Q 1
2

(
τ
√
N,λα/wH (τ

√
N)
)

(c)
= α/wH , (22)

where (a) follows from Lemma A.1; (b) results from (14), the
fact that under H0 : 0 6 |〈Ξ〉N − ξ0| 6 τ and Lemma 1.1;
(c) comes from (4).

Second, for N = N0 +W ∗, we have under H0:

P
[
DN0(N) = 1

]
= PB-RDT

FA

(a)

6 α/wBH , (23)

where (a) follows from Proposition 3.2 and (14).
Now, for all N0 6 K 6 N0 +W ∗ − 1, we have:

P
[
DN0(K) =∞

]
= P

[
|〈Y 〉K − ξ0| > λL(K,wL)

]
− P

[
|〈Y 〉K − ξ0| > λH(K,wH)

]
(a)
= E

[
Q 1

2

(√
K|〈Ξ〉K − ξ0|,

√
KλL(K,wL)

)]
− E

[
Q 1

2

(√
K|〈Ξ〉K − ξ0|,

√
KλH(K,wH)

)]
(b)

6 Q 1
2

(
τ
√
K,λ1−β/wL(τ

√
K)
)
−Q 1

2

(
0, λα/wH (τ

√
K)
)

(c)
= 1− β/wL −Q 1

2

(
0, λα/wH (τ

√
K)
)
, (24)

where: (a) follows from Lemma A.1, (b) from the mono-
tonicity of the Marcum function, (14) and the fact that under
H0 : 0 6 |〈Ξ〉N − ξ0| 6 τ , and (c) from (4). The upper
bounds on PFA(DN0) follow by substituting (22), (23) and (24)
into (21) and using that a1 ∧ a2 6 a1. The upper bounds for
PMD(DN0

) result from a similar procedure and the definition
of W ∗ via (15).

This theorem justifies the definition of the thresholds in (14).
It is clear that PFA(DN0) and PMD(DN0) of T-SeqRDT can
be controlled such that T-SeqRDT is in C (α, β) by choosing
appropriate parameters wH , wL, wBH and wBL, which are
independent of the signal model. Moreover, to do so, all these
parameters have to be greater than or equal to one. Hereafter,
we work with the looser upper bounds stated in Theorem
5.2. They are simpler to analyze as they depend on fewer
parameters than UBFA and UBMD and give useful insights into
the behavior of T-SeqRDT.

We use threshold λB-RDT(N0 +W ∗, wBH) with W ∗ =
W ∗(wBH , wBL) to stop T-SeqRDT if a decision has not been
taken until N0 + W ∗. As pinpointed in Remark 3, the PFA
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UBFA=
α

wH
+

[N0+W
∗−1∑

N=N0+1

α

wH

∧(
N−1∧
K=N0

((
1−

β

wL

)
−Q 1

2

(
0, λ α

wH
(τ
√
K)

)))]
+

α

wBH

∧(N0+W
∗−1∧

K=N0

((
1−

β

wL

)
−Q 1

2

(
0, λ α

wH
(τ
√
K)

)))
,

(19)

UBMD=
β

wL
+

[N0+W
∗−1∑

N=N0+1

β

wL

∧(
N−1∧
K=N0

(
Q 1

2

(
τH
√
K,λ

1− β
wL

(τ
√
K)

)
−

α

wH

))]
+

β

wBL

∧(N0+W
∗−1∧

K=N0

(
Q 1

2

(
τH
√
K,λ

1− β
wL

(τ
√
K)

)
−

α

wH

))
.

(20)

(resp. PMD) of the corresponding BlockRDT is upper-bounded
by α/wBH (resp. β/wBL). Therefore, from Theorem 5.2,
we see that T-SeqRDT may lose some detection performance
compared to BlockRDT. However, it follows from this same
theorem and Subsection IV-B that the upper-bounds on the
false alarm and missed detection probabilities are of the
same order for T-SeqRDT and BlockRDT. For example, if
wBH = wBL = 1 and wH = wL = W ∗, T-SeqRDT is in
C (2α, 2β) whereas BlockRDT is in C (α, β). We can thus
increase wH , wL, wBH and wBL such that T-SeqRDT is
in C (α, β). Though this comes at the cost of increasing the
average stopping-time, this is the same behavior as observed
for SPRT and discussed in the Introduction [15]. We show in
the next section that this average stopping time remains always
less than N0 +W ∗.

B. Stopping time
Similarly to PFA(DN0) and PMD(DN0), a closed form for

the average stopping time of T-SeqRDT is not derivable.
We, however, get an insight into the stopping behavior of T-
SeqRDT by bounding its average stopping time.

Theorem 5.3 (Bounds on the average stopping time): With
W ∗ = W ∗(wBH , wBL):

(i) We have{
Under H0 : E[T ] 6 UBTH0

Under H1 : E[T ] 6 UBTH1
,

where:
UBTH0

= N0 +W ∗ − βW ∗/wL

−
N0+W∗−1∑
N=N0

Q 1
2

(
0, λα/wH (τ

√
N)
)
,

UBTH1
= N0 +W ∗ − αW ∗/wH

−
N0+W∗−1∑
N=N0

[
1−Q 1

2

(
τH
√
N,λ1−β/wL(τ

√
N)
)]
.

(ii) E[T ] < N0 +W ∗.
PROOF:
Proof of statement (i): Since the random variable T is discrete
and valued in {N0, N0 + 1, · · · , N0 +W ∗} and

E[T ] =

∞∑
N=0

P[T > N ] = N0 +

N0+W∗−1∑
N=N0

P[T > N ].

By definition of T (7),
[
T > N

]
⊂
[
DN0

(N) = ∞
]

for
any N ∈ {N0, N0 + 1, · · · , N0 +W ∗}. Hence, the following
inequality:

E[T ] 6 N0 +

N0+W∗−1∑
N=N0

P
[
DN0

(N) =∞
]
. (25)

According to Lemma A.1, we can write:

P
[
DN0(N) =∞

]
= E

[
Q 1

2

(√
N |〈Ξ〉N − ξ0|,

√
NλL(N,wL)

)]
− E

[
Q 1

2

(√
N |〈Ξ〉N − ξ0|,

√
NλH(N,wH)

)]
.

(26)

Under H0, 0 6 |〈Ξ〉N − ξ0| 6 τ (a-s) for all N > N0 and
thus:

P
[
DN0(N) =∞

] (a)

6 Q 1
2

(√
Nτ, λ1−β/wL(τ

√
N)
)

−Q 1
2

(
0, λα/wH (τ

√
N)
)

(b)
= 1− β/wL −Q 1

2

(
0, λα/wH (τ

√
N)
)
,

where (a) results from the monotonicity of Q 1
2

and (b) from
(4). The bound on E[T ] under H0 follows by substituting the
inequality above into (25). Following a similar procedure to
bound (26) under H1 will yield the bound under H1.
Proof of (ii): The result follows from the bound P[DN0

(N) =
∞] < 1 for all N ∈ {N0, · · · , N0 +W − 1}).

Theorem 5.3 states that the average stopping time of
T-SeqRDT is strictly less than the BlockRDT block size
N0 +W ∗. Therefore, on the one hand, Theorem 5.2 suggests
that T-SeqRDT will lose detection performance compared to
BlockRDT; but on the other hand, Theorem 5.2 shows that
T-SeqRDT is faster on average than BlockRDT. Moreover, the
bounds derived in the two theorems depend on the choice of
parameters wH , wL, wBH and wBL. As stated earlier, these
parameters are used to select the three thresholds and the
truncation window required for T-SeqRDT. Next, we study
the behavior of the error probabilities and the stopping time
with these parameters.

C. Trade-off: Error probabilities vs Stopping time
In this subsection, we study how increasing/decreasing

PFA(DN0
) and PMD(DN0

) affect the average stopping time
of T-SeqRDT. Since PFA(DN0

), PMD(DN0
) and E[T ] are not

available in a closed form, we hereafter study the behavior of
the upper bounds for PFA(DN0) and PMD(DN0) with respect
to the upper bounds given for E[T ].

Proposition 5.4 (Behavior with wH and wL): Given wBL
and wBH , we have:
(i) As wH and wL tend to ∞, T-SeqRDT approaches
BlockRDT in the sense that lim

wL,wH→∞
E[T ] = N0 +W ∗;

(ii) As wH and wL increase, the upper bounds on PFA(DN0
)

and PMD(DN0) decrease while the upper bounds on E[T ]
increase under each hypothesis.
PROOF:
Proof of (i): Using the definition of the expectation, we have
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E[T ] =

N0+W∗∑
N=N0

NP[T = N ] > (N0 +W ∗)P[T = N0 +W ∗]

= (N0 +W ∗)P

N0+W∗−1⋂
N=N0

[DN0(N) =∞]


(b)

> (N0 +W ∗)

1−
N0+W∗−1∑
N=N0

P
[
DN0(N) 6=∞

] ,

where (b) follows from the Boole inequality. Moreover, it
follows from Proposition 4.2 (iv) that

P
[
DN0(N) =∞

]
= P

[
|〈Y 〉N − ξ0| 6 λH(N,wH)

]
− P

[
|〈Y 〉N − ξ0| 6 λL(N,wL)

]
,

tends to 1 when both wH and wL grow to ∞. Therefore, the
result follows.
Proof of (ii): From Theorem 5.2, the looser upper bound on
PFA(DN0

) is an inverse function of wH , whereas the looser
upper bound on PMD(DN0) is an inverse function of wL.
Hence, the first part of the statement.

Now, let us look at the upper bounds on the average stopping
time from Proposition 5.3. Let us first look at the upper bound
under H0. The first term N0 +W ∗ is independent of wL, the
second term βW ∗/wL decreases when wL increases and the
third term

∑N0+W∗−1
N=N0

Q 1
2

(
0, λα/wH (τ

√
N)
)

decreases with
increasing wH , as a consequence of Lemmas 1.1 and B.4. This
implies that the upper bound E[T ] under H0 will increase with
increasing wH and wL. Similar reasoning follows for the upper
bound under H1.

Proposition 5.4 plays an important role in helping us de-
sign T-SeqRDT. Proposition 5.4 (i) states that, as wL and
wH increase, the stopping time of T-SeqRDT approaches
the number of samples required by BlockRDT to belong to
C (α/wBH , β/wBL) (see (15), Remark 3 and discussion after-
wards). Moreover, from Theorem 5.2 notice that for all ε > 0,
there exist wL and wH greater than or equal to one such that T-
SeqRDT belongs to the class C (α/wBH+ε, β/wBL+ε). This
can be achieved by increasing wH and wL, which is equivalent
to moving the thresholds λH(N,wH) and λL(N,wL) away
from each other (see Proposition 4.2), hence, increasing the
average stopping time of T-SeqRDT (Proposition 5.4(ii)). This
implies that we can choose larger parameter values wH and
wL, which moves the thresholds λH(N,wH) and λL(N,wL)
away from each other in order to reduce PFA(DN0) and
PMD(DN0

). At the same time, this choice of parameters (or
thresholds) will increase E[T ] of T-SeqRDT. Next, we analyze
the behavior of E[T ] with increasing wBH and wBL.

Proposition 5.5 (Behavior with wBH and wBL): For fixed
wL and wH , as wBH and wBL increase, the upper bounds on
E[T ] increase under each hypothesis.
PROOF: According to Proposition 5.3 (i), we have:

E[T ]6 N0+

N0+W∗−1∑
N=N0

[
1−
(
β/wL+Q 1

2

(
0, λα/wH (τ

√
N )
))]

.

(27)

We have β/wL < 1/2 since β < 1/2 and wL > 1. Similarly,
since α < 1/2 and wH > 1, Lemma 1.1, [27, Lemma 2(ii)]
and (4) imply that Q 1

2

(
0, λα/wH (τ

√
N )
)
6 α/wH < 1/2.

Therefore, the second term on the rhs of (27) is a sum of
W ∗ positive terms. From Proposition 4.3, we know that W ∗

increases with increasing wBH and wBL. Hence the result
under H0. The proof under H1 follows similarly.

From Proposition 4.3, we know that increasing wBH and
wBL will also increase the window size W ∗(wBH , wBL).
Proposition 5.5 above suggests that choosing a larger wBH
and wBL, and hence a larger W ∗(wBH , wBL), while keeping
the parameters wL and wH fixed, will increase the upper
bounds on the average stopping time. But, from Theorem
5.2, we see that, to guarantee that T-SeqRDT belongs to
C (α, β), wL and wH cannot stay fixed and must satisfy
wL >

wBLW
∗(wBH ,wBL)
wBL−1 and wH > wBHW

∗(wBH ,wBL)
wBH−1 .

Clearly, varying wH and wL along with wBH and wBL will
also have an impact on the average stopping time. It is not
easy to characterize the average stopping time behavior of
T-SeqRDT when wBH and wBL increase while maintaining
PFA and PMD below levels α and β, respectively. However,
Theorem 5.2 suggests that when wBH and wBL are chosen
such that wBH > 1 and wBL > 1, any α and β can be
achieved with:

wL=
wBLW

∗(wBH , wBL)

wBL − 1
, wH=

wBHW
∗(wBH , wBL)

wBH − 1
. (28)

Now the question that arises is: how should we choose wH ,
wL, wBH and wBH such that E[T ] is minimized and at the
same time T-SeqRDT is in C (α, β)? The next subsection
addresses this question.

D. Tuning T-SeqRDT

We need to choose appropriate thresholds (14) and the
window W ∗(wBH , wBL) (15) such that T-SeqRDT belongs to
C (α, β), and at the same time minimizes the average stopping
time. The parameters wH , wL and wBH fully determine the
thresholds (14), whereas wBH and wBL are required to design
W ∗(wBH , wBL). The choice of the appropriate thresholds
and window thus boils down to selecting suitable values of
parameters wH , wL, wBH and wBL. Using (28), we propose
to choose the parameters such that the maximum of the two
upper bounds on the stopping time derived in Theorem 5.3 is
minimized, i.e.,

(w∗BH , w
∗
BL, w

∗
H , w

∗
L) = arg min

wBH ,wBL,wH ,wL

max(UBTH0
,UBTH1

)

s.t. (28), wBH > 1, wBL > 1, wH ≥ 1, wL ≥ 1. (29)

If wBH = wBL, which implies that wL = wH , (29) becomes:

(w∗BH , w
∗
H) = arg min

wBH ,wH

max(UBTH0
,UBTH1

)

s.t. (28), wBH > 1, wH ≥ 1. (30)

The above problem can be further simplified to one-
dimensional search via Proposition 5.4(ii), which tells us that
for fixed wBH (and wBL), smaller wH (and wL) implies
smaller bounds on E[T ]. Therefore, we can choose wBH (and
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wBL), hence W ∗(wBH , wBL) so as to minimize wH (and wL)
given by (28) as:

w∗BH = arg min
wBH

wBHW
∗(wBH , wBL)

wBH − 1
s.t. wBH > 1. (31)

Thereby, the upper bounds derived in Theorem 5.2 are main-
tained equal to α and β and we expect to minimize the stop-
ping time of T-SeqRDT. In the next section, we experimentally
show the effect of wBH and wBL on wL, wH and E[T ],
and pinpoint that the parameters can be chosen in a wide
range without significantly impacting E[T ]. Since we have a
method to choose appropriate values for wH , wL, wBH and
wBL from which derives W ∗ = W ∗(wBH , wBL), we can
calculate the thresholds according to (14) and, then, perform
T-SeqRDT. Algorithm 1 lists the steps of T-SeqRDT. Next, we
perform some simulations to get insights into the behavior of
the algorithm.

Algorithm 1: T-SeqRDT

Initialize Given N0, τ , τ+, α and β.
1) Choose wBL and wBH , thereby W ∗ = W ∗(wBH , wBL),

wL = wBLW
∗/(wBL − 1) and wH = wBHW

∗/(wBH − 1)
using (29), (30) or (31).

2) Compute λH(N,wH), λL(N,wL) and λB-RDT(N,wBH) from
(14)

While λL(N,wL) < |〈Y 〉N − ξ0| 6 λH(N,wH) & N0 6 N <
N0 +W ∗

N = N + 1
End
If |〈Y 〉N − ξ0| 6 λL(N,wL) & N < N0 +W ∗

Accept H0

else if |〈Y 〉N − ξ0| > λH(N,wH) & N < N0 +W ∗

Reject H0

else if |〈Y 〉N − ξ0| 6 λB-RDT(N,wBH) & N = N0 +W ∗

Accept H0

else if |〈Y 〉N − ξ0| > λB-RDT(N,wBH) & N = N0 +W ∗

Reject H0

End If

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we perform some simulations to highlight the
advantages of T-SeqRDT compared to BlockRDT and SPRT
as proposed in [28] and [11], [12], respectively. Moreover, we
compare T-SeqRDT to a composite hypothesis test, WSPRT
defined in [12] and SeqRDT to highlight the differences
between the three. We first present the detection problem
considered in these experiments. Then we carry out the
comparison of the algorithms.

A. Detection with signal distortions

We address the problem of testing the mean of a signal. Let
us first consider the case when Yn = Ξn + Xn, for n ∈ N
with Ξn = ξ0 under H0 and Ξn 6= ξ0 under H1. Here, ξ0 is
a deterministic constant and the noise is Gaussian, i.e., Xn ∼
N(0, 1) for all n ∈ N. This model can be formulated in the
framework defined in (5) with τ = 0 and N0 = 1. This is the
classical Gaussian mean shift detection problem.

However, in many practical systems, there might unfortu-
nately be a mismatch between the model and the actual signal.

In many practical applications, the underlying signal Ξn will
not be a constant ξ0 under H0, but a perturbed version of
this value. These unavoidable perturbations are difficult to
model in a parametric setup. Therefore, likelihood ratio based
tests fail to guarantee reliable performance [5], [16], [27].
However, the BlockRDT [28] and the SeqRDT setup [29],
[30] are not limited by these drawbacks. Therefore, instead of
dealing with a perfect model as described above, we consider
the case when Ξn = ξi + ∆n under Hi for i ∈ {0, 1} and
all n ∈ N. Here, the ∆ns model possible perturbations with
unknown distribution. We thus want to experimentally assess
different algorithms for testing Ξ = (Ξn)n∈N when we observe
Y = (Yn)n∈N (5). We focus on algorithms in class C (α, β).
If the distributions in play are perfectly known, SPRT is
optimal in the sense that it makes a faster decision on average,
compared to all other algorithms in class C (α, β). Otherwise,
if the distributions are not completely known and only partial
knowledge of the distortions is assumed, the above hypothesis
testing problem can easily be formulated in the framework of
(5). Then the problem can efficiently be solved by BlockRDT,
SeqRDT or T-SeqRDT. In this respect, we hereafter benchmark
T-SeqRDT against WSPRT, SPRT, BlockRDT and SeqRDT
under experimental settings described below.

B. Experimental setup

We first list the parameters required to design each algo-
rithm. BlockRDT only requires τ , but guarantees PB-RDT

FA only,
with no control over PB-RDT

MD . With additional knowledge of τ+,
BlockRDT can control both PB-RDT

FA and PB-RDT
MD as illustrated

in Proposition 3.2. Likewise, T-SeqRDT also requires τ and
τ+, whereas SeqRDT requires τ−, τ , τ+ and τH . On the other
hand, SPRT requires complete knowledge of the signal distri-
butions under each hypothesis. Similarly, WSPRT also requires
complete knowledge of the signal distributions at least up to an
unknown (possibly vector) parameter. Note that BlockRDT is a
FSS algorithm whereas the rest of the algorithms are sequential
and belong to class C (α, β). For the experimental setup, let us
assume τ− to be some positive real value. We consider ξ1 and
ξ0 such that |ξ1− ξ0| > 4τ−. We set τ+ = |ξ1− ξ0|− τ− and
τH ∈ [|ξ1− ξ0|+ τ−,∞). Suppose that the empirical mean of
the distortion ∆ = (∆n)n∈N exhibits the following bounded
behavior: there exists some N0 ∈ N such that, for all N > N0,
0 6 |〈∆〉N | 6 τ− and τ+ 6 |〈∆〉N +ξ1−ξ0| 6 τH . The first
inequality captures the signal behavior under H0, whereas the
second inequality captures the signal behavior under H1. The
problem of testing the mean of Ξ can be rewritten as:{

under H0 : ∀N>N0, 0 6 |〈Ξ〉N − ξ0|6τ−<τ (a-s),
under H1 : ∀N>N0, τ <τ

+6 |〈Ξ〉N − ξ0|6τH (a-s).
(32)

We can choose τ ∈ (τ−, τ+). For simulation purposes, we set
τ = 2τ−. Note that (32) is a special case of the testing problem
(5) and can thus be tested using the BlockRDT, SeqRDT and
T-SeqRDT frameworks. None of these algorithms need the
complete knowledge of the distortion (or signal) distributions
under either hypothesis, unlike SPRT and WSPRT, which re-
quire the complete knowledge of these distributions under both
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hypotheses. We consider three different types of distortions,
two when (32) is only required to be satisfied with high
probability and the third when it is satisfied with probability
1 (in (a-s) sense).

Case 1: Gaussian distortion: We assume ∆n
iid∼ N(0, σ2)

for n ∈ N. For simulation purposes, we choose τ− = σ/4.
For this distortion type, the inequalities in 32 will only be
satisfied with high-probability. Below, we list the probabilities
corresponding to the Gaussian distortion. We have P[|〈∆〉N | 6
τ ] > 0.9545,P[|〈∆〉N + ξ1 − ξ0| > τ ] > 0.9772,P[|〈∆〉N | 6
τ−] > 0.6827 and P[|〈∆〉N + ξ1− ξ0| > τ+] > 0.8413 for all
N > N0 with N0 = 16 and |ξ1 − ξ0| > 2τ . Note that these
probabilities increase with N .

Case 2: Heavy-Tailed distortion: We model ∆n as an ᾱ-
stable random variable denoted as ∆n

iid∼ S(ᾱ, β̄, γ̄, δ̄) for
n ∈ N [35]. The parameters ᾱ ∈ (0, 2], β̄ ∈ [−1, 1], γ̄ > 0
and δ̄ ∈ (−∞,∞) are the tail-index, location, dispersion
and skewness parameters, respectively. In general, an ᾱ-stable
distribution does not admit a closed-form probability density
function, except in a few special cases like the Cauchy
(ᾱ = 1, β̄ = 0) and Gaussian (ᾱ = 2) distributions.
Moreover, for the Cauchy distribution and for ᾱ ∈ (0, 1],
none of the moments of the ᾱ-stable distribution exist. For
ᾱ ∈ (1, 2) the distribution is sometimes referred to as the
Pareto-Lévy distribution and for this class of distributions, all
higher moments beyond the mean do not exist. For simulation
purposes, we consider the following two types of heavy-tailed
distortions:

Case 2(i) [Pareto-Lévy distortion (ᾱ ∈ (1, 2))]: We assume
the distortion to be Pareto-Lévy distributed with ∆n

iid∼
S(1.5, 0, τ−, 0) for n ∈ N. We thus have: P[|〈∆〉N | 6 τ ] >
0.9885,P[|〈∆〉N +ξ1−ξ0| > τ ] > 0.9953,P[|〈∆〉N | 6 τ−] >
0.9646,P[|〈∆〉N + ξ1 − ξ0| > τ+] > 0.9832 for all N > N0

with N0 = 30 and |ξ1 − ξ0| > 2τ . Again, note that these
probabilities increase with N .

Case 2(ii) [Cauchy distortion (ᾱ = 1)]: Note that, unlike in
the cases involving Gaussian and Pareto-Lévy distortions, the
empirical mean of i.i.d Cauchy distributed random variables
is again Cauchy distributed [35] and none of the moments
exist for the empirical mean as well. Therefore, the empirical
mean of a Cauchy distorted signal does not converge in the
neighborhood of ξ0 and ξ1 under H0 and H1, respectively, in
contrast to the Gaussian and Pareto-Lévy distortions. Below,
we show that, although the Cauchy distortion does not exhibit
the desired convergence properties, the proposed algorithms
guarantee performance if (32) holds with sufficiently high
probabilities. To experimentally show this, we assume the
distortion to be Cauchy distributed as ∆n

iid∼ S(1, 0, τ−/10, 0)
for n ∈ N with the associated probabilities given as:
P[|〈∆〉N | 6 τ ] = 0.9682 and P[|〈∆〉N | 6 τ−] = 0.9365
for all N ∈ N. Also, P[|〈∆〉N + ξ1 − ξ0| > τ ] > 0.9894
and P[|〈∆〉N + ξ1 − ξ0| > τ+] > 0.9728 for all N ∈ N and
|ξ1 − ξ0| > 2τ . Note that, unlike the Cases 1 and 2(i) these
probabilities do not increase with N as the distribution of the
empirical mean of a Cauchy distribution remains the same. As
a consequence, the probabilities stay the same for all N ∈ N.

α = β = 0.01

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8
BlockRDT NB-RDT 2165 542 241 87
SeqRDT E

[
TSeqRDT

]
171.34 145.83 141.12 140.26

T-SeqRDT E [T ] 567.73 349.42 192.82 73.92

α = β = 0.001

BlockRDT NB-RDT 3820 955 425 153
SeqRDT E

[
TSeqRDT

]
252.55 198.51 185.17 181.80

T-SeqRDT E [T ] 720.08 481.75 298.65 114.88

TABLE I: T-SeqRDT vs SeqRDT and BlockRDT for Gaussian
distortion.

α = β = 0.01

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 567.73 349.42 192.82 73.92
PFA(DN0

) 0.0004 0.0001 0.0001 0.0002

PMD(DN0
) 0.0001 0.0003 0.0002 0.0003

SeqRDT
E
[
TSeqRDT

]
171.34 145.83 141.12 140.26

PFA(DM ) 0.00015 0.0002 0.0002 0.00021

PMD(DM ) 0.00044 0.00013 4× 10−5 < 10−5

SPRT
E [TSPRT ] 58.98 38.40 27.18 15.84
PSPRT

FA 0.0150 0.0146 0.0131 0.0114

PSPRT
MD 0.0149 0.0143 0.0142 0.0124

WSPRT
E [TWSPRT ] 209.77 198.55 191.85 184.07
PWSPRT

FA 0.0192 0.0185 0.0187 0.0182

PWSPRT
MD < 10−5 < 10−5 < 10−5 < 10−5

GSPRT
E [TGSPRT ] 41.47 26.01 18.07 10.68
PFA(DM ) 0.1307 0.1339 0.1377 0.1292

PMD(DM ) 0.1430 0.1481 0.1433 0.1325

α = β = 0.001

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 720.08 481.75 298.65 114.88
PFA(DN0 ) 3× 10−5 2× 10−5 5× 10−5 1× 10−5

PMD(DN0
) 1× 10−5 3× 10−5 2× 10−5 < 10−5

SeqRDT
E
[
TSeqRDT

]
252.55 198.51 185.17 181.80

PFA(DM ) 3× 10−5 1× 10−5 4× 10−5 2× 10−5

PMD(DM ) 0.00011 3× 10−5 1× 10−5 < 10−5

SPRT
E [TSPRT ] 89.24 57.82 40.56 23.32
PSPRT

FA 0.0022 0.0019 0.0018 0.0016

PSPRT
MD 0.0023 0.0020 0.0019 0.00018

WSPRT
E [TWSPRT ] 304.37 288.09 278.55 267.46
PWSPRT

FA 0.0033 0.0033 0.0030 0.0036

PWSPRT
MD < 10−5 < 10−5 < 10−5 < 10−5

GSPRT
E [TGSPRT ] 68.75 42.39 28.76 16.05
PGSPRT

FA 0.0937 0.0970 0.0981 0.0994

PGSPRT
MD 0.1021 0.1059 0.1047 0.1003

TABLE II: T-SeqRDT vs SeqRDT, SPRT and WSPRT. Here,
PFA < 10−5 and PMD < 10−5 indicate that probabilities of
errors are at most of the order of 10−5.

To ensure that (32) is satisfied with high probability, we need
the dispersion parameter, γ̄, to be small enough. Later in the
section we show how the above probabilities, PFA and PMD
vary with γ̄ for T-SeqRDT.

Case 3 [Deterministic unknown distortion]: The distortion
is assumed to be unknown deterministic with |∆n| ≤ τ− for
all n ∈ N. For simulation purposes, we choose ∆n = τ−.
With this choice, the inequalities in (32) are satisfied with
probability 1. However, not all types of distortions satisfy (32)
with probability 1 as shown in Cases 1 and 2. Next, we discuss
different algorithms.
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C. Algorithms

Here, we discuss the algorithms we use to solve the above
mean testing problem. Certainly, using (32), we can cast the
problem in the BlockRDT, SeqRDT and T-SeqRDT frame-
works. Next, we discuss likelihood ratio based parametric and
semiparametric approaches for comparison purposes.

Sequential probability ratio test (SPRT): For SPRT, we
assume that the probability density function, fi, of the obser-
vations is known under Hi for i = 0, 1. For α, β ∈ (0, 1/2),
and with initialization ΛN = 1, SPRT with stopping time and
decision pair (TSPRT,D) is defined as:

TSPRT = inf{N > 0 : ΛN /∈ (λSPRT
L , λSPRT

H )}

D(N) =


1 if ΛN > λSPRT

H

0 if ΛN 6 λSPRT
L

∞ if λSPRT
L < ΛN < λSPRT

H

where ΛN =
∑N
n=1

f1(Yi)
f0(Yi)

is the likelihood ratio based
on the observations, λSPRT

L = β
1−α and λSPRT

H = 1−β
α are

the lower and upper thresholds, respectively. We denote the
stopping time, PFA and PMD of SPRT as TSPRT, PSPRT

FA and
PSPRT

MD , respectively. For the model described above, SPRT
for detecting the mean with unknown distortions we have
ΛN = exp

(
N
ξ20−ξ

2
1

2 + (ξ1 − ξ0)
∑N
n=1 Yn

)
.

Composite hypothesis test, GSPRT: A simple GSPRT can be
designed for the case of Gaussian distortions when the means
under H0 and H1 are known but the variances are unknown.
Specifically, the algorithm is aware that the distortion is zero
mean Gaussian distributed, but is unaware of its variance
[5]. The generalized log likelihood ratio for such a test
is given as: log Λ̂N = ξ1−ξ0

s2n

∑N
n=1

(
Yn − 1

2 (ξo + ξ1)
)

with
s2
n = 1

n−1

∑n
i=1(Yi − 〈Y 〉i), for N ≥ 2. GSPRT uses the

same thresholds as SPRT [5]. We denote the stopping time,
PFA and PMD of GSPRT as E [TGSPRT ], PGSPRT

FA and PGSPRT
MD ,

respectively.
Composite hypothesis test, WSPRT: WSPRT considers the

problem of testing H0 : |ξ − ξ0| < τ vs H1 : |ξ − ξ0| > τ
[12, Chapter 4]. In T-SeqRDT, the signal Ξ is assumed to be
a corrupted version of ξ and the distribution of Ξ is assumed
to be unknown. In contrast, for WSPRT, ξ is deterministic
and the test can only handle the case when the observations,
Yis, are Gaussian distributed [12], [16]. We denote PFA,
PMD and stopping time of WSPRT as PWSPRT

FA , PWSPRT
MD and

TWSPRT, respectively. WSPRT uses the same thresholds as
SPRT. However, the likelihood ratio for WSPRT is given as:
Λ̂N =

∏N
n=1

e−(Yn−ξ0+τ)2/2+e−(Yn−ξ0−τ)
2/2

2e−(Yn−ξ0)2/2
. The distribution

under H1 is thus replaced by a weighted average of two
distributions.

D. Comparison: T-SeqRDT, SeqRDT, BlockRDT, SPRT,
WSPRT and GSPRT

We define |ξ1−ξ0| as the SNR and for simulation purposes,
we assume τ− = 0.1. For T-SeqRDT, the thresholds (4) and
the truncation window W ∗(wBH , wBL) (15) are selected via
parameters wH , wL, wBH and wBL, using Algorithm 1. For
the simulations, we assume wBL = wBH , which implies

α = β = 0.01

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 576.14 350.71 192.296 75.17
PFA(DN0 ) 0.0097 0.0095 0.0079 0.0075

PMD(DN0
) 0.0003 0.0002 0.0004 0.0013

SeqRDT
E
[
TSeqRDT

]
171.71 146.85 142.97 141.81

PFA(DM ) 0.0088 0.0085 0.0086 0.0089

PMD(DM ) 0.0044 0.0013 0.0004 0.0006

SPRT
E [TSPRT ] 58.56 37.83 27.10 15.82
PSPRT

FA 0.0211 0.0204 0.0167 0.0132

PSPRT
MD 0.0200 0.0199 0.0165 0.0148

WSPRT
E [TWSPRT ] 207.63 195.07 189.20 182.07
PWSPRT

FA 0.0454 0.0495 0.0517 0.0505
PWSPRT

MD 0.0001 < 10−4 < 10−4 < 10−4

TABLE III: T-SeqRDT vs SeqRDT, SPRT and WSPRT for
heavy-tailed Pareto-Lévy Distortion.

α = β = 0.05

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 453.05 229.33 117.30 44.59
PFA(DN0

) 0.0471 0.0424 0.0357 0.0271

PMD(DN0 ) 0.0047 0.0040 0.0052 0.0069

SeqRDT
E
[
TSeqRDT

]
124.73 115.10 113.75 111.23

PFA(DM ) 0.0303 0.0299 0.0283 0.0286

PMD(DM ) 0.0087 0.0037 0.0025 0.0013

SPRT
E [TSPRT ] 35.51 23.50 17.03 10.07
PSPRT

FA 0.0570 0.0491 0.0481 0.0408

PSPRT
MD 0.0612 0.0531 0.0510 0.0419

WSPRT
E [TWSPRT ] 132.75 124.89 119.00 114.63
PWSPRT

FA 0.1198 0.1162 0.1210 0.1115
PWSPRT

MD 0.0006 0.0002 < 10−4 < 10−4

TABLE IV: T-SeqRDT vs SeqRDT, SPRT and WSPRT for
heavy-tailed Cauchy distortion.

α = β = 0.01

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 387.86 177.24 106.44 48.42
PFA(DN0 ) 0.0059 0.0062 0.0063 0.0063

PMD(DN0
) < 10−4 < 10−4 < 10−4 < 10−4

SeqRDT
E
[
TSeqRDT

]
220.10 210.61 206.25 202.16

PFA(DM ) 0.0050 0.0065 0.0061 0.0058
PMD(DM ) 9× 10−4 < 10−4 < 10−4 < 10−4

SPRT
E [TSPRT ] 70.77 43.40 29.75 16.73
PSPRT

FA 0.0802 0.0537 0.0333 0.0222

PSPRT
MD 0.0006 0.0012 0.0012 0.0014

WSPRT
E [TWSPRT ] 317.05 310.01 305.50 303.89
PWSPRT

FA 0.4566 0.4439 0.4538 0.4569
PWSPRT

MD < 10−4 < 10−4 < 10−4 < 10−4

α = β = 0.05

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

T-SeqRDT

E [T ] 232.18 109.74 63.85 29.34
PFA(DN0 ) 0.0244 0.0259 0.0232 0.0275

PMD(DN0
) 0.0002 0.0004 0.0005 0.0010

SeqRDT
E
[
TSeqRDT

]
120.23 105.07 101.30 98.78

PFA(DM ) 0.0441 0.0442 0.0440 0.0466
PMD(DM ) 0.0052 6× 10−4 2× 10−4 < 10−4

SPRT
E [TSPRT ] 39.56 25.38 17.87 10.50
PSPRT

FA 0.1653 0.1265 0.1029 0.0694

PSPRT
MD 0.0070 0.0100 0.0098 0.0113

WSPRT
E [TWSPRT ] 160.72 156.14 152.06 149.89
PWSPRT

FA 0.4299 0.4272 0.4253 0.4202
PWSPRT

MD < 10−4 < 10−4 < 10−4 < 10−4

TABLE V: T-SeqRDT vs SeqRDT, SPRT and WSPRT for
deterministic distortion.
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Fig. 1: wH = wL vs wBH = wBL such that UBFA and UBMD
in Theorem 5.2 stay equal to α and β, respectively.
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Fig. 2: E[T ] vs wBH = wBL such that UBFA and UBMD in
Theorem 5.2 stay equal to α and β, respectively.

that wH = wL and make use of the simpler of the three
methods proposed in (31) to choose the parameters. In Figures
1 and 2, we plot wH against wBH and E[T ], respectively, for
different α, β and τ+. We notice that wH and wL capture
the behavior of E[T ] as was suggested by Proposition 5.4(ii).
Moreover, we see that we can choose wBH and wBL (hence
wH and wL) over a wide range. For simulation purposes, we
select wBH = wBL = 2, which is then used to choose an
appropriate W ∗ via (15). We then set wH = wL = 2W ∗.
Albeit not unique, these choices guarantee that T-SeqRDT is
in C (α, β) by Theorem 5.2. In contrast to T-SeqRDT and
BlockRDT, SeqRDT requires additional knowledge of τ− and
τH to design the test: τ along with levels α and β is used to
design the thresholds; τ+, τ− and τH are used to choose an
appropriate buffer size, M . The thresholds, λα(τ

√
N)/
√
N

and λ1−β(τ
√
N)/
√
N are defined in (13). We denote by

PFA(DM ) and PMD(DM ) the PFA and PMD, respectively, and
by TSeqRDT the stopping time of SeqRDT.

Case 1: For Gaussian distortion, we compare in Table
I the average stopping times of T-SeqRDT and SeqRDT
to the block-size of BlockRDT, for different SNR values,
α = β = 0.01 and α = β = 0.001. For SeqRDT, the buffer
size M = 90 is selected. From Table I, SeqRDT is the fastest
on average, especially at low SNR values, but needs the most
amount of information (all of τ−, τ , τ+ and τH to design M )
about the signal. BlockRDT is the slowest and requires the
same information (τ and τ+ only) as T-SeqRDT. However,
T-SeqRDT is considerably faster on average. Moreover, at
moderate to high SNRs, T-SeqRDT is the fastest among the
three algorithms and considerably outperforms SeqRDT as
well. It must be noted that the stopping time of SeqRDT is
limited by the need and the choice of the buffer size, which
makes SeqRDT relatively slower compared to T-SeqRDT,
especially at higher SNRs. In Table II, we compare the average
stopping times, PFAs and PMDs of T-SeqRDT, SeqRDT,
SPRT, WSPRT and GSPRT. From Table II, we notice that,
because of the distortion, WSPRT and SPRT do not belong
to C (α, β) as PSPRT

FA , PSPRT
MD and PWSPRT

FA are above the pre-
specified levels α and β. Moreover, GSPRT, even with prior
knowledge of the distortion, does not belong to C (α, β), as the
PGSPRT

FA and PGSPRT
MD are orders of magnitude higher compared

to α and β, respectively. In contrast, both SeqRDT and T-
SeqRDT, with only limited knowledge about the signal under

each hypothesis, are in C (α, β). Importantly, by design, T-
SeqRDT eliminates the need for buffer M , whereas SeqRDT
does need such a buffer to guarantee the pre-specified levels α
and β. Moreover, it seems that the bounds on PFA and PMD
are loose for Gaussian distortion. Therefore, we next consider
different types of distortions to see if the bounds are tight for
some other scenarios.

Case 2: For heavy-tailed distortions, we again compare T-
SeqRDT, SeqRDT, SPRT and WSPRT. For Cases 2(i) and
2(ii), we simulate PFA, PMD and average stopping times for
α = β = 0.01 and α = β = 0.05 to obtain Tables III and
IV, respectively. The average stopping time of T-SeqRDT and
SeqRDT stay similar to those obtained in the Gaussian distor-
tion case. However, the bounds on PFA and PMD are tight, as
a consequence of the heavy-tailed distribution of the distortion.
Moreover, similar to Case 1, SPRT and WSPRT do not belong
to C (α, β) for both Cases 2(i) and 2(ii).

Case 3: Finally, we consider the unknown deterministic
distortion case. In this case, (32) is satisfied with probability 1,
unlike in Cases 1 and 2. We choose ∆n = τ−, and simulate
PFA, PMD and average stopping times for α = β = 0.05
and α = β = 0.01. From Table V, T-SeqRDT and SeqRDT
belong to C (α, β), whereas SPRT and WSPRT fail to. Also,
note that, similar to Case 2, the bounds on PFA are tight.

A note of caution: The above simulation results show
that T-SeqRDT is robust to mismatches and can guarantee
performance even in the cases when (32) is not always satisfied
with probability 1, as shown in Cases 1 and 2 above. Now,
the question that arises is: “How high do these probabilities
need to be so that T-SeqRDT belongs to C (α, β)?” The
simulation results of Case 1 suggest that Gaussian distortions
allow for large mismatches, i.e., T-SeqRDT works even when
the probabilities are not very high. On the other hand, Case 2,
involving heavy-tailed distortions, requires these probabilities
to be high, i.e., a relatively smaller mismatch. In the following,
for two different cases, we show how high these probabilities
need to be for T-SeqRDT to belong to C (α, β).

Case A: We mentioned earlier in Case 2(ii) that, with
Cauchy distortions, we needed the dispersion parameter γ̄
to be small. In Fig. 3, we show how PFA and PMD of T-
SeqRDT and the probabilities associated in (32), when they
are not satisfied in (a-s) sense, vary with increasing γ̄, for
α = β = 0.05 and SNR = 0.8. Notice that there exists a
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of impulse, p for T-SeqRDT.

threshold γ̄ = 0.02 above which T-SeqRDT does not belong
to C (α, β) and that we need probabilities in (32) as high as
95% for T-SeqRDT to guarantee the required performance.

Case B: We perform further simulations for a simple model
of impulsive distortion. We assume that ∆n is Bernoulli
distributed as

∆n ∼

{
10τ− with probability p
0 with probability 1− p

This implies that P
[
|〈∆〉N | 6 τ

]
> 1 − p and

P
[
|〈∆n − ξ0 + ξ1〉N | > τ

]
= 1 for all N > N0 with

N0 = 1. In Fig. 4, we show PFA and PMD of T-SeqRDT for
α = β = 0.05 and SNR = 0.8. As expected, as the mismatch
grows, PFA grows and crosses the level α if p increases
beyond 20%. The probabilities in the above cases depend on
a multitude of parameters like, SNR, tolerances, levels α and
β and, most importantly, on the underlying signal distribution,
as shown in all the above cases. The above discussion shows
the flexibility as well as the robustness of T-SeqRDT.

VII. CONCLUSION AND PERSPECTIVES

In this work, we proposed an alternative approach to
hypothesis testing. The proposed formulation can be useful
when the signal distributions in play are unknown as it is
completely data dependent rather than model dependent. We
introduced a new non-parametric algorithm, T-SeqRDT, for
sequential hypothesis testing. The work builds on earlier work
where the authors proposed SeqRDT [29], [30]. SeqRDT,
although marginally faster compared to T-SeqRDT, required
more assumptions on the signal along with a buffer to ensure
the desired performance. In contrast, T-SeqRDT guarantees
the required performance and eliminates the need for a buffer
by designing thresholds and truncation window appropriately.
We studied the properties of these thresholds along with the
trade-off between the error probabilities and the stopping time.
Finally, simulations showed that T-SeqRDT, even with little

knowledge of the signal, is able to provide sufficient perfor-
mance guarantees while making a decision faster on average
compared to BlockRDT. Furthermore, with the knowledge of
a few parameters only, instead of the complete distributions,
the proposed framework is capable of carrying out hypothesis
testing. Another critical feature of the proposed approach is
that it gives the algorithm designer freedom to choose these
parameters, thus making it possible to test signals with arbi-
trarily low SNRs. Also, the algorithm is robust to mismatches
in signal distributions as it does not rely on the underlying
signal distributions. In the future, the optimality properties
of the proposed tests remain to be studied. Also, extension
of T-SeqRDT to multi-dimensional signals may be addressed.
Moreover, the simulations indicate that the bounds derived on
PFA and PMD might be loose in some cases, which highlights
the need for novel assumptions and analysis in the future.
Generalization of the model to distributed systems might be
another future endeavor. In conclusion, we believe that the
proposed hypothesis testing approach provides an appealing
alternative to likelihood ratio based sequential frameworks.
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APPENDIX A
Lemma A.1: For any N ∈ N and any η > 0, we have:

P [ |〈Ξ〉N + 〈X〉N − ξ0| > η ] = E
[
Q 1

2

(√
N |〈Ξ〉N − ξ0|, η

√
N
) ]

PROOF: By property of a conditional and taking the indepen-
dence of 〈Ξ〉N and 〈X〉N into account, we have:

P [ |〈Ξ〉N + 〈X〉N − ξ0| 6 η ]

=

∫ ∞
0

P [|ρ+ 〈X〉N | 6 η]P |〈Ξ〉N − ξ0|−1(dρ)
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It follows from X ∼ N(0, 1) that, for all ρ ∈ [0,∞):

P [ |ρ+ 〈X〉N | 6 η ] = Φ
(√

N(η − ρ)
)
− Φ

(
−
√
N(η + ρ)

)
The foregoing and (3) imply the result through the equality:

P [|〈Ξ〉N+〈X〉N−ξ0|6η ]=1−E
[
Q 1

2

(√
N |〈Ξ〉N−ξ0|, η

√
N
)]
.

APPENDIX B

Lemma B.1: For any γ ∈ (0, 1):
(i) lim

ρ→∞

(
λγ(ρ)− ρ

)
= Φ−1(1− γ);

(ii) lim
ρ→∞

λγ(ρ)/ρ = 1;

PROOF: We prove (i) only since it straightforwardly implies
(ii). Pose gγ(ρ) = λγ(ρ) − ρ and θ = Φ−1(1 − γ). Since
Φ(x) + Φ(−x) = 1, (3) and the definition of λγ(τ) induce
that:

Φ(gγ(ρ)) + Φ(gγ(ρ) + 2ρ) = 1 + Φ(θ). (33)

To prove that gγ(ρ) tends to θ when ρ → ∞, we proceed
by contradiction. If gγ(ρ) does not tend to θ when ρ → ∞,
there exists some positive real number ε such that, for all
n ∈ N, there exists some real number ρn > n such that either
gγ(ρn) > θ + ε or gγ(ρn) < θ − ε. Basically, lim

n→∞
ρn =∞.

Consider any η ∈ (0,Φ(θ)− Φ(θ − ε)). Since lim
n→∞

Φ(2ρn +

θ + ε) = 1, there exists N0 ∈ N such that, for all n > N0:
Φ(2ρn + θ + ε) > 1− η. (34)

Similarly, since lim
n→∞

Φ(2ρn+θ−ε) = 1, there exists N1 ∈ N
such that, for all n > N1:

Φ(2ρn + θ − ε) < 1 + η. (35)

Let n be any integer above max(N0, N1). If gγ(ρn) < θ− ε,
we then have Φ(gγ(ρn)) < Φ(θ− ε) and Φ(2ρn + gγ(ρn)) <
Φ(2ρn + θ − ε). Eqs. (33) and (35) then imply that:

1 + Φ(θ) < Φ(θ − ε) + Φ(2ρn + θ − ε) < Φ(θ − ε) + 1 + η,

which is impossible because of our choice for η. Therefore, we
cannot have gγ(ρn) < θ− ε. We cannot have gγ(ρn) > θ+ ε
either because, via (33) and (34), this inequality implies:

1 + Φ(θ) > Φ(θ+ ε) + Φ(2ρn + θ+ ε) > Φ(θ+ ε) + 1− η, (36)

which is contradictory to our choice for η.

Lemma B.2 (Behavior of Q 1
2

in vanishing noise): Consider
τ ∈ |0,∞) and ρ ∈ (0,∞) such that ρ 6= τ .

∀γ ∈ (0, 1), lim
σ→0

Q 1
2

(
ρ/σ, λγ(τ/σ)

)
= 1(τ,∞)(ρ).

PROOF: Let (σn)n∈N be a sequence of positive real val-
ues such that lim

n→∞
σn = 0 and set ρn = τ/σn for

each n ∈ N. According to (2), Q 1
2

(
(ρ/τ)ρn, λγ(ρn)

)
=

P
[∣∣(ρ/τ) +X/ρn

∣∣ > λγ(ρn)/ρn
]

for any X ∼ N(0, 1).
It follows from Lemma B.1 (ii) that |(ρ/τ) + (X/ρn)| −
λγ(ρn)/ρn = (ρ/τ)− 1 (a-s). Therefore, the cdf of

∣∣(ρ/τ) +
(X/ρn)

∣∣ − λγ(ρn)/τn converges weakly to 1[(ρ/τ)−1,∞).
Since ρ 6= τ , this weak convergence implies that
lim
n→∞

P
[∣∣(ρ/τ) +X/ρn

∣∣ > λγ(ρn)/ρn
]

= 1(τ,∞)(ρ). Thence
the result since (σn)n∈N is arbitrary.

Lemma B.3 (Non-Asymptotic behavior of Q 1
2

): Consider
τ ∈ [0,∞), ρ ∈ (0,∞) and γ ∈ (0, 1), the map:

σ∈ [0,∞) 7→Q 1
2

(
ρσ, λγ(τσ)

)
is


constant equal to γ for ρ = τ

decreasing for ρ < τ

increasing for ρ > τ

PROOF: Given ρ and τ , we want to study the behavior of

Q(σ) = Q 1
2

(
ρσ, λγ(τσ)

)
= 1− Φ(r−(σ)) + Φ(−r+(σ)) (37)

with r+ = λγ(τσ) + ρσ and r− = λγ(τσ)− ρσ. For ρ = τ ,
it follows from (4) that Q is constant equal to γ. We thus
have 1 − Φ(λγ(τσ) − ρσ) + Φ(−λγ(τσ) − ρσ) = γ. After
differentiating the two members of the equality above and after
some routine algebra, we obtain:

λ′γ(τσ) =
(

1− e−2τσλγ(τσ)
)
/
(

1 + e−2τσλγ(τσ)
)

(38)

where λ′γ is the first derivative of λγ . We now differentiate Q

defined by (37). Some easy computation yields:

Q
′(σ) =

1√
2π

(
e−r

2
−(σ)/2 − e−r

2
+(σ)/2

)
(
ρ− τλ′γ(τσ)

1 + e−2ρσλγ(τσ)

1− e−2ρσλγ(τσ)

)
By injecting (38) into the equality above, we obtain:

Q
′(σ) =

τ√
2π

(
e−r

2
−(σ)/2 − e−r

2
+(σ)/2

)(ρ
τ
− ∆−(ρ, τ)

∆+(ρ, τ)

)
(39)

with ∆ε(ρ, τ) = (1 + εe−2τσλγ(τσ))/(1 + εe−2ρσλγ(τσ)) and
ε ∈ {−1,+1}. For all σ > 0, the sign of Q′ is therefore that
of (ρ/τ)− (∆−1(ρ, τ)/∆+1(ρ, τ)) We verify easily that:{

ρ < τ ⇔ ∆−(ρ, τ) > 1⇔ ∆+(ρ, τ) < 1

ρ = τ ⇔ ∆−(ρ, τ) = ∆+(ρ, τ)) = 1

Therefore, if ρ < τ , ρ/τ < 1 < ∆−(ρ, τ)/∆+(ρ, τ), which
implies that Q′(σ) 6 0 and, thus, that Q is decreasing. On the
other hand, if ρ > τ , we have ρ/τ > 1 > ∆−(ρ, τ)/∆+(ρ, τ),
so that Q is increasing in this case.

Lemma B.4: Given ρ ∈ (0,∞), the map γ ∈ (0, 1) 7→ λγ(ρ)
is decreasing.
PROOF: It is a straightforward consequence of (4) and the
decreasing nature of Q 1

2
with its second argument given in

Lemma 1.1.

Lemma B.5:
(P1) For any τ ∈ (0,∞) and any η ∈ (τ,∞), the map σ ∈
(0,∞) 7→ Q 1

2

(
τ/σ, η/σ

)
is increasing.

(P2) The map ρ ∈ (0,∞) 7→ Q 1
2

(
ρ, ρ
)

is decreasing, lower-
bounded by 1/2 and lim

ρ→∞
Q 1

2

(
ρ, ρ
)

= 1/2

(P3) For any γ ∈ (0, 1/2), the map ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is
decreasing, lower bounded by 1.
PROOF: Proof of statement (P1): Using (3), define Q(σ) as:

Q(σ) = Q 1
2

(
τ/σ, η/σ

)
= 1− Φ(η/σ − τ/σ) + Φ(−η/σ − τ/σ).

We now differentiate Q and some easy computation yields:

Q
′(σ) = (1/

√
2πσ2)e

− (η−τ)2

2σ2

[
(η − τ) + (η + τ)e

− 2ητ

σ2

]
.

Thence the result, since η ∈ (τ,∞) implies that Q′(σ) > 0.
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Proof of statement (P2): The map ρ ∈ (0,∞) 7→Q 1
2

(
ρ, ρ
)

is decreasing as a consequence of (P1). Given ρ ∈ (0,∞),
Q 1

2
(ρ, ρ) = 1/2+Φ(−2ρ) from (3). Whence the result. Proof

of statement (P3): Let ρ and ρ′ be two positive real numbers
such that 0 < ρ < ρ′. According to (4), we have:

Q 1
2

(
ρ, λγ(ρ)

)
= Q 1

2

(
ρ′, λγ(ρ′)

)
= γ. (40)

Since γ < 1/2 so that 1/2 < 1 − γ, it follows from
(P2) and (40) that: Q 1

2
(ρ, ρ) > 1/2 > Q 1

2
(ρ, λγ(ρ)). The

decreasing behavior of Q 1
2

with its second argument implies
that λγ(ρ) > ρ, so that λγ(ρ)/ρ is lower bounded by 1. We
then derive from (P1) that x ∈ (0,∞) 7→ Q 1

2

(
ρ/x, λγ(ρ)/x

)
is an increasing map. Since ρ/ρ′ < 1, we thus have
Q 1

2

(
ρ, λγ(ρ)

)
> Q 1

2

(
ρ′, ρ′λγ(ρ)/ρ

)
. This inequality and

(40) induce that Q 1
2

(
ρ′, λγ(ρ′)

)
> Q 1

2

(
ρ′, ρ′λγ(ρ)/ρ

)
. The

decreasing nature of Q 1
2
(ρ′, ·) then implies that λγ(ρ′) <

ρ′λγ(ρ)/ρ. Thereby, ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is decreasing
in ρ. Since the map ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is decreasing and
lower bounded by 1, this map has a limit ` > 1 when ρ tends
to ∞. The result then follows as a consequence of Lemma
B.1 (ii).

Lemma B.6: For γ ∈ (1/2, 1) and ρ large enough, the map
ρ∈(0,∞) 7→λγ(ρ)/ρ is increasing, upper bounded by 1.
PROOF: According to statement (i) of Lemma B.1, λγ(ρ) −
ρ = Φ−1(1− γ) + κ(ρ) where κ is such that lim

ρ→∞
κ(ρ) = 0.

Since γ > 1/2, Φ−1(1− γ) < 0. Given η such that 0 < η <
−Φ−1(1−γ), there exists ρ0 such that, for all ρ > ρ0, κ(ρ) 6
η. Therefore, for all ρ > ρ0, λγ(ρ)−ρ 6 Φ−1(1−γ)+η < 0.
We have hence proved that λγ(ρ) < ρ for ρ large enough.

With hγ(ρ) = λγ(ρ)/ρ, Φ(ρ(hγ(ρ)− 1))−Φ(−ρ(hγ(ρ) +
1)) = 1 − γ. By differentiation of this equality with respect
to ρ and since hγ is differentiable via the implicit function
theorem, we find that h′γ(ρ) has the same sign as Υ(ρ) =

(
1−

hγ(ρ)
) (
e2ρλγ(ρ) +

λγ(ρ)+ρ
λγ(ρ)−ρ

)
. For ρ large enough, hγ(ρ) < 1

by the first part of the proof and Lemma B.1 implies that
lim
ρ→∞

Υ(ρ) =∞. Therefore, Υ(ρ) > 0 for ρ large enough and

the proof is complete.
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[2] P. Bühlmann and S. Geer, “Statistics for big data: A perspective,”
Statistics & Probability Letters, vol. 136, pp. 37 – 41, 2018.

[3] V. Chandrasekaran and M. I. Jordan, “Computational and statistical
tradeoffs via convex relaxation,” Proceedings of the National Academy
of Sciences, vol. 110, no. 13, pp. E1181–E1190, 2013.
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