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Abstract—In this paper, we investigate the impact of antenna
elevation, resource capacity and user scheduling on the perfor-
mance of ultra-dense networks (UDNs). Using tools from stochas-
tic geometry (SG), we extend a recently introduced definition
of coverage probability by inducing a generic thinning that
can capture BSs with available resource capacity to transmit
users data. Analytical results are then derived for the coverage
probability and the average achievable rate, where we obtain
closed-form expressions allowing to assess UDNs performance
in a more tractable and meaningful fashion compared to the
conventional definition of coverage probability. Moreover, we
show that the average rate under the new definition requires
only the computation of a two-fold numerical integral rather
than a four-fold integral in the previous works, which is expected
to significantly reduce computational complexity. Comparing
the obtained results, we find that the impact of parameters,
such as resource capacity, BS transmit power as well as the
implementation complexity of scheduling schemes are irrelevant
as network density increases, which suggests new insights into
the role of these parameters in UDNs.

I. INTRODUCTION

With the rapidly growing interest in smart-phones and

their data-hungry applications, modern cellular networks are

increasingly characterized by opportunistic deployment to

address end-user specific demands and improve quality of

service (QoS) perceptions [1]. Particularly, UDNs based on

huge deployment of small-cell BSs are envisioned as the

workhorse of capacity improvement in fifth generation (5G)

networks [2].

Accordingly, the analysis and modeling of UDNs require

generally powerful mathematical tools and new concepts in

order to capture key system parameters that impact the equi-

librium of the utility function incorporating users QoS and

operators investment. The key challenge in fact, is to develop

sufficiently tractable models inducing physically meaningful

performance trends. Recently, stochastic geometry (SG) has

shown success as a powerful mathematical tool allowing to

derive spatial averages of network performance metrics (e.g.

coverage probability, average rate,. . . ), and thereby prevents

the use of time-consuming computer simulations [3], [4].

Besides, almost all previous studies based on SG models

considered the conventional received signal-to-interference-
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plus-noise ratio (SINR) as the key driver for user’s quality of

experience (QoE). Hence, the complementary cumulative dis-

tribution function (CCDF) of SINR, i.e., coverage probability,

is in general expressed under an improper integral [3]–[6], re-

quiring efficient and arduous numerical integration [8], except

for some special cases where closed-form expressions can be

obtained (e.g. path-loss exponent equals four, the interference-

limited regime,. . . ). Furthermore, almost all SG based studies

derive the ergodic rate by integrating the coverage probability

over the positive real axis, which resorts to a four-fold integral

[3, Appendix C], except the Hamdi’s lemma based approach

presented in [7], which requires only the computation of a two-

fold numerical integral but needs however the use of Meijer

G-function [7, Corollary 1].

To overcome the aforementioned shortcomings, authors of

[8], [9] introduced a new definition of coverage probability,

where the typical user is in coverage when, i) the user receives

a sufficiently good signal strength without any over-provision

of the BS transmit power, i.e., the short-term average Signal-

to-Noise-Ratio (SNR) is greater than a certain threshold, ii)

the user receives a good signal quality, i.e., the Signal-to-

Interference-Ratio (SIR) is greater than another threshold.

Interestingly, the new framework captures more system-level

parameters than the available definition, and enables deriv-

ing general closed-form expressions of coverage probability,

which is not allowed by the conventional definition.

However, in realistic networks, the user may experience

voice/data drops due to congestion at peak demand, regardless

of the received signal strength or quality. The critical missing

piece in the framework introduced in [8], [9], is then a measure

of physical and logical resource capacity on active BSs (e.g.,

channel resource elements grouped into physical resource

blocks (PRB) in 5G New Radio (NR), or the common power

channel resource like the P-CPICH channels in UMTS,. . . ).

In this paper, we extend the framework of [8], [9] by

tractably capturing BS resource capacity. In this context, we

introduce into analysis a generic thinning that can reflect BSs

with available capacity. Next, we address for the first time the

analysis of UDNs under the new revisited framework of [8],

[9]. Typically, we incorporate into analysis three representative

scheduling schemes in terms of fairness and implementation

complexity. The rationale is to compare their performance in



UDNs. We also incorporate the BS height since i) its effect is

critical in UDNs [10] and ii) to avoid the occurrence of the

less-realistic SINR invariance property [3], [6].

The following notation will be used throughout the paper.

P {.} and E {.} stand for the probability and expectation

measure. LX(s) = E
{
e−sX

}
is the Laplace transform of

a random variable X evaluated at s. We define for any

reals m,x ∈ R, Fm(x) = 2F1(1,−m;1 − m;−x) where

2F1(., .; .; z) is the Gauss hypergeometric function, and ψ−1(.)
is the inverse function of a function ψ(.).

II. SYSTEM MODEL

A. Cellular Network and Channel Model

We consider a downlink cellular network, in which the

location of BSs and users is modeled with two independent

homogeneous PPPs Ψb and Ψu in the plane R2, with respective

densities λb and λu measured in [BSs/m2] and [Users/m2],

respectively. Without loss of generality, and as permitted by

the Slivnyak-Mecke’s theorem [4, vol. 1, Theorem 1.4.5], a

typical user at the origin O, is taken as the object of the

analysis.

We assume that all BSs transmit with the same transmit

power Ptx, and that multipath fading of the link between a

BS located at xk ∈ Ψb and the typical user located at O,

is incorporated by a positive and i.i.d. exponential fading gk
with unit mean, while rk , ‖xk‖ denotes the horizontal

distance between xk and the typical user such as the subscript

0 and i are used to identify the desired and interfering links,

respectively. The radio channel attenuation is dependent on a

path-loss function ℓ(.), such as the received power at O from

a BS xk is Prx = Ptxgk/ℓ(xk). The path-loss function ℓ(.) is

assumed to: i) accept an inverse function ℓ−1(.), ii) validate the

dependency condition of ℓ(
√
xy)/ℓ(

√
x) on x ∈ R for y ≥ 1

[6, Lemma 1], assumed to avoid the scenario of the SINR

invariance property, and iii) ℓ(.) is a monotonically increasing

function with distance from the origin, to ensure that the

received power cannot exceed the transmitted one. σ2 denote

the variance of the additive noise such as SNR = Ptx/σ
2.

B. Cell Association Model

We assume the association criterion of the highest average

received power, where the typical user is assigned to a unique

BS {x0} from Ψb such as

x0 = arg max
xk∈Ψb

{Ptx/ℓ(rk)} (a)
= arg min

xk∈Ψb

{rk} . (1)

where (a) follows from the property (iii) of ℓ(.). The plane

R
2 seen from BSs is then divided into cells corresponding to

the spatially nearest points to each BS than to any other BSs

of Ψb, namely the Poisson Voronoi tessellation. We denote

by C0, the Voronoi cell containing the typical user and the

intended BS x0, formally named, the Crofton cell [8].

In realistic networks, x0 needs to be endowed with available

resource capacity to carry the typical user’s data. Actually,

insufficient capacity is likely due to a bottleneck at the

backhaul level and/or the scarcity of traffic channels as a result

of high data demand or as a result of maintenance failures

(e.g., some channel physical modules are down). At a given

time, we denote by pΘ the probability that a given BS xk
has sufficient resource capacity to carry the data of a user

requesting connection to xk. By construction, pΘ should differ

from the probability p∆ of having no user associated to xk,

since the event of the former covers generally that of the latter,

and given pΘ also depends on a parameter η, correlated to the

average inherent resource capacity over all BSs when no user

is served. However, both pΘ and p∆ need to increase with

BS density and shrink with users density. For tractability, we

assume that the process Θb of BSs with sufficient capacity,

is an independent thinning of Ψb with density λΘ = pΘλb,

where pΘ will be approximated in the next section.

C. Scheduling Modeling

BSs not serving any user are assumed to be in idle mode in

order to mitigate the other-cell interference and improve the

energy efficiency. Let ∆b be the process of BSs in idle mode.

The density of ∆b is λ∆ = p∆λb where p∆ is approximated

as [11, Proposition 1],

p∆ ≃
(
1 +

λu

3.5λb

)−3.5

. (2)

However, on the other hand, when multiple competing users

simultaneously need to access the same BS x0, three represen-

tative scheduling schemes will be considered and investigated

to assess the impact on performance in the context of sparse

networks and UDNs. An important quantity is the probability

mass function (PMF) of the number of competing users inside

C0. Let Nu be the random variable that denotes the number

of users in C0 r {x0}. The PMF of Nu is approximated as

[11, Proposition 2],

P {Nu = n} ≃ 3.54.5 Γ(n+ 4.5)(λu/λb)
n

Γ(4.5) Γ(n+ 1)(3.5 + λu/λb)n+4.5
. (3)

Hereafter, the three scheduling schemes considered:

1) Scheduling Model 1 (Non-orthogonal Scheduling): Each

BS simultaneously serves multiple users associated with it on

the same resource block, this is feasible for example when only

the typical user that is associated to x0 (P {Nu = 0} = 1),

or when using a non-orthogonal multiple access (NOMA)

technique such as power-based NOMA, but at the cost of

increased intra-cell interference that may be mitigated by

successive interference cancellation (SIC) at the receivers.

2) Scheduling Model 2 (Round-Robin (RR) Scheduling):

Simultaneous users are scheduled with equal probability re-

gardless of their channel qualities, which enhance temporal

fairness among users and reduce implementation complexity.

3) Scheduling Model 3 (Proportional Fair (PF) Schedul-

ing): Users are scheduled by leveraging their spatial diver-

sity based on the channel quality indicators (CQI), which

will increase system throughput at the cost of fairness. For

tractability, we assume that the selection of users for downlink

transmission based on maximum PF metric is closely reflected

by the largest fading gain gk, as was endorsed by [12].



III. NETWORK PERFORMANCE

Following the limitations mentioned in [8] of the commonly

available definition of coverage probability Pcov– the SINR of

the typical user is above a certain threshold–, we consider

the new definition adopted in [8], [9], such as the typical

user is in coverage when: (i) it receives a sufficiently good

signal strength from the nearest BS without any over-provision

of the transmitting power Ptx, i.e., the average SNR =
Ptx/(σ

2ℓ(r0)) = SNR/ℓ(r0) is greater than a threshold Ts, ii)

the SIR = g0Ptx/(ℓ(r0)I) = g0/
∑

i gi(ℓ(r0)/ℓ(ri)) is greater

than a threshold Tq, where I is the other-cell interference.

The coverage probability will then be expressed as

P
(j)
cov (Tq, Ts) =

∞∑

n=0

P
{
SIR ≥ Tq, SNR ≥ Ts,Nu = n

}
, (4)

where the superscript j = 1, 2 or 3 indexes the adopted

scheduling model, and we commonly consider that P
(1)
cov =

P
{
SIR ≥ Tq, SNR ≥ Ts

}
, i.e., each BS serves one user.

A. Approximation of the Process of BSs with Available Re-

source Capacity

The resource capacity of a typical BS is closely dependent

on the traffic demand from high priority users, which may

be the ones with greatest CQI or those privileged through

system configuration to access traffic channels (very important

users or services). This observation makes it less tractable to

derive pΘ since we do not have a priori knowledge about

the distribution of traffic demand from high priority users. To

overcome this limitation and approximate pΘ, we assume that

the high priority traffic demand is related to the number of

users located inside a disc Dc centered at x0 and containing:

i) sufficiently closest users to x0, ii) the closest users from

other cells with high probability to make a handover towards

x0, i.e., the nearest users from the nearest neighboring cell.

Let ξM denote the random variable of the radius of the

minimal disc DM centered at x0 and containing C0, and ξm

as the radius of the maximal disc Dm centered at x0 and

contained by C0 (see Fig. 1). To the authors knowledge, the

distribution of the former does not exist except for some lower

bounds as in [13, equation 10] or intractable mathematical

expressions as in [14], while the distribution of the latter is

totally known as in [13, equation 9]. For analytical tractability,

we consider that the radius ξc of Dc is somewhere bounded

between ξm and ξM such that the disc of radius
√
ηξc and

centered at x0 contains at most the nearest BS to x0. Formally

expressed, we have

P(ξc > r) = (1 + πλbηr
2)e−πλbηr

2

. (5)

The PDF of ξc is then derived as

fξc
(r) = 2η2 (πλb)

2
r3e−πλbηr

2

, (6)

and pΘ is approximated by averaging exp (−πλuξ
2
c ) over the

distribution of ξc, as

pΘ = Eξc

{
exp (−πλuξ

2
c )
}
=

(
1 +

λu

ηλb

)−2

. (7)

PSfrag replacements

Users

BSs

Disc Dc

Disc DM

Disc Dm

Fig. 1. A PPP realization of BSs and users (λu > λb) where the boundaries
of DM, Dm and Dc are illustrated.

Remark 1. The expression of pΘ in (7) confirms our initial in-

tuition in Section II. In fact, pΘ can be increased by acting on

the network macroscopic resource capacity via densification

with new BSs, or by improving the average intrinsic resource

capacity of existing BSs via η. Besides, increasing users

density, will decrease pΘ and then the availability of BSs to

carry users traffic. For fixed densities λb and λu, it is obvious

to mention from (7) and (2) that, if η becomes greater than a

threshold η0 = µ(λu/λb), where µ(x) = x/
[
(1 + x)1.75 − 1

]
,

the tendency of having more BSs with sufficient capacity

increases at the expense of idle mode BSs, which sheds light

on the interplay between p∆ and pΘ. We note also that
λb

λu
pΘ (1− p∆) → 1 as λb ≫ λu, while λb

λu
pΘ (1− p∆) → 0

as λu ≫ λb.

The following lemma describes the scaling law with λb and

λu of useful combinations of pΘ and p∆.

Lemma 1. Under the previous approximations of pθ and p∆,

we have the following properties:

i) λb

λu
pΘ(1 − p∆) scales with λb

λb+λu
exp

(
− θ(η)λu

λb+λu

)
, where

θ(x) is a monotonically decreasing function for x ≥ 1.

ii) For every reals M,N ≥ 0,
1−exp (−M [pΘ+N(1−p∆)])

pΘ+N(1−p∆)

scales with p−1
Θ exp(−βp−1

Θ ), where β is a constant.

Proof. See Appendix A.

B. Coverage probability

The following lemma derives the coverage probability under

the path-loss function ℓ(.) and the scheduling model 1.

Lemma 2. The coverage probability under the scheduling

model 1 and a path-loss function ℓ(.) validating the depen-

dency condition is expressed as

P
(1)
cov (Tq, Ts) = πλbpΘ

×
∫ γ

0

exp



−πλbx


pΘ+(1− p∆)

∫ ∞

1

dy

1 +
ℓ(
√
xy)

Tqℓ(
√
x)





dx, (8)

where γ = max
(
0,
[
ℓ−1 (SNR/Ts)

]2)
.

Proof. See Appendix B.



Theorem 1.

P
(1)
cov (Tq, Ts) = pΘ

1− exp (−πλbAQ(λu, λb, δ, Tq))

Q(λu, λb, δ, Tq)
exp

(
−πλbh

2(Q(λu, λb, δ, Tq)− pΘ)
)
, (9)

P
(2)
cov (Tq, Ts) =

λb

λu

(1− p∆)P
(1)
cov (Tq, Ts) , P

(3)
cov (Tq, Ts) =

∞∑

n=0

P {Nu = n}
[
n+1∑

k=1

(
n+ 1

k

)
(−1)k+1

P
(1)
cov (kTq, Ts)

]
(10)

where Q(λu, λb,m, Tq) = pΘ + (1− p∆) (Fm(Tq)− 1) , and A = max

(
0,

[(
SNR

Ts

)δ

− h2

])
.

Proof. See Appendix C.

For the remainder, we adopt the standard power-law path-

loss model with elevated BSs of height h ≥ 0, i.e., ℓ(rk) =(
r2k + h2

)α

2 for all xk ∈ Ψb, where α is the path-loss exponent

assumed to be α > 2, and let δ = 2/α. Generalizing our work

to other relevant path-loss models such as the dual-slope [6]

and stretched path-loss models, is left to future works.

The following theorem in the top of this page, gives the

coverage probability under the considered path-loss model and

the three scheduling models.

Remark 2. The main strength of Theorem 1 is that the

expressions of P
(1)
cov and P

(2)
cov are written under closed-form

expressions, which is very helpful for performance evaluation

as it reduces computational complexity and time-consuming

processing. Moreover, the expression of P
(3)
cov is an infinite sum

that can be further simplified by considering the assumption

P {Nu = n0} = 1, where n0 = ⌈E {Nu}⌉ and E {Nu} =
1 + 1.28(λu/λb) [15, Lemma 4]. The coverage probability

under the scheduling model 3 is then approximated as

P
(3)
cov (Tq, Ts) =

n0+1∑

k=1

(
n0 + 1

k

)
(−1)k+1

P
(1)
cov (kTq, Ts) . (11)

The accuracy of this approximation will be discussed in

Section IV.

Remark 3. Theorem 1 reveals that the coverage probability

under the scheduling models 2 and 3 is based on its compu-

tation under the scheduling model 1. In other words, P
(2)
cov and

P
(3)
cov can be expressed on the basis

(
P
(1)
cov (kTq, Ts)

)
k=1,...,n+1

,

where n is an integer ≥ 1. As a result, we can focus the

analysis on the building block component P
(1)
cov .

Remark 4. The scaling law of P
(j)
cov with λb and

λu is completely defined. In fact, Lemma 1 deter-

mines the scaling law of (λb/λu)pΘ (1− p∆) and (1 −
exp (−πλbAQ(λu, λb, δ, Tq)))/Q(λu, λb, δ, Tq), while (22)

confirms that exp
(
−πλbh

2(Q(λu, λb, δ, Tq)− pΘ)
)

scales

with exp
(
−κh2(Fδ(Tq)− 1) λbλu

λb+λu

)
, where κ is a constant.

We now investigate the asymptotic behavior of P
(j)
cov, where

the rationale is to understand the interplay between coverage

probability and the parameters Ptx, λb, λu and antennas height

h, assuming that when acting on specific parameters, the others

are supposed to be constant. The results are summarized in the

following three propositions.

Proposition 1. The coverage probability under the considered

path-loss function ℓ(.) and the three scheduling models, tends

towards a surely “universal outage” in the following asymp-

totic cases

lim
λu→∞

P
(j)
cov(Tq, Ts) = lim

A→0
P
(j)
cov(Tq, Ts) = 0

Proof. The proof follows by a direct inspection of Theorem 1.

Remark 5. Proposition 1 shows that the intended BS needs

to check the primary constraint Ptx > hαTsσ
2 in order

to generate the earliest samples of users or areas with a

correct coverage. Moreover, it identifies the detrimental effect

of increasing users density on BS resource capacity (pΘ → 0)

and then on the network overall coverage probability.

Proposition 2. The coverage probability under the PF and RR

schedulers converges to that of the non-orthogonal scheduler

as λb → ∞ or λu → 0. Hence, P
(j)
cov(Tq, Ts) tends towards a

limit conditioned on other parameters, as

i) lim
λb→∞

P
(j)
cov(Tq, Ts) = exp

(
−πλuh

2 (Fδ(Tq)− 1)
)
, (12)

ii) lim
λu→0

P
(j)
cov(Tq, Ts) = 1− exp (−πλbA). (13)

Proof. The sketch of the proof stems from Remark 1, and the

observation that

lim
λb→∞

P {Nu = n} = lim
λu→0

P {Nu = n} =

{
1 if n = 0
0 if n ≥ 1.

Remark 6. Several earlier works suggested that the tendency

of coverage probability in UDNs is either towards 0 [6] or 1

[16], which involves that the performance of different networks

will be the same in the regime of high BS density. However,

we show in (12) a more precise result, where the performance

of several UDNs will be different as well as their respective

users density, average BS height, path-loss exponent and the

threshold Tq are different. We note moreover from Prop.2 that

limλb→∞ P
(j)
cov(Tq, Ts) is independent of Ts (more generally of

SNR), while limλu→0 P
(j)
cov(Tq, Ts) is independent of Tq, which

is due to the idle mode capability that mitigates interference

as λb → ∞ and/or λu → 0.



Proposition 3. Considering the reduced height and high SNR

scenarios, the coverage probability under the Non-orthogonal

scheduling is expressed as

i) lim
h→0

P
(1)
cov(Tq, Ts) = pΘ

1− e−πλb( SNR

Ts
)
δQ(λu,λb,δ,Tq)

Q(λu, λb, δ, Tq)
(14)

ii) lim
SNR→∞

P
(1)
cov(Tq, Ts) = pΘ

e−πλbh
2(Q(λu,λb,δ,Tq)−pΘ)

Q(λu, λb, δ, Tq)
(15)

Proof. The sketch of the proof follows by a direct inspection

of Theorem 1.

We now assume that we have previously identified the

parameters Tq and Ts required to access the system, the

parameter α defined by the propagation environment, the

parameter λu expected from end-users behavior. The follow-

ing proposition gives the correlation constraint that needs to

be established between the pre-defined parameters and the

commonly used parameters for cellular network optimization,

namely λb, h and Ptx, in order to meet a given coverage

probability 0 < P (1) < 1 under the baseline scheduling model.

Corollary 1. For pre-defined parameters Tq, Ts, λu and δ, the

following constraint needs to be verified to meet a required

coverage probability 0 < P (1) < 1 under the Non-orthogonal

scheduling model,

P (1) ≤ pΘ
Q(λu, λb, δ, Tq)

̺(λb, h, Ptx), (16)

where ̺(λb, h, Ptx) =

min
(
e−πλbh

2(Q(λu,λb,δ,Tq)−pΘ); 1− e−πλbAQ(λu,λb,δ,Tq)
)
.

Proof. The skecth of the proof is as follows: For fixed param-

eters Tq, Ts, λu, δ and coverage probability P (1). Equation

(9) can be expressed as P
(1)
cov(Tq, Ts) = u(λb)e

−v(λb,h)(1 −
e−w(λb,h,Ptx)), where u(λb) = pΘ (Q(λu, λb, δ, Tq))

−1
,

v(λb, h) = πλbh
2(Q(λu, λb, δ, Tq)− pΘ) and w(λb, h, Ptx) =

πλbAQ(λu, λb, δ, Tq). However, since A > 0 and Tq 7→
Fδ(Tq) is a monotonically increasing function with Tq ≥ 0
and 0 ≤ δ < 1, where Fδ(0) = F0(Tq) = 1; the functions

u, v and w are then positive for every parameters λb, h and

Ptx. The constraint (16) is then true for P (1) chosen such as

0 < e−v(λb,h) < 1 and 0 < e−w(λb,h,Ptx) < 1 in (9), which

completes the proof.

Remark 7. A direct inspection of (16) confirms that the

achievable coverage probability will be maximized if the

following intuitive adjustments are established: On the one

hand: increase the ratio λb/λu ≫ 1, Ptx and α. On the other

hand, decrease h, σ2, Tq and Ts.

C. Average Achievable Rate

We also investigate the mean data rate achievable over a cell

in units of nats/Hz, and verify how it is impacted with network

parameters when considering the three scheduling models.

Consistently with our adopted model of coverage probability

(4) [8], we introduce the following definition of the ergodic

rate of a typical user associated to x0,

τ (j)c (.) = E

{
1

{
ℓ(r0) ≤

SNR

Ts

}
ln (1 + SIR)

}
(17)

(a)
=

∫

t>0

P
(j)
cov

(
et − 1, Ts

)
dt, (18)

where j refers to the scheduling model, and (a) follows from

similar steps in [3, Theorem 3].

We have then; from Theorem 1 and some variable changes,

τ (2)c (.) =
λb

λu

(1− p∆) τ
(1)
c (.),

τ (3)c =

∞∑

n=0

P{Nu=n}
[
n+1∑

k=1

(
n+ 1

k

)
(−1)k+1

∫

x>0

P
(1)
cov (kx, Ts)

x+ 1
dx

]
.

Note that the expression of ergodic rate in [3, Theorem 3],

needs generally, the computation of a four-fold numerical

integral, whereas the expression in (18), requires only the

computation of a two-fold integral, which is expected to be

more computationally efficient.

IV. NUMERICAL RESULTS

In this section, we present numerical results to validate

our theoretical analysis and assess the network performance

trend as a function of several key parameters adjustment.

We consider in the following, σ2 = 0dB, α = 4, Ts is

mapped with Tq by the expression Ts = Tq Γ(1 + δ)−1/δ [9,

Eq. (5)], where Γ(.) denotes the complete Gamma function.

Integral expressions are evaluated using Matlab, and Monte

Carlo simulations are performed with 104 iterations.
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Fig. 2. The scaling of coverage probability P
(j)
cov with SIR target Tq, for

λb = λu/4 = 0.25 BS/m2, η = 10
3, h = 0.4m, and Ptx = 43dBm.

Fig. 2 shows that the simulation results of coverage prob-

ability under the baseline scheduling model, match perfectly

with the analytical expression, which validates the accuracy of

our analytical model. Moreover, and consistently with previous

results considering the conventional definition of coverage
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Fig. 3. The scaling of coverage probability P
(j)
cov with network density λb

and users density λu. The other parameters are fixed as: Ptx = 43 dBm,
Tq = 2dB, η = 10

3, h = 1m.

probability [12], Fig. 2 shows that under the new coverage

probability framework [8], the PF scheduler is the model that

best improves the coverage probability, due to the multi-user

diversity gain. However, the RR scheduler [11], reduces the

coverage probability due to the equal probability scheduling

process, particularly for large users density. Besides, Fig. 2

shows that the approximation expression (11), is generally a

sufficient tight upper-bound of P
(3)
cov, reflecting the main trends

of P
(3)
cov.

Fig. 3 shows that for constant Ptx, Tq, η and h, the behavior

of coverage probability in UDNs scales with user and BS

densities, λu and λb, respectively. More generally, for large

λb, the coverage probability under the three representative

scheduling schemes scales with exp
(
−πλuh

2 (Fδ(Tq)− 1)
)

consistently with Eq. (12).

Fig. 4 shows the scaling trend of P
(j)
cov with BS density λb as

a function of η, Ptx and h. The figure confirms Proposition 2,

where the three scheduling models are equivalent in UDNs.

Consequently, we recommend to deploy a scheduling strategy

with the most reduced implementation complexity in UDNs.

Moreover, we mention the limited impact of inherent resource

capacity η and the BS transmit power Ptx as network density

increases. In other words, η and Ptx need to scale with nearly a

1/λb rate to reduce infrastructure power consumption and the

cost of acquired resource capacity. In this context, investigating

the optimum scaling law of Ptx and η with λb as part of an

energy efficiency setup, in addition to approximating the BS

density that maximizes the network performance will be left

to future work.

Fig. 5 evaluates expression (18), where it confirms the

detrimental effect of BS height h and users density λu on the

network average rate. In addition, and in agreement with our

previous results, we conclude the limited impact of inherent

resource capacity η and the transmit power Ptx as λb increases.

V. CONCLUSION

Considering a revisited version of the coverage probability

recent definition, introduced in [8], this paper derived the

coverage probability and the average data rate for a downlink

cellular network with elevated BSs and three representative

scheduling models. The network performance under a given

scheduling model is shown to be expressed on the basis of that

under non-orthogonal scheduling, where competing users are

served on the same resource block. In addition, it is revealed

that the PF scheduler gives the best network performance

due to multi-user diversity gain, while the RR scheduling is

impaired by users density due to the equal probability selection

process. However, the three scheduling models are equivalent

in the context of UDNs, where we recommend to deploy

the scheduling model with the most reduced implementation

complexity.

Besides, our results showed that BS height and user density

are so detrimental to coverage probability and average rate

in UDNs, while inherent resource capacity and the transmit

power have reduced impact as network density increases,

which suggests new insights into the role of these parameters

in UDNs.

APPENDIX A

PROOF OF LEMMA 1

For a given users density λu ≥ 0 and a real q > 1, ∃ λ0b =
1

q−1λu such as: ∀λb > λ0b , p−1
Θ ≤

(
1 + qλu

η(λb+λu)

)2
. Using the

observation that exp(−x) < (1+ x
y )

−y < exp(−xy
x+y ) for every

reals x, y > 0, we get

exp

( −2qλu

η(λb + λu)

)
≤ pΘ ≤ exp

( −2λu

max(1, η)(λb + λu)

)
,

(19)

1− exp

( −λu

λb + λu

)
≤ 1− p△ ≤ 1− exp

(−λu

λb

)
(20)

Moreover, using the observation that ∃ 0 < m < 1 such as

for every real x > 0

exp(− 1

x
) <

x

x+ 1
< 1− exp(−x) < exp(

−m
x

) <
x

m(x + 1)
,

(21)

we then get,

λu

2(λb + λu)
≤ 1− p△ ≤ λu

m(λb + λu)
. (22)

The proof of i) is then completed by combining (19) and (22).

For every real M and N ≥ 0, we have

pΘ ≤ pΘ + N(1 − p∆) ≤ N + (N + 1)pΘ, and by

applying (21), we can see that for a given users density λu,

∃λ1b = λu/
(
η
[√

(N + 1)/N − 1
])

such as: ∀λb ≥ λ1b ,

(1− exp (−M [pΘ +N(1− p∆)])) / [pΘ +N(1− p∆)]

is bounded between 1
2(N+1)p

−1
Θ exp (− p−1

Θ

M ) and

p−1
Θ exp

(
−(mp−1

Θ / [2M(N + 1)])
)
, which completes

the proof of (ii).
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Fig. 4. For λu = 1 user/m2 and Tq = 2dB , we plot the scaling of coverage probability P
(j)
cov with network density λb as a function of: (a) The resource

capacity η when Ptx = 43dBm, h = 1m, (b) The transmit power Ptx when η = 10
3 and h = 1m, (c) The BS height h when η = 10

3 and Ptx = 43dBm.
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c , with network density λb , as a function of: (a) The resource capacity η

and BS height h when λu = 1 user/m2 and Ptx = 43dBm, (b) The transmit power Ptx and BS height h when λu = 1 user/m2 and η = 10
3, (c) The user

density λu and BS height h when η = 10
3 and Ptx = 43dBm.

APPENDIX B

PROOF OF LEMMA 2

The coverage probability in (4), is expressed under the

scheduling model 1 as:

P
(1)
cov(Tq, Ts) = P

{
SIR ≥ Tq, SNR ≥ Ts,Nu = 0

}

= 2πλΘ

∫ ∞

0

e−πλΘr2
EI

{
P
{
SIR ≥ Tq, SNR ≥ Ts|I, r

}}
rdr

(a)
= 2πλΘ

∫ ∞

0

e−πλΘr2
1

{
ℓ(r)≤SNR

Ts

}
EI{P {SIR ≥ Tq|I, r}} rdr

= 2πλΘ

∫ √
γ

0

e−πλΘr2
EI{P {SIR ≥ Tq|I, r}}︸ ︷︷ ︸

χ(Tq,Ts)

rdr, (23)

and the expectation term, χ (Tq, Ts), in the integrand function,

can be computed as follows:

χ (Tq, Ts)=LI

{
Tqℓ(r)

Ptx

}
=EΨb\∆,{gi}





∏

xi∈Ψb\∆

ℓ(ri)

ℓ(ri) + Tqℓ(r)





(b)
= exp

(
−2π(λb − λ∆)

∫ ∞

r

Tqℓ(r)udu

ℓ(u) + Tqℓ(r)

)

(c)
= exp


−πλb(1 − p∆) r

2

∫ ∞

1

du

1 + ℓ(r
√
u)

Tqℓ(r)


 , (24)

where (a) follows from the independence of SNR from the

cumulative other-cell interference I . (b) follows from the

PGFL theorem and (c) from the variable change u2/r2 → u.

Plugging (24) into (23) with r2 → x gives the desired result.



APPENDIX C

PROOF OF THEOREM 1

The proof of the expression of P
(1)
cov in Theorem 1 follows

directly from Lemma 2 where γ = A2, and (24) is derived as

χ (Tq, Ts)=exp

(
−πλb(1− p∆)(r

2 + h2)T
2

α

q

∫ ∞

T
−

2
α

q

du

1 + u
α

2

)

(a)
= e(−πλb(1−p∆)(Fδ(Tq)−1)r2)e(−πλb(1−p∆)(Fδ(Tq)−1)h2),

where (a) holds since T
2

α

q

∫∞
T

−

2
α

q

du

1+u
α

2

+ 1 = Fδ(Tq).

The coverage probability under the scheduling model 2,

P
(2)
cov, is expressed as

P
(2)
cov(Tq, Ts) =

∞∑

n=0

P
{
SIR ≥ Tq, SNR ≥ Ts,Nu = n

}

=

∞∑

n=0

P
{
SIR ≥ Tq, SNR ≥ Ts|Nu = n

}
P {Nu = k} (25)

(a)
= P

{
SIR ≥ Tq, SNR ≥ Ts

} ∞∑

k=0

P {Nu = n}
k + 1

(b)
=
λb

λu

(1− p∆)P
{
SIR ≥ Tq, S̃NR ≥ Ts

}
,

where (a) follows from the independence of the events

E = (SIR ≥ Tq, S̃NR ≥ Ts) and Fn = {Nu = n},

in addition to the properties of the RR scheduling

such as each user is selected with the same

probability. (b) follows from [11, Proposition 2] where∑∞
n=0(n+ 1)−1

P(Nu = n) = (λb/λu)(1 − p∆).

The coverage probability under the scheduling model 3,

P
(3)
cov, is expressed from (25) as

P
(3)
cov(Tq, Ts) =
∞∑

n=0

P

{
max (g0, . . . , gn)Ptx

ℓ(r0)I
≥ Tq, SNR ≥ Ts

}

︸ ︷︷ ︸
ϕ(Tq,Ts)

P {Nu = n} ,

where the probability term, ϕ(Tq, Ts), is derived as

ϕ(Tq, Ts) =

Er0,I

{

P

{

max (g0, . . . , gn) ≥
Tqℓ(r0)I

Ptx

,SNR ≥ Ts

∣

∣

∣

∣

I, r0

}}

(a)
= Er0,I

{

1

{

ℓ(r0)≤
SNR

Ts

}

[

1−

(

1− exp

(

−
Tqℓ(r0)I

Ptx

))n+1
]}

(b)
=

n+1
∑

k=1

(

n+ 1

k

)

(−1)k+1
Er0

{

1

{

ℓ(r0)≤
SNR

Ts

}

LI

{

−
kTqℓ(r0)

Ptx

}}

,

where (a) holds since the random variables gk, k = 0, . . . , n
are i.i.d. exponential RVs with mean 1, and the cumulative

function (CDF) of max (g0, . . . , gn) is expressed as

P {max (g0, . . . , gn) ≤ u} =
(
1− e−u

)n+1
,

(b) follows from the binomial theorem. We get the desired

result by combining the last expression with (23).
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