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Abstract—In this paper, we propose a sleep strategy for energy-
efficient 5G Base Stations (BSs) with multiple Sleep Mode (SM)
levels to bring down energy consumption. Such management of
energy savings is coupled with managing the Quality of Service
(QoS) resulting from waking up sleeping BSs. As a result, a
tradeoff exists between energy savings and delay. Unlike prior
work that studies this problem for binary state BS (ON and
OFF), this work focuses on multi-level SM environment, where
the BS can switch to several SM levels. We propose a Q-Learning
algorithm that controls the state of the BS depending on the
geographical location and moving velocity of neighboring users in
order to learn the best policy that maximizes the tradeoff between
energy savings and delay. We evaluate the performance of our
proposed algorithm with an online suboptimal algorithm that we
introduce as well. Results show that the Q-Learning algorithm
performs better with energy savings up to 92% as well as better
delay performance than the heuristic scheme.

Index Terms—Energy consumption, service delay, 5G, sleep
modes, LTE positioning, Q-learning

I. INTRODUCTION

In order to support future traffic requirements (high-speed
mobile data services and better coverage), the next generation
cellular networks are expected to deploy denser mobile access
networks with different Base Stations (BSs) sizes (large, small
and pico). Although this improves the capacity and coverage of
the network, it also brings new challenges such as pushing the
limits of energy consumption and CO2 emissions. In order to
meet these challenges, green cellular networks with improved
energy efficiency have become a key factor in future 5G
cellular networks. Since more than 50% of the network power
is consumed by the Radio Access Network (RAN) and in
particular the BS [1], it has become a high-priority objective
for network management to reduce the energy consumption of
this part of the network. Under these circumstances, BS sleep
strategies are drawing increasing attentions recently [2], [3].

The introduction of BS Sleep Mode (SM) is consistent with
the objective of reducing the energy consumption of the net-
work. For instance in [4], the authors studied the energy saving
problem by switching-off some macro BSs under coverage
constraints. Using tools from stochastic geometry to model the
location of the BSs, the authors achieved an energy efficiency
gain up to 60% compared to when all the BSs are active.
BS sleep strategies also play an important role in renewable
energy equipped BSs to better manage the energy harvested
and the energy stored in the battery [5], [6], [7]. However,

such management of energy saving has to be carefully coupled
with managing the Quality of Service (QoS) to ensure the
user satisfaction since it can bring additional delay. In [8], the
authors studied the tradeoff between energy savings and delay
for different wake-up schemes. Similarly, in [9] this tradeoff
is studied in a renewable energy environment where the BSs
switch to sleep mode in a cooperative manner to further reduce
the grid energy consumption.

In contrast to the above binary sleep scheme models (ON
and OFF), [10] proposed a multi-level sleep model for future
5G BSs. The model categorizes the power consumption for
different types of BSs (e.g., Large, small, signal, data). This
model provides different stages of SM levels. Each stage
is characterized by an activation/deactivation period and a
power consumption. In 4G networks (LTE), implementing these
SM levels is challenging due to backwards compatibility and
reference signaling requirements. However, in 5G networks
the Cell Reference Signals (CRS) are removed [11] making it
possible for a BS to explore these different SM levels paving
the road to the ultimate goal of achieving almost zero power
consumption at zero load. The work in [12], [13] explored the
potential of these SM levels. Using Reinforcement Learning
(RL), the authors achieved an energy saving gain up to 90%
in a low load traffic.

On the other hand, Location Based Services (LBS) are
increasing in both commercial applications and emergency ser-
vices. LBS involves the process of determining the geograph-
ical position of a device, such as a mobile phone. Due to the
increase demands on positioning, the Federal Communications
Commission (FCC) set several location accuracy and reliability
requirements, especially for emergency services [14]. Unlike
previous radio-access standards, LTE incorporates positioning
capabilities to support higher level of application-adaptive
requirements in order to meet the requested positioning QoS.
LTE adopts three independent positioning techniques: Assisted
Global Navigation Satellite Systems (A-GNSS), Enhanced Cell
ID (E-CID) and Observed Time Difference of Arrival (OT-
DOA) [15].

In this paper, we study the joint problem of energy savings
and delay in a multi-level SM environment, where the BS can
switch to several SM levels to save energy while maintaining
the QoS of the users. We propose a methodology that allows
the operator to freely manage the tradeoff between energy



consumption and service delay according to the different re-
quirements of the 5G use cases, such as Ultra-Reliable Low
Latency Communications (URLLC). Different from the above
mentioned work, in this paper we propose a Q-Learning-based
algorithm that controls the state of the BS depending on the
geographical location of the user, and his/her moving velocity
in order to learn the best policy that maximizes the tradeoff
between energy savings and delay. In order to evaluate the per-
formance of the Q-Learning algorithm, we propose a heuristic
policy that maximizes the energy savings while minimizing the
delay of the network. We show that Q-Learning outperforms
the heuristic scheme. To the best of our knowledge, the joint
study of energy-delay and device positioning has not been well
investigated in the literature. The closest work to ours can be
found in [16] where the authors studied the state of small cells
depending on the position of the users. However, the work
focuses on maximizing the energy efficiency and is based on
an offline algorithm using tools from stochastic geometry that
cannot be implemented in an online manner.

This paper is organized as follows. In Section II, we detail
the system model along with the 5G sleep mode model. In
Section III, we start by presenting an overview of the position-
ing techniques for LTE before proposing our Q-Learning and
heuristic algorithms. Finally, we present the simulation results
in Section IV before concluding in Section V.

II. SYSTEM MODEL

We consider a 5G network composed of M gNBs serving k
users. A gNB is a part of the Next Generation Radion Access
Network (NG-RAN) that is part of the 3GPP 5G NextGen
System [17]. Each user requests a real-time service, e.g., VoIP
call. We further assume the BS has active mode and different
SM levels with different activation times. When a user requests
a service from a gNB in SM, it triggers the activation mode
and the user is buffered until the BS wakes up. This wake-up
delay could have an impact on the latency added to the system.
The deeper the SM is, the more time the user will have to wait
until the gNB reactivates.

A. Sleep modes in 5G networks

In [10], GreenTouch Project identified four distinct SM levels
by grouping sub-components with similar transition latency
when being activated or deactivated. The presented model
enables to quantify the power consumption of the BS in each
of the four SMs. These are:
• SM 1: It considers the shortest time unit of one OFDM

symbol (i.e. 71µs) comprising both deactivation and reac-
tivation times. In this mode only the power amplifier and
some processing components are deactivated.

• SM 2: It corresponds to the case of sub-frame or Trans-
mission Time Interval (TTI) (i.e. 1 ms). In this SM, more
components enter the sleep state.

• SM 3: It corresponds to the frame unit of 10 ms. Most of
the components are deactivated in this mode.

• SM 4: This is the deepest sleep level. Its unit corresponds
to the whole radio frame of 1s. It is the standby mode

where the BS is out of operation but retains wake-up
functionality.

Higher energy savings can be achieved when switching BSs
to a deeper SM, since more components will be deactivated.
However, this will be associated with longer transition latency
which may impact the QoS for the users. In Table I, we present
the SM levels characteristics.

Along with SM and users’ dynamics, the BS has to wake
up periodically to send signaling bursts of Synchronization
Signaling (SS) and Physical Broadcast CHannel (PBCH). It has
been agreed in Third Generation Partnership Project (3GPP)
[11] that the transmission periodicity of the SS/PBCH block
can be set to any value among [5, 10, 20, 40, 80, 160 ms].
With these values, SM 4 cannot be used. Hence, we limit our
work to the first three SM levels.

TABLE I: BS Sleep Modes Characteristics[10].

Sleep
level

Deactivation
duration

Activation
duration

Power
consumption

SM 1 35.5 µs 35.5 µs 48%
SM 2 0.5 ms 0.5 ms 13%
SM 3 5 ms 5 ms 9%
SM 4 0.5 s 0.5 s 7.5%

B. Dynamic user model

We consider two cases for users service requests from a BS:
1) Camping in a gNB: in this case, the user is in any

of the three 5G Radio Resource Control (RRC) modes:
connected, idle or inactive [17].

2) Handover arrival: in this case, a user already performing
a service transmission/reception from a BS is moving
towards the coverage of a neighboring BS. The user is
handed over the other BS for service continuation.

In the first case, when a service is being called for the
first time, the delay impact on the user is tolerable since the
transmission has not yet started. However, in the case of a
handover (case 2), the service might be interrupted or degraded
if the BS hosting the user is inactive (i.e., in sleep mode). This
might have a severe impact on the QoS of the transmission.
It is important to note that if the requested service is of type
non real-time (e.g., web browsing), then this delay will have a
less impact on the QoS since non real-time services are delay
tolerant.

In this work, we consider the case of real-time services, and
in particular the handovers of users between BSs. The objective
is to jointly minimize the delay associated with handovers, and
the energy consumption of the network. As shown in Fig. 1,
we consider a user being served by BS A moving towards
BS B with a velocity v (Km/h). Since BS B is not serving
any users, it decides to switch to a specific SM level. This
decision depends on the position of the user from BS B, i.e.,
the closer the user moves towards BS B, the lighter its SM level
becomes. Since positioning with LTE is not always accurate
and is prone to measurement errors, we divide the geographic
region of interest (the region of neighboring sites) into several
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Fig. 1: The position of the user moving towards a neighboring
gNB can be measured by the LTE positioning system.

zones (z1, z2, . . . , zn). Each zone corresponds to a region that
can be detected by the BS. For example, if a user is in zone j
(zj), the BS senses the presence of the user in zj , but it does
not know its exact location. The size of these regions depends
on the accuracy of the positioning method used, i.e., the smaller
the zone size, the more accurate the user position is measured.

III. LOCATION-AWARE SLEEP MODE STRATEGY

A. Positioning methods with LTE

In wireless networks, positioning is very challenging due
to the user mobility and the dynamic nature of both the
environment and radio signals. On the other hand, the FCC
set some stringent requirements on the accuracy of positioning
especially for emergency services [14]. As a result, 3GPP
described an architecture, standards and methods for LTE to
support different positioning techniques that reach a high level
of accuracy as requested by the regulations.

LTE supports three positioning techniques: A-GNSS, E-CID,
and OTDOA.

1) A-GNSS: To overcome the line of sight and low signal
level drawbacks problems of GNSS, the cellular network
assists the GNSS receiver to increase its positioning
operation. A-GNSS works best in outside conditions with
clear view of the sky (line of sight).

2) E-CID: This method is based on Cell of Origin (COO)
that estimates the position of the device in the geograph-
ical area of its serving BS. Since this method is not
accurate enough (linked to the cell size), E-CID performs
measurements on radio signals such as Reference Signal
Received Power (RSRP) and Time Different Of Arrival
(TDOA) to measure the Round Trip Time (RTT) and
Angle-of-Arrival (AoA) for more accuracy. With E-CID,
it is also possible to have information on the direction of
the device.

3) OTDOA: According to the LTE specification [18], this
method relies on the downlink radio signals from mul-
tiple BSs to compute the user position. In [18], LTE
standard specifies Positioning Reference Signal (PRS)
that is dedicated for positioning purposes. By properly
configuring the PRS and with interference management
techniques, the error in position can be significantly im-
proved to 1 meter, however, at the expense of decreasing
the spectral efficiency [15].

Each of the above proposed technique has its advantages and
limitations. To improve positioning in challenging radio envi-
ronment, hybrid positioning using the different above methods
is also supported in Release 10 [19]. In Table II, we summarize
the differences between these methods. For more details on
LTE positioning, the reader is referred to [20].

TABLE II: Comparison of LTE positioning techniques.

Technique Accuracy Limitations

A-GNSS High
(10-15 m) Requires line of sight

E-CID Low
(80-800 m)

Variable accuracy
depending on the

environment

OTDOA

Medium-High
(10-40 m but can

go down to 1 m at
the expense of SE)

Requires synchronized
network and operator

dependency

B. Sleep mode policy: Q-Learning approach

Distributed Q-Learning is an online optimization technique
that aims at finding the best policy of an agent (e.g., BS) via
real-time interactions with the environment. Q-Learning obtains
the optimal policy by maximizing the expected value of the
total reward (Q-value) over all successive episodes.

In Q-learning, an agent m takes an action atm from an action
set A, then moves to a new state st+1

m while receiving a reward
rtm. The Q-value is then updated locally indicating the level of
convenience of selecting action atm when in state stm. The Q-
value is updated as follows:

Q(stm, a
t
m)← Q(stm, a

t
m)+

α[rtm + γmax
a∈A

Q(st+1
m , at+1

m )−Q(stm, a
t
m)] (1)

where α is the learning rate that represents the speed of
convergence, γ ∈ [0, 1] is the discount factor that determines
the current value of the future state costs, and t is the time at
which the action has been taken.

During the learning phase, the agent selects the correspond-
ing action based on the ε-greedy policy, i.e., it selects with
probability 1 − ε the action associated with the maximum Q-
value, and with probability ε selects a random action:

atm =

argmax
a∈A

Q(stm, a
t
m), if y > ε

rand(A), otherwise
m = 1, . . . ,M. (2)

By implementing the ε-greedy policy, the agent would have
explored all possible actions and avoided local minima. For
more details on RL and Q-learning the reader is referred to
[21].

In this work, we define the set of possible actions A the
state of the BS, i.e., active or in sleep mode (SM1, SM2 or
SM3). The BS chooses the appropriate action based on the
geographical zone the user lies in. Thus, we define the state
space and action space as follows:

S = {z1, z2, . . . , zn}

A = {Active,SM1,SM2,SM3}



The number of zones depends on the accuracy of the
positioning method used, and it spans the area of the closest
neighboring BSs.

An episode starts when a user asks for a service, moves
towards a neighboring cell, and finishes when the handover is
complete. During each episode, the neighboring BS that the
user is approaching to, changes its state by taking an action
following Eq. (2). Then, it stores a quality-value linking the
states s ∈ S to the chosen action am ∈ A following Eq. (1).
The optimal policy consists of choosing the best sleep mode
level having the highest Q-value.

The goal is to find the best policy for each state (zone) along
which the user is moving in order to maximize the reward rtm.
We define the reward as the weighted-sum of the energy gain
G and the added delay D, both resulting from the sleep mode
level chosen during an episode.

r = (1− η)G− ηD (3)

where η ∈ [0, 1] is a parameter which controls the trade-off
between energy gain and the delay performance. We note that
in the delay-tolerant services case (e.g., web browsing), η → 0,
thus emphasizing on saving energy. In the other case where
the service is delay-sensitive (e.g., VoIP), η → 1. We note
that the weight parameter (η) is freely chosen by the operator
depending on the 5G use cases.

Algorithm 1 : Q-Learning Algorithm
1: Initialize q(s, a) = 0, ∀s ∈ S and ∀a ∈ A.
2: Set the weight η, and the average user velocity v.
3: procedure Training (Q(s, a))
4: while Learning do
5: Visit state s.
6: Select an action a using ε-greedy rule in (2).
7: Receive a reward r.
8: Observe next state s′.
9: Update the Q-value q(s, a) from (1).

10: end while
11: end procedure

1: procedure Online
2: From Q(s, a), store best action in Q-table ∀s ∈ S and
∀a ∈ A.

3: Run Q-Learning.
4: end procedure

In details, the training phase consists of running the BS
(agent) with different instances of user arrivals in an offline
fashion. After this step is completed, the system goes online.
During this phase, a Q-table stores the best policy using the
trained Q-values of the previous offline step. The algorithm is
described in Algorithm 1.

C. Delay-Sensitive Sleep Mode (DS-SM) algorithm: Heuristic
approach

In contrast to the Q-Learning-based algorithm that includes
an offline training phase with a high degree of system infor-

Base station
(sleep)

User exact position

User estimated position (at the center of the zone)

Exact user distance from neighboring base station

Measured user distance from neighboring base station

Measured user velocity

 j-th geographical zone

Fig. 2: User positioning measurement following DS-SM algo-
rithm.

mation knowledge (e.g., exact user position, d, and velocity,
v), we propose a Delay-Sensitive Sleep Mode (DS-SM) online
algorithm that takes decisions on which sleep mode level to
switch to based on the estimated measured position (d̃) and
velocity (ṽ). We use this algorithm as a benchmark to study
the performance of the Q-Learning algorithm described in the
previous section.

When a user reaches a geographical zone (zj), the estimated
distance from the neighboring cell (d̃) is calculated from the
center of the zone it is located, as shown in Fig. 2. The
estimated velocity on the other hand is related to the actual
velocity by the following expression: ṽ = v+α, where α is the
error in the measurement. The BS takes the decision to switch
to SMi in a geographic zone (zj) if after the sleep duration
TSMi

has elapsed, the user did not enter the neighboring cell,
thus minimizing the delay. If the user enters the neighboring
cell while it is inactive, his/her QoS will degrade due to the
added delay resulting from the waking up time from SMi level.
In order to maximize the energy savings, the algorithm starts
with the deepest sleep mode level allowed (i.e., SM3). The
algorithm is summarized in Algorithm 2.

Algorithm 2 : Delay-Sensitive Sleep Mode (DS-SM) Algo-
rithm

1: Measure user location d̃ and velocity ṽ.
2: Repeat until handover is complete.
3: for i = 3..1 do
4: if TSMi × ṽ < d̃ then
5: Switch the BS to SMi.
6: Update d̃ after TSMi

is elapsed.
7: Set i = 3.
8: else
9: if i = 1 then

10: Switch the BS to active mode until handover is
complete.

11: end if
12: end if
13: end for
14: Output: Energy consumption and network added delay.



IV. SIMULATION RESULTS

A. Simulation parameters

In this section, we demonstrate the performance of the
proposed approach for deciding SM levels for neighboring BSs.
We consider a low traffic period where a BS serves a user with
a continuous real-time service. We focus on the delay as the
performance metric for QoS. The reason is twofold. First, we
consider a low traffic period. Thus, bandwidth is not a problem.
Second, we focus on real-time services, such as VoIP call, that
do not require high throughput, but are delay sensitive. The
user is randomly generated in a geographical zone and moving
towards a neighboring BS with a constant velocity. We further
consider that the inter-site distance is 800m.

In order to point the impact of the different SM levels on
the energy savings, we consider a low load traffic. From [22],
we found the power figures for the different states of the BS.
Then we define the sleep duration times for each SM level
as: TSM1

= 0.5s, TSM2
= 10s and TSM3

= 30s. The reason
behind these values is to minimize the measurements done by
the BS for user positioning. Table III summarizes these values.

TABLE III: Power Consumption of a 2× 2 MIMO BS.

State SM 1 SM 2 SM 3 Idle
Power consumption (W) 52.3 14.3 9.51 109

Sleep duration (TSMi
) (s) 0.5 10 30 -

B. Convergence analysis

First, we analyze the convergence of the proposed Q-
Learning algorithm for η = 0.5. In Fig. 3, we evaluate the
impact of the system positioning accuracy on the performance
of the Q-Learning training phase. It is clear to observe that
as the system accuracy decreases (e.g., from 10m to 80m),
the learning delay decreases as well. For instance, after 50
episodes the Q-Learning algorithm converges for a positioning
accuracy of 80m, whereas, 400 episodes are required for a
sharper accuracy of 10m. This is related to the number of
states that increases with higher accuracy. Thus, requiring more
time to converge. Once the algorithm converges, we stop the
training phase and exploit the obtained policies. Then, we store
the best policy in a look-up table that will be used during the
exploitation phase.

C. Energy consumption and service delay trade-off

In Fig. 4, we present the tradeoff between the average
network energy consumption and added delay for different
values of η and with a positioning accuracy of 10m. In other
words, the difference between two geographical zones is 10m.
We normalize the energy consumption with the case when the
BS is always in idle mode. First, we observe that significant
energy savings up to 92% (corresponding to the normalized
energy consumption of 0.098) can be achieved using the multi-
level sleep modes. The proposed Q-Learning algorithm allows
a wide range of control over the energy consumption. For
instance, with η = 0, the energy consumption is the lowest.
However, this is at the expense of added service delay that is at
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Fig. 4: Performance assessment of the selected policies during
the exploitation phase.

its highest (5ms). This is because for this case, the SM policy is
chosen solely considering energy savings. The resulting delay
corresponds to the waking up time when the BS is in the
deepest sleep state (SM3). For η = 1, we observe that the
energy consumption is higher, but the delay is zero. So when
the user arrives to the neighboring cell, the BS is already active.
It is then important to carefully choose η in order to satisfy the
requirements of the different 5G use cases.

D. Performance evaluation

As a benchmark for comparison, we consider the DS-SM
online scheme presented in Section III-C. This algorithm does
not depend on η. However, its goal is to minimize the service
delay while reducing the energy consumption. Hence, the
corresponding η in the Q-Learning algorithm can be found
for the case where the delay is minimized. Since DS-SM also
takes into account the energy consumption, we look for the
smallest value of η that minimizes the delay. For example in
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Fig. 4, this corresponds to η = 0.9. We note that the value
of η for the designated condition changes for different user
velocity and position accuracy. In the following, we compare
the reward expression in Eq. (3) that takes into account both
energy consumption and service delay. For a fair comparison,
this weighted parameter will be also used when computing the
reward resulting from the DS-SM algorithm the same way it
is computed for the Q-Learning algorithm. We note that this
reward can be regarded as a utility function of η.

From Fig. 5, we show that the Q-Learning algorithm leads
to a higher reward than DS-SM and in particular for low
positioning accuracy. The poor performance in DS-SM results
from choosing the policy based on the inaccurate positioning
techniques (always in the center of the zone), since it does not
include a training phase to tune these decisions to optimize the
reward. For low position accuracy (e.g., 90m), the gap between
the user’s real and measured positions is increased. This results
in a performance degradation for both algorithms. However,
DS-SM adds high delay when R(η) < 0.

V. CONCLUSION

In this work, we investigated the tradeoff between energy
consumption and service delay associated with sleep strategies
in 5G networks. While BS sleeping significantly reduce the
energy consumption of the BS (up to 92%), it is coupled with
QoS degradation by bringing additional delay to the users. We
proposed a methodology for reducing the energy consumption
of the BS while ensuring a good QoS. This methodology also
permits the operator to freely manage the tradeoff between
energy consumption and service delay. This objective was
achieved by switching the neighboring BS to different SM
levels depending on the location of the user in the network, and
his/her moving velocity towards another cell. In order to choose
the best SM policy, we proposed a Q-Learning algorithm.
Compared with the heuristic DS-SM algorithm, the proposed

Q-Learning algorithm outperforms the benchmark scheme in
terms of bringing more energy savings to the network while
maintaining a good QoS, and it allows the operator to manage
the tradeoff factor (η) according to the 5G use cases.

REFERENCES

[1] L. Suarez, L. Nuaymi, and J. Bonnin. An overview and classification of
research approaches in green wireless networks. EURASIP Journal on
Wireless Communications and Networking, 2012.

[2] F. Han, S. Zhao, L. Zhang, and J. Wu. Survey of strategies for switching
off base stations in heterogeneous networks for greener 5G systems. IEEE
Access, 2016.

[3] M. Feng, S. Mao, and Tao. Base station ON-OFF switching in 5G
wireless networks: Approaches and challenges. IEEE Wireless Commu-
nications, Aug. 2017.

[4] J. Peng, P. Hong, and K. Xue. Stochastic analysis of optimal base
station energy saving in cellular networks with sleep mode. IEEE
Communications Letters, Apr. 2014.

[5] A. El-Amine, H. A. H. Hassan, and L. Nuaymi. Analysis of energy and
cost savings in hybrid base stations power configurations. In 2018 IEEE
87th Vehicular Technology Conference (VTC Spring), June 2018.

[6] A. El-Amine, H. A. H. Hassan, and L. Nuaymi. Services kpi-based energy
management strategies for green wireless networks. In 2018 IEEE 29th
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), Sep. 2018.

[7] A. El-Amine, H. A. H. Hassan, and L. Nuaymi. Battery aging-aware
green cellular networks with hybrid energy supplies. In 2018 IEEE 29th
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), Sep. 2018.

[8] X. Guo, Z. Niu, S. Zhou, and P. R. Kumar. Delay-constrained energy-
optimal base station sleeping control. IEEE Journal on Selected Areas
in Communications, May 2016.

[9] V. Chamola, B. Sikdar, and B. Krishnamachari. Delay aware resource
management for grid energy savings in green cellular base stations with
hybrid power supplies. IEEE Transactions on Communications, Mar.
2017.

[10] B. Debaillie, C. Desset, and F. Louagie. A flexible and future-proof
power model for cellular base stations. In 2015 IEEE 81st Vehicular
Technology Conference (VTC Spring), May 2015.

[11] 3GPP TS 38.331. 5G; NR; Radio Resource Control (RRC); Protocol
specification (Rel. 15). 2017.

[12] Fatma Ezzahra Salem et al. Reinforcement learning approach for
advanced sleep modes management in 5G networks. In 2018 IEEE
Vehicular Technology Conference (VTC-Fall), July 2018.

[13] A. El-Amine, M. Iturralde, H. A. H. Hassan, and L. Nuaymi. A dis-
tributed Q-Learning approach for adaptive sleep modes in 5G networks.
In 2019 IEEE Wireless Communications and Networking Conference
(WCNC) (IEEE WCNC 2019), Apr. 2019.

[14] Edwin L. Baker. Wireless enhanced 911 working group: report of
proceedings. honolulu, HI: Legislative reference bureau. Jan 2004.
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