
HAL Id: hal-02140290
https://imt-atlantique.hal.science/hal-02140290v1

Submitted on 27 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Macro Diversity based on Maximum Ratio
Combining in Long Range ALOHA Networks

Qipeng Song, Loutfi Nuaymi, Xavier Lagrange

To cite this version:
Qipeng Song, Loutfi Nuaymi, Xavier Lagrange. Analysis of Macro Diversity based on Maximum Ratio
Combining in Long Range ALOHA Networks. Telecommunication Systems, 2019, �10.1007/s11235-
019-00579-3�. �hal-02140290�

https://imt-atlantique.hal.science/hal-02140290v1
https://hal.archives-ouvertes.fr


Analysis of Macro Diversity based on Maximum Ratio Combining

in Long Range ALOHA Networks *

Qipeng Song Loutfi Nuaymi Xavier Lagrange �

27 mai 2019

Résumé

In low power wide area networks (LPWAN), packets transmitted by a device are not
addressed to a specific base station : any surrounding station can receive them. This opens
the way to several macro diversity schemes. As opposed to independent decoding of packets
received by each base station, we propose using maximum ratio combining (MRC) to improve
system performance. We use stochastic geometry to analyze the packet loss probability when
MRC is implemented for both pure and slotted Aloha and obtain a closed formula when the
path loss exponent γ is 4. However, the formula is valid when all base stations on an infinite
plane participate in the MRC procedure, which gives the most optimistic evaluation. We
developed simulations to get the performance when a finite number of receivers in the MRC
is considered and focus on the case with only 2 receivers. We use a curve-fitting approach
based on the simulation results to get a closed-form formula of the packet loss probability
with 2 receivers. This curve-fitting approach is also applicable to other cases in which more
receivers are leveraged by MRC. The formula is easy to use and accurate when γ ∈ [3.3, 4.5]
and the loss probability is greater than 0.5%. For pure Aloha when advanced transmission
techniques (e.g., interleaving, robust channel coding, etc.) are applied and when the capture
ratio is 3 dB, the system capacity for a 10% packet loss probability is increased by a factor
greater than 1.26 compared to a simple scheme in which each base station independently
decodes packets.

1 Introduction

Low Power Wide Area Network (LPWAN) is regarded as a promising solution to handle
future machine type communication (MTC) traffic. There are several technologies, but most
representative ones (Sigfox and LoRaWAN) are based on Aloha because of its simplicity [1].

The radio access network (RAN) of LPWAN supports macro reception diversity : a packet
transmitted by a given device can be received by several base stations (BS). In the standard
diversity scheme, each BS autonomously and independently decodes the packets and then sends
the decoded packets to the core network. A packet is successfully delivered if at least one BS
decodes the packets. This scheme is referred to as selection-combining-based macro diversity,
simply written as SC macro diversity. It is currently used by Sigfox and LoRaWAN [1]. In [2]
we analyzed the performance of Aloha and showed that the capacity of pure Aloha with macro
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diversity is at least 2 times as much as that in systems in which a device transmits only to the
best base station when the path loss exponent is 4, the shadowing standard deviation is 8 dB
and the target packet loss rate is 10%

1.1 Maximum ratio combining (MRC) in LPWAN

We wonder whether this capacity can be further increased with more advanced combining
techniques. We thus propose to use another network architecture that implements macro recep-
tion diversity, as illustrated in Fig. 1. Its principle is similar to the centralized RAN of cellular
networks : a radio unit (RU) is installed at each site. The RU converts the received radio signal
into a baseband signal, digitizes it and transmits it to the central unit via a fronthaul link. The
central unit is responsible for the demodulation and decoding process. Thus, it is possible to
linearly combine the signals from different RUs and to use maximum ratio combining (MRC)
techniques to decode the packet. A series of MRC function blocks are installed within the central
unit so that several transmitted packets in the radio network can be simultaneously decoded.
This scheme is referred to as MRC macro diversity. With such an architecture, there are three
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Figure 1 – LPWAN with MRC macro diversity

main issues : synchronization of the upstream, determination of the weight of each branch in
the MRC, and load on the fronthaul. In LPWAN, each packet starts with a sequence that has
good auto-correlation properties. This makes synchronization of the upstream and estimation of
the Signal-to-Interference-and-Noise Ratio (SINR) on each branch possible. In some cases, the
bitrate is so low that the symbol time (10 ms in Sigfox) is larger than the propagation delay
and no re-synchronisation is necessary. Due to the low bitrate provided by LPWAN, the capa-
city required on the fronthaul is moderate : for Sigfox, there are 192 channels of 100 Hz, which
gives 192 × 100 × 2 × 16 × 2 ≈ 1.2 Mbit/s for the fronthaul with a 2 over-sampling factor and
16-bit quantization of both the in-phase and quadrature components. It is thus not fundamen-
tally impossible to use MRC macrodiversity in LPWAN, though the cost of development and
deployment is not negligible.
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1.2 Related works and motivations

Due to its simplicity, Aloha has regained the focus of research community in recent years for
wide range of application scenarios. For example, Sarker et al. [3] analyzed the performance of
half-duplex slotted Aloha protocol in terms of throughput, packet rejection probability and self-
stability, in infrastructure-less networks with/without capture and retransmission cut-off scheme.
Ghanbarinejad et al. [4] studied distributed probabilistic access within networks supporting mul-
tipacket reception (MPR) at the physical layer. A throughput-optimal medium access strategy
was proposed and analyzed. The analysis about pure Aloha is not covered in [3, 4]. It is worth
noting that pure Aloha protocol is attractive for LPWAN, because synchronizing all terminals
would require extra payload and energy-consuming transmissions and thus increases the ma-
nufacture cost of terminals. The authors of [5] confirmed the interest of applying pure Aloha
with receiver diversity in wide range sensor networks and proposed an analytic model for packet
interference calculation in asynchronous random access protocols using diversity. The propo-
sed model allows to evaluating the packet loss rate and throughput without time-consuming
simulations. Their proposed model also servers as the ground base for further studies in which
iterative interference cancellation is applied to received frames. However, the spatial distribution
of transmitters and receivers have not been considered.

Combining techniques can be leveraged to improve the performance of the basic standard
Aloha protocol. The research efforts about applying combining techniques to improve the per-
formance of cellular networks can be backed to the years of 1990s. For example, the performance
of SC macro diversity and MRC macro diversity was studied for GSM networks with a remote
antenna system by using hexagonal topology [6], but analytical formulas were not available. A
comprehensive framework for performance of cooperative wireless systems based on MRC has re-
cently been proposed in [7], but the interference from other transmitters has not been considered.
Similarly, the impact of spatial distribution of devices has not been considered. To tackle with
this issue, stochastic geometry [8] was introduced into the research of wireless communication.
It has served as a powerful tool to study the performance of ad-hoc [9] and cellular networks [10]
but can also be used for LPWAN. In this field, SC diversity loss due to interference correlation
in Poisson networks with multi-antenna receivers was studied by [11]. The performance of MRC
in the presence of spatially correlated interference across antennas was characterized in [12].
However, MRC studied in [12] was for multi-antenna arrays deployed on the same BS, which is
not the same case as the one we consider.

To the best of our knowledge, no existing work in the literature gives a performance analysis
of MRC macro diversity when it is applied to random access.

1.3 Contributions and organization

In this paper we evaluate the performance of Aloha with MRC macro diversity in terms of
packet loss probability in relation to the system load. We find a closed-form analytical model
that is easy to use and takes into account the most important propagation parameters. Such
a model is obtained by combining stochastic based analysis and curve fitting techniques. With
the analytical model, an operator can deduce the capacity of a system without and with MRC,
which is defined as the maximum load that provides a given loss rate target. Determining the
gain of MRC is important to check if the investment related to this technology is justified.

The rest of this paper is organized as follows : Sec. 2 introduces the system model and some
existing research efforts in stochastic geometry that serve as the basis of analysis in the following
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section. Sec. 3 details the analysis about the packet loss rate of MRC macro diversity with the
interference and SIR independence assumption. Sec. 4 study the impact of the aforementioned
assumption and discuss the performance of MRC under different receiver settings by simulations.
Sec. 5 proposes a closed-form analytical model for 2 receivers MRC in which the parameters can
be obtained by curve fitting approach. The model is based on the insights obtained from analysis
in Sec. 3. In Sec. 6, we discuss the correctness of our curve fitting based analytical model proposed
in Sec. 5 with respect to simulation results and study the system capacity gain of MRC compared
with SC. Sec. 7 concludes this paper.

2 System model

For any random variable (RV) X, let fX(x), FX(x),LX [s], φX(ω) be its probability density
function (PDF), cumulative distribution function (CDF), Laplace transform (LT) and characte-
ristic function (CF), respectively.

2.1 Distribution of Nodes and Aloha protocols

The system is made of a two-dimension infinite wireless network with only uplink trans-
missions. The access protocol is either pure Aloha (P-Aloha) or slotted Aloha (S-Aloha). All
devices randomly transmit packets of fixed duration Tslot with probability p and may generate
interference to each other. Following the approach of [13], we consider a time-space point process
Ψ = {(Xi, Tk)} where Xi ∈ R denotes the location of the device that sends a packet during time
interval [Tk, Tk + Tslot). We assume that Ψ form a homogeneous Poisson point process (PPP)
both in time and space with intensity pλm. Similarly, the locations of RUs form a homogeneous
PPPs denoted by Φ with intensity λb. We define the normalized load (per RU) as L = pλm/λb.

2.2 Propagation model

The propagation model is based on Okumura-Hata with both shadow and Rayleigh fading.
We assume that MTC devices transmit with unit power level. The received power Pr of a packet
at the RU is given by :

Pr = rg
−γH10σdBχ/10 = rg

−γH exp
(
σdB

ln(10)
10 χ

)
, (1)

where rg refers to the Euclidean distance between the transmitter and the receiver, γ is the
path-loss exponent, H is an exponentially distributed RV with mean 1, which models Rayleigh
fading, and χ is a standard normal variable. This means that term 10σdBχ/10 represents log-
normal shadowing effect. For the sake of simplification, we define σ = σdB ln(10)/10. We assume
that H and χ are both constant during a packet transmission, and mutually independent for
different links.

2.3 Displacement Theorem

To facilitate the analysis, we use the displacement theorem, which is formulated as a lemma
in [14, lemma 1].
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Lemma 1. For a homogeneous PPP Φ ⊂ R2 with spatial density λb, if each point rg ∈ Φ is

transformed to r ∈ R2 such that r = X
− 1
γ rg, where {X} are i.i.d., such that E

[
X

2
γ

]
< +∞, the

new point process Φ
′ ⊂ R2 defined by the transformed points r is also a homogeneous PPP with

density λ
′
b = λbE

[
X

2
γ

]
.

We thus rewrite (1) as follows :

Pr = Hr−γ , with r = exp(−χ/γ)rg, (2)

which indicates that the performance analysis in the initial PPP with shadowing is equivalent

to that in a transformed PPP of intensity λ
′
b = λbE

[
e

2
γ
χ
]

= λbe
2σ2

γ2 without shadowing but with

the modified distance r. In the following, all distances are the modified ones in the transformed
PPP.

2.4 Packet loss model

The analysis is made on a system level. Hence, as considered by a lot of authors, we do not
model the detail of the digital transmission chain. A bit is assumed to be correctly received
if the Signal to Noise and Interference ratio (SINR) is not less than a threshold value. Our
objective is to find the maximum capacity of the system and we thus consider it in high load
conditions : interferences are much larger than the background noise. Thus, the transmission
success probability pbs for a transmit-receiver pair with distance r is defined as follows :

pbs (r) = P
{
Pr
I
≥ θT

}
, (3)

where I refers to the cumulative interference and θT is the minimum SINR to ensure propre
reception.

Using (2) we can re-write (3) as

pbs (r) = P {H ≥ IrγθT } = LI (rγθT ) . (4)

In (4), each BS has its own receiving and decoding chain. In section 3, we consider a global
receiver at the system level as shown in figure 1, which modifies the expression of the success
probabilities but still requires the computation of the cumulative interference. In the following,
we analyse this interference.

2.5 Interference analysis

Consider a device x0 that is transmitting at time t. Without loss of generality, we can assume
the device is located at the origin. The distance to RU yj is ryj . From the propagation model
and displacement theorem, the cumulative interference at RU yj can be written as follows :

Iyj (t) =
∑

xi∈Ψ(t)\{x0}

Hxi,yjr
−γ
xi,yj , (5)

where Hxi,yj is the Rayleigh fading for the link between xi and RU yj , rxi,yj refers to distance
from the interfering device xi to BS yj , Ψ(t) is the spatial PPP formed by devices transmitting
at time t.
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2.5.1 Slotted Aloha

In slotted Aloha, all transmitters are synchronised on a common slot structure. The propa-
gation delay is assumed to be very small compared to the slot duration Tslot. The cumulative
interference is thus constant within each slot (Iyi(t) = Iyi(Tk) if t ∈ [Tk, Tk + Tslot) for any
slot k) and is i.i.d over successive slots. The Laplace transform of cumulative interference with
independent Rayleigh fading and log-normal shadowing was calculated in [15]. We denote it as
I for the sake of simplicity :

LI (s) = exp
{
−pλmπA exp

(
2σ2/γ2

)
s2/γ

}
, (6)

where A = Γ(1− 2
γ )Γ(1 + 2

γ ) and Γ(z) =
∫ +∞

0 xz−1e−xdx.

2.5.2 Pure Aloha with average interference

In pure Aloha, there is no synchronization. Let T be the instant of time at which device
x0 starts the packet transmission. The cumulative interference Iyi(t) in interval [T, T + Tslot] is
variable during the packet transmission. When advanced transmission techniques (e.g., inter-
leaving, robust channel coding, etc.) are used, the probability to decode a packet is a function

of the average interference Imean
yi = 1

Tslot

∫ T+Tslot
T Iyi(t)dt. This configuration is called Pa-Aloha

(pure Aloha with average interference). LoRa uses forward error correction (FEC) with different
coding rates and can be considered as a Pa-Aloha system. Our model applies for one coding
rate. The value of the capture ratio threshold θT is determined according to the chosen coding
rate.

As shown in [13, Sec.2.4], formula (6) can be reused for Imean
yi by letting A = 2γ

γ+2Γ(1 −
2
γ )Γ(1 + 2

γ ).

2.5.3 Pure Aloha with maximum interference

In low-cost systems, there is neither error correction nor interleaving techniques : the pa-
cket is delivered if and only if each bit is correctly received. We denote this case as Pm-
Aloha (pure Aloha with maximum interference). For example, Sigfox only includes an error
detection code and can be regarded to use Pm-Aloha. The SINR should be larger than or
equal to θT during Tslot. The packet success probability is a function of maximum interference
Imax
yi = maxt∈[T,T+Tslot] Iyi(t). According to [13, Sec.2.4], there is no closed-form for Imax, and

the authors use a simulation approach to study pm-Aloha. In [2, Sec.III-B], we propose to ap-
proximate Iyj by an upper bound, which is the sum of interference levels at the start and end
time of the considered packet transmission. With our proposed upper bound, (6) is extended to
cover the case of Pm-Aloha with A = 2 Γ(1− 2/γ) Γ(1 + 2/γ).

6



2.5.4 Unified expression of the cumulative interference for all cases

We can use (6) to calculate LI (s), LImean (s), LImax (s) for S-Aloha, Pa-Aloha and Pm-Aloha,
respectively, with

A =


Γ
(

1− 2
γ

)
Γ
(

1 + 2
γ

)
, for S-Aloha

2γ
γ+2Γ

(
1− 2

γ

)
Γ
(

1 + 2
γ

)
, for Pa-Aloha

2Γ
(

1− 2
γ

)
Γ
(

1 + 2
γ

)
, for Pm-Aloha

(7)

3 Packet loss probability with the interference and SIR inde-
pendence assumption

3.1 General formula of the packet loss probability

Let θyj be the received signal-to-interference ratio (SIR) at yj and εyj = Hyj/Iyj . The SIR
θyj at RU yj is :

θyj = Hyjr
−γ
yj /Iyj = εyjr

−γ
yj . (8)

As proved in section 14.4.1 of [16], the received SIR Θ with MRC is :

Θ =
∑
yj∈Φb

θyj =
∑
yj∈Φb

εyjr
−γ
yj . (9)

Let Pf,mrc be the packet loss probability with MRC, which is our main quality indicator.
Retransmission is not considered in our work. Thus, a packet is lost if and only if Θ is less than
a threshold θT . Hence,

Pf,mrc = P {Θ < θT } = FΘ(θT ). (10)

This probability is numerically derived from its corresponding CF φΘ (ω), which itself can be
obtained from LΘ (s).

3.2 Characteristic function of the packet loss probability

By definition, LΘ (s) = E
[
e−sΘ

]
and using (9), we get :

LΘ (s) = E

exp(−s
∑
yj∈Φb

εyjr
−γ
yj )

 . (11)

RV εyj = Hyj/Iyj are identically distributed but mutually dependent, because the cumulative
interference at two different RU are mutually dependent : when a device is transmitting, it
generates some non-negligible interference on RU that are not very far. However, it is still
rational to assume that the interference received by different RU are mutually independent,
because the interference correlation coefficient is shown to be close to 0 if locations of two RU
are different with path loss model r−γ [15, Sec.3.8.1, lemma 3.5]. It is worth indicating that
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packet loss rate obtained under independent interference hypothesis is lower than that obtained
with correlated interferences. More discussion is given in Sec. 4. We thus have :

LΘ (s) = E

 ∏
yj∈Φb

Eεyj
[
exp(−sεyjr−γyj )

] . (12)

Applying Probability Generating FunctionaL (PGFL) of PPP Φb to (12) , which states for
some function f(x) that E

[∏
x∈Φ f(x)

]
= exp(−λ(

∫
R2(1− f(x))dx)), and changing the order of

integration and expectation operator, we have :

LΘ (s) = exp

{
−
∫ +∞

0
Eε
[
1− exp(−sεr−γ)

]
2πλ

′
brdr

}

=exp

−Eε
∫ +∞

0

(
1−exp(−sεr−γ)

)
2πλ

′
brdr︸ ︷︷ ︸

D


 . (13)

Let us focus on integral D :

D
(a)
= πλ

′
b

∫ +∞

0
(1− exp(−x)) d

(
−x−

2
γ (sε)

2
γ

)
(b)
=πλ

′
b

∫ +∞

0
exp(−x)x

− 2
γ (sε)

2
γ dx

= πλ
′
b(sε)

2
γ Γ(1−2

γ
), (14)

where step (a) is obtained via a change of variable x = sεr−γ , step (b) is achieved via integration
by parts.

Combining (13) and (14), LΘ (s) is finally simplified as :

LΘ (s) = exp(−λ′
bπE

[
ε
2
γ

]
Γ(1− 2

γ
)s

2
γ )

(a)
= exp(−λ′

bC E
[
I
− 2
γ

]
s

2
γ ), (15)

where step (a) is obtained by E
[
ε
2
γ

]
= Γ(1+ 2

γ )E
[
I
− 2
γ

]
and constant C = πΓ(1−γ/2)Γ(1+γ/2).

Computing E
[
I
− 2
γ

]
in (15) is a fractional moment calculation problem. It is known that

nth-order (i.e. any positive integer order) moment of random variable X can be obtained from
its LT :

E [Xn] = (−1)−nL(n)
X (s) |s=0, (16)

if and only if L(n)
X (s) |s=0 exists. This conclusion has been extended to real number domain and

is expressed as follows [17] :

E [Xa] = (−1)−a sD
a
∞ [LX(s)] |s=0, (17)

where a is a real number and sD
a
∞ [LX(s)] refers to a fractional derivative if a is positive,

otherwise a fractional integral. Any fractional moment of LT can be obtained with (17) if and
only if sD

a
∞ [LX(s)] exists when s = 0.
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To calculate E
[
I
− 2
γ

]
, the fractional integral on LX [s] should be considered. Since LT is only

defined on the positive axis, its fractional integral is dfined as follows [17] :

sD
a
∞ [LX(s)] =

(−1)a

Γ(−a)

∫ +∞

s
(u− s)−a−1LX(u)du, (18)

From (17) and (18), we have :

E [Xa] = (−1)−asD
a
∞ [LX(s)] |s=0 =

1

Γ(−a)

∫ +∞

0
u−a−1LX(u)du (19)

Substituting X = I, a = −2/γ and (6) into (19), we have :

E
[
I
− 2
γ

]
=

1

Γ(2/γ)

∫ +∞

0
u2/γ−1 exp

{
−pλmπA exp

(
2σ2/γ2

)
u2/γ

}
du (20)

After some elementary steps, we get :

E
[
I
− 2
γ

]
=
(
Γ(1 + 2/γ)pλmπA exp

(
2σ2/γ2

))−1
(21)

With (15), (21) and the expression of λ
′
b, the closed-form expression of LΘ (s) is :

LΘ (s) = exp(−Γ (1− 2/γ) (AL)−1 s
2
γ ), (22)

where L = pλm/λb is the normalized load per RU.

Using φΘ(ω)=LΘ (s) with s=−iω (where i2 = −1), we get :

φΘ(ω)= exp(−Γ (1− 2/γ) (AL)−1 e−iπ/γω
2
γ ) (23)

We observe that the packet loss probability of MRC depends on normalized load, path loss
exponent and SIR threshold, but has nothing to do with shadowing effect.

A numerical technique is presented in [18, 19] to calculate FΘ (θ) from φΘ(ω). Its key idea is
to calculate the Fourier transform of e−ηθFΘ (x) where e−ηθ is a damping function with η > 0.∫ +∞

−∞
eiωθe−ηθFΘ (θ) dx =

1

η − iω
φΘ (ω + iη) (24)

Applying Fourier inversion for (24), we get :

FΘ (θ) =
eηθ

π
<
{∫ +∞

0

e−iωθ

η − iω
φΘ (ω + iη) dω

}
, (25)

which allows us to numerically calculate Pf,mrc by combining (10) and (23).

3.3 Packet loss probability for γ = 4

The combination of (10), (23) and (25) establishes a numerical framework allowing nume-
rically calculating the loss probability. In this section, we concentrate on a special case where
γ = 4, because this is a case (and to the best of our knowledge, the only case) in which the
closed-form expression of loss probability is available.

9



It is known that an RV X following Levy distribution can be characterized by two parame-
ters : location parameter U and scale parameter V . If U = 0, its CDF FX(x) and LT LX(s) are
respectively :

FX(x) = 1− erf(

√
V

2x
), (26)

LX(s) = exp(−
√

2V s), (27)

When γ = 4, (22) can be written as :

LΘ (s) = exp(−
√
π (AL)−1 s

1
2 ). (28)

By comparing (27) and (28), we observe that RV Θ follows a Levy distribution with U = 0 and
V = π/(2 A2 L2). We obtain the closed-form expression of Pf,mrc :

Pf,mrc = 1− erf

( √
π

2A
√
θT L

)
, (29)

where A is given in (7). Note that for Pm-Aloha, (29) gives a close upper bound of the loss
probability.

4 Preliminary study based on simulations

4.1 Study of SIR independence hypothesis
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Figure 2 – Network packet loss rate with respect to L for γ = 3.3, 4.0, 4.5 (from left to right)

In this section, we study the impact of SIR independence hypothesis by simulation. We
simulated different types of Aloha on an area of 100 × 100 km2 and 500 RUs. Such a huge
simulation area help eliminate the boundary effect due to a finite area. With 500 RUs on average
in the considered area ensures that macro diversity is visible. The shadowing effect is σdB = 8
dB and capture ratio is θT = 3 dB. The number of devices is selected such that the normalized
load L varies from 0.1 to 0.5. We first considered a realistic simulation, denoted by R-SIM, in
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which the interference on each RU is computed without any independence assumption. We also
developed a model-based simulation, denoted by M-SIM. In M-SIM, we consider independent
interference for different RUs, which is compliant with our numerical framework.

Fig. 2 gives the numerical results (i.e. ANA in the legend) and the simulation results for
γ = 3.3, 4.0, 4.5 and for packet loss rates in [0.01, 0.2], which is the interval of interest. The 95%
confidence intervals are shown for each simulation but are so small that they are not visible.
M-SIM results fit well with those given by the numerical framework for S-Aloha and Pa-Aloha.
The formula proposed for Pm-Aloha (i.e. (7)) is an upper bound. This explains that the loss
given by the analysis is always larger than the one given by M-SIM.

When γ = 3.3 (refer to Fig. 2(a)), we observe a gap between R-SIM and M-SIM that is
progressively reduced when the normalized load L increases. When L is greater that 0.3, the
disparity between two types of simulations, for Pa-Aloha, is negligible. The reason is that heavy
load and the randomness due to the lack of synchronization both make the SIR independence
hypothesis reasonable. For S-Aloha, the gap between R-SIM and M-SIM is negligible when
L > 0.4. This is because with S-Aloha, the SIR hypothesis is rational only in a high regime of
load.

Comparing the three subfigures in Fig. 2, we observe that at the same load level, the difference
between R-SIM and M-SIM are larger when the path loss exponent γ increases. Thus, path
loss exponent also has impact for interference-independence assumption. The larger the path
loss exponent, the more important the effect of the interference correlation. This effect is also
observed in [11].

For Pm-Aloha, in all cases, the simulation results are higher than that from numerical fra-
mework, because the analysis (i.e. (7)) is based on the upper bound approximation. Such an
approximation is proposed by [2] to analyze SC macro diversity. The summation of SIR in MRC
(i.e. Eq. (9)) makes the cumulated error brought by upper bound higher than that of SC macro
diversity (refer to Fig.2 in [2]). However, we observe that the gap between analytical framework
and R-SIM is negligible when γ ∈ [4.0, 4.5]. The reason is that for such an interval, the interfe-
rence correlation leads to the increase of the packet loss rate. This degradation compensates the
error due to the use of an upper bound.

4.2 Study of Involved RUs in MRC

Recall that in the analysis detailed in Sec. 3, MRC mechanism benefits from the involvement
of all RUs deployed on the considered infinite plane. This is actually impossible in real life. We
would like to study the network packet loss probability of LPWAN network supporting MRC
under different number of involved RUs. The simulation results are shown in Fig. 4.2. The capture
ratio is 3 dB, path loss exponent γ = 3.3. We consider the following scenario according to the
number of RUs that are leveraged by MRC : 1) only the best RU ; 2) the two best RUs ; 3) the
six best RUs ; 4) the twenty best RUs ; 5) all the RUs on the infinite plane. It is worth indicating
that the first scenario with only the best RU involved into MRC mechanism is equivalent to the
selection combination technique.

From Fig. 4.2, we observe that MRC has significant performance improvement if more than
one RUs are leveraged by MRC. More participating RUs, more higher the performance gain.
The case in which all the deployed RUs participate MRC procedure gives the upper bound.
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Figure 3 – Network packet loss rate under different radio units settings, γ = 3.3

5 Curve fitting with respect to simulation results

5.1 Presentation of the approach

From previous section, what we can infer are as follows :

— The interference independence hypothesis has a limited applicable scope. It depends on
the normalized load, path loss exponent and Aloha type. Usually, when the normalized
load is at a moderate level, such a hypothesis does not hold and an obvious gap between
R-SIM and M-SIM can be observed.

— To have an accuracy analysis, the intuitive solution is to analyze with dependent interfe-
rence. However, it will be very difficult, even impossible, to obtain an analytical framework
for packet loss rate.

— A closed-form expression for packet loss rate (e.g. equation (29)) when γ = 4.0 and the
evolution trends of M-SIM and R-SIM are similar although the gap between them is not
neglected.

We thus assume that packet loss for γ > 2.0 can be approximated by an expression similar
to (29). The related parameters can be determined by curve fitting with respect to simulation
results. This is a compromise solution that maintains the accuracy of analytical model and
reduces the analysis complexity.

From the Laplace analysis (which is valid for any value of γ > 2) and (22), we can deduce
the following insights useful for curve fitting :

— the packet loss probability is a function of normalized load L with path-loss exponent γ
and SINR threshold θT as parameters ;

— the shadowing effect actually has no impact on the average packet loss rate ;

— the impact of SINR threshold to packet loss probability is in form of θ
2
γ .
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— the denominator of the input of error function is a linear function of L (refer to (29) ).

Thus, the packet loss rate for all values of γ > 2 are assumed to have the following expression :

Pf,mrc(L) = 1− erf

 1[
K(γ)θ

2
γ

T L+B(γ)

]
 , (30)

where K(γ) and B(γ) are parameters to be determined by curve fitting with respect to R-SIM
simulation results.

A linear form about L is obtained from (30) :[
erfc−1(Pf,mrc(L))

]−1
= K(γ)θ

2
γ

T L+B(γ), (31)

where erfc−1 (·) refers to the inverse function of the complementary error function.

5.2 case study : MRC with 2 best RUs

We take the case in which only the 2 RUs that receive the signal with the best SNRs are
involved by MRC mechanism. The objective is to evaluate the gain provided by MRC in the
simplest case. This study can also be seen as an example, to illustrate how parameter K and B
are obtained by curve fitting. This methodology is applicable for other cases, with 3, 6, 20 RUs,
or even all the RUs in the infinite plane (i.e. the ideal case).

From (31), for each γ, linear regression can applied to obtain the parameter K and B. By
varying γ from [3.3, 4.5], a series of K,B are obtained for all type of Aloha. Fig. 5.2 shows
the comparison of packet loss rate respectively obtained from realistic simulation (R-SIM) and
curve-fitting-based model. The leftmost, central and rightmost columns respectively corresponds
to S-Aloha, Pa-Aloha and Pm-Aloha. From this figure, we observe that for each γ, the packet
loss can be well predicted by Eq. (30).

The metric to measure the accuracy of our proposed curve-fitting-based analytical model is
mean absolute percentage error (MAPE), whose mathematical definition is as follows :

MAPE =
100%

N

N∑
i=1

| Ŷi − Yi
Yi

| (32)

where N refers to the number of different normalized loads used in simulation, Ŷi is packet loss
rate obtained from fitted model corresponding to a certain level of load, Yi is the result from
R-SIM simulation results. Different from other metrics such MSE (mean square error), MAPE
is more suitable to our case, where the predicted value is in interval [0, 1].

Note that K and B they are also functions of γ. After plotting the evolution of K,B with
respect to γ, we observe that polynomial regression of 3-order is sufficient to find the searched
functions. The values of K and B under different γ are obtained and shown in Tab. 1. The value
of MAPE is always smaller than 10%, which confirms the validity of the approach. The fitted
function for K is as follows :

K =


−0.0706γ3 + 1.067γ2 − 5.429γ + 10.95, for slotted Aloha (33a)

−0.0613γ3 + 0.957γ2 − 4.945γ + 10.76, for pa-Aloha (33b)

−0.0673γ3 + 1.076γ2 − 5.806γ + 13.475 for pm-Aloha (33c)
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Figure 4 – Comparison between predicted value and realistic simulation results

Table 1 – Parameters obtained from curve fitting on the Pa-Aloha simulation results
γ K B MAPE(%)

3.3 2.651 0.2497 8.92

3.5 2.5291 0.2578 8.97

4.0 2.4242 0.2836 9.39

4.5 2.2792 0.3109 5.52
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Table 2 – Error brought by the analytical formula (La and Ls refer to the load for a given
target loss from the formula and R-SIM simulation, respectively)

γ
0.5% target loss 1% target loss 10% target loss

La Ls Error in % La Ls Error in % La Ls Error in %

3.3 0.0645 0.0608 6.0 0.0757 0.0713 6.2 0.152 0.145 4.8
4.0 0.0630 0.0645 2.4 0.0766 0.0791 3.2 0.169 0.164 3.0
4.5 0.0628 0.0669 6.12 0.0773 0.080 3.4 0.177 0.168 5.3

Similarily the fitted function for B is as follows :

B =


−0.012γ3 − 0.18γ2 + 0.905γ − 1.208, for slotted Aloha (34a)

0.0088γ3 − 0.139γ2 + 0.731γ − 0.974, for pa-Aloha (34b)

0.0061γ3 − 0.106γ2 + 0.613γ − 0.833 for pm-Aloha (34c)

Thus, the closed-form expression of packet loss rate for all γ > 2.0, based on curve fitting
techniques, is formed by (30), (33) and (34).

6 Performance analysis with the 2 best receivers

In this section, the effectiveness of proposed analytical model, based on curve fitting tech-
nique, is studied. The comparison between packet loss obtained from curve-fitting-based analy-
tical model and R-SIM simulation results are shown in Fig. 3, Fig. 4 and Fig. 5 for S-Aloha,
Pa-Aloha and Pm-Aloha, respectively.

In all the following figures, for two types of Aloha, we observe that the disparity between
R-SIM simulation results and analytical model can be neglected, especially with the increase
of the normalized load. To better illustrate the accuracy of the curve-fitting-based analytical
model, we take Pa-Aloha as an example. Given a target packet loss rate and path loss exponent,
the corresponding maximum supported normalized load is calculated. Three target packet loss
rates, 0.5%, 1%, 10%, are considered. The results are resumed into Tab. 2 : we observe that for
all cases the errors between simulation results and analytical results are less than 10%.

Now, we study the system capacity gain brought by MRC compared with SC. The system
capacity is defined as the maximum load corresponding to a packet loss probability of 10%.
The system capacities of SC-based LPWAN system are obtained from realistic simulation. For
MRC-based LPWAN system, the analytical model formed by (30), (32) and (33) can be used.
We consider Pa-Aloha because this is most frequent scheme. As shown in Tab. 3, the system
capacity is at least multiplied by a factor 1.26 when 2-best-RUs MRC is used instead of SC. The
factor reaches 1.39 when γ = 3.3, which confirms the interest of MRC macro diversity. Note that
the analysis considers only 2 RUs in the MRC process. A larger capacity gain can be achieved
if more RUs are involved into MRC.

7 Conclusion

In this paper, we proposed an analytical framework to evaluate the network packet loss rate
of LPWAN systems applying MRC macro diversity. We obtained a closed-form expression based
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Figure 5 – Approximate closed-formula vs simulation for Pa-Aloha

Table 3 – Maximum normalized load of Pa-Aloha with SC and MRC macro diversity for 10%
loss probability

γ
θdB = 3 dB θdB = 6 dB

SC MRC Gain SC MRC Gain

3.3 0.109 0.152 ×1.39 0.071 0.10 ×1.40

4.0 0.127 0.169 ×1.33 0.088 0.12 ×1.36

4.5 0.140 0.177 ×1.26 0.103 0.13 ×1.26
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on curve fitting technique for path loss exponent in range [3.3, 4.5]. Our analysis covers both
pure and slotted ALOHA. Through simulation, we confirmed the effectiveness of our proposed
framework. We showed that MRC macro diversity can multiply the capacity by a factor greater
than 1.26 if MRC leverages 2 nearest RUs. The capacity gain will be much higher if more RUs
are involved.

Conflict of Interest Statement

The authors declare that they have no conflict of interest

Références

[1] Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara. Low power wide area networks :
An overview. IEEE Communications Surveys & Tutorials, 19(2) :855–873, 2017.

[2] Qipeng Song, Xavier Lagrange, and Loutfi Nuaymi. Evaluation of Macro Diversity Gain in
Long Range ALOHA Networks. IEEE Communications Letters, 2017.

[3] Jahangir H Sarker and Hussein T Mouftah. Self-stability of slotted aloha by limiting the
number of retransmission trials in infrastructure-less wireless networks. Telecommunication
Systems, 52(2) :435–444, 2013.

[4] Majid Ghanbarinejad and Christian Schlegel. Distributed probabilistic medium access with
multipacket reception and markovian traffic. Telecommunication Systems, 56(2) :311–321,
2014.

[5] Alessio Meloni and Maurizio Murroni. Interference calculation in asynchronous random
access protocols using diversity. Telecommunication Systems, 63(1) :45–53, 2016.

[6] Peter Jung, Bernd Steiner, and Bernd Stilling. Exploitation of intracell macrodiversity in
mobile radio systems by deployment of remote antennas. In Spread Spectrum Techniques and
Applications Proceedings, 1996., IEEE 4th International Symposium on, volume 1, pages
302–307. IEEE, 1996.

[7] Marco Di Renzo, Fabio Graziosi, and Fortunato Santucci. A unified framework for per-
formance analysis of CSI-assisted cooperative communications over fading channels. IEEE
Transactions on Communications, 57(9) :2551–2557, 2009.

[8] Hesham ElSawy, Ekram Hossain, and Martin Haenggi. Stochastic geometry for modeling,
analysis, and design of multi-tier and cognitive cellular wireless networks : A survey. IEEE
Communications Surveys & Tutorials, 15(3) :996–1019, 2013.

[9] Elvino S. Sousa and John A. Silvester. Optimum transmission ranges in a direct-sequence
spread-spectrum multihop packet radio network. IEEE journal on selected areas in com-
munications, 8(5) :762–771, 1990.

[10] Martin Haenggi. User point processes in cellular networks. IEEE Wireless Communications
Letters, 6(2) :258–261, 2017.

17



[11] Martin Haenggi. Diversity loss due to interference correlation. IEEE Communications
Letters, 16(10) :1600–1603, 2012.

[12] Ralph Tanbourgi, Harpreet S Dhillon, Jeffrey G Andrews, and Friedrich K Jondral. Effect
of spatial interference correlation on the performance of maximum ratio combining. IEEE
Transactions on Wireless Communications, 13(6) :3307–3316, 2014.

[13] Bar lomiej B laszczyszyn and Paul Mühlethaler. Interference and SINR coverage in spatial
non-slotted Aloha networks. Annals of telecommunications, 70(7-8) :345–358, 2015.

[14] Harpreet S Dhillon and Jeffrey G Andrews. Downlink rate distribution in heterogeneous
cellular networks under generalized cell selection. IEEE Wireless Communications Letters,
3(1) :42–45, 2014.

[15] Martin Haenggi and Radha Krishna Ganti. Interference in large wireless networks. Now
Publishers Inc, 2009.

[16] John G. Proakis. Digital Communications 5th Edition. McGraw Hill, 2007.

[17] Stephen J Wolfe. On moments of probability distribution functions. In Fractional Calculus
and Its Applications, pages 306–316. Springer, 1975.

[18] Ali Hirsa. Computational methods in finance. CRC Press, 2012.

[19] Qipeng Song, Xavier Lagrange, and Loutfi Nuaymi. An analytical model for S-ALOHA
performance evaluation in M2M networks. In 2017 IEEE International Conference on
Communications (ICC), pages 1–7. IEEE, 2017.

18


