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Abstract—We consider a 3D cellular network in which gener-
alized shadowing and radio network planning and optimisation
(RNPO) parameters (e.g., antenna height, antenna tilt/azimuth,
power biaising...) are incorporated into the cell-selection model.
Using tools from stochastic geometry (SG), we derive an equiva-
lent 2D network in which no shadowing and RNPO parameters
are considered. Next, we derive coverage probability for a
tractable case-study network, and the regimes where cover-
age probability is maximized in addition to the interference-
limited one are investigated. An intermediary result is a closed-
form expression generator encompassing the Q-function based-
expression in [1]. Numerical results confirm the accuracy of our
approximations.

I. INTRODUCTION

With the ongoing proliferation of data-hungry devices and

applications, data traffic volumes in the coming years are

expected to be multi-fold higher compared to today’s levels.

One way to tackle this challenge is by deploying ultra-dense

networks (UDNs) [2]. However, densification will result in

large coverage overlap areas, which increases the risk of other-

cell interference and then reduces the network performance

and system capacity. Consequently, environment characteris-

tics such as shadowing, and RNPO parameters such as antenna

height [3], antenna tilt/azimuth angle [4]- [6] and transmit

power biaising [7] are strongly required for the analysis of

UDNs performance since they affect directly the probability of

line-of-sight (LOS) and non-line-of-sight (NLOS) connections

and then cells overlaping.

Due to its tractability and ability to capture spatial averages,

SG has emerged as a potential mathematical tool for modeling

cellular networks [1], [3]- [7]. In fact, by considering a stan-

dard path-loss model and ignoring shadowing and any RNPO

parameter effect, the seminal work in [1] provides comprehen-

sive understanding about the behavior of UDNs performance.

An important outcome is the signal-to-interference-plus-noise

ratio (SINR) invariance property, which states that the SINR

increases almost linearly with base station (BS) density to

the point where noise becomes negligible; after which SINR

remains stable and independent from BS density. However,

using standard path-loss model and ignoring RNPO parameters

in more realistic scenarios has raised some limitations [8],
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calling for an imperative revisitation of the model. Authors

of [9] proved that the SINR invariance property is no longer

valid when using the dual-slope path-loss model. A similar

effect is reported in [3] for elevated BSs, and in [4] for a

network using non-directional antennas.

The motivation behind this paper is then to find a tractable

manner to study UDNs performance when incorporating

generalized shadowing and RNPO parameters into the cell-

selection model. Using tools from SG, we first i) develop

a 3D-2D network equivalence where a 3D network with

shadowing and RNPO parameters is stochastically equivalent

to a 2D network in which they are not considered. Next,

for mathematical convenience, ii) we focus our analysis on

a tractable case-study in which shadowing and RNPO param-

eters are captured via aggregated parameters related with LOS

and NLOS connections. iii) The coverage probability is then

computed confirming that our expression is general enough

to accommodate several previous expressions. Next, iv) we

investigate the scaling law of the BS density that maximizes

network performance as well as the coverage probability in

the interference-limited regime.

The following notation will be used throughout the paper.

P {.} and E {.} stand for the probability and expectation

measure. LX(s) = E
{
e−sX

}
is the Laplace transform of a

random variable X evaluated at s. We define for any reals

m,x ∈ R, Fm(x) = 2F1(1,m;m+ 1;−x) where 2F1(., .; .; z)
is the Gauss hypergeometric function. g−1(.) is the inverse

function of a function g(.).

II. SYSTEM MODEL AND THE PATH LOSS PROCESS WITH

SHADOWING AND RNPO PARAMETERS (PLPSR)

A. System Model

We consider a downlink cellular network, in which BSs are

scattered randomly according to a homogeneous PPP Φb ∈ R
3

with density λb. We assume that each BS is equipped with

directional antennas, has at least one connected user and

transmits with a fixed power Ptx. Denote σ2 the variance of the

additive noise and SNR = Ptx/σ
2. We consider a realization

of RNPO parameters of interest: BS antenna elevation height

parametrized by a random variable ξxh
, electrical/mechanical

antenna tilt angle by ξxt , antenna azimut angle by ξxa and

range expansion (RE) biais by ξxb
. For each BS x ∈ Φb,



we add independent1 marks (hx, χx, ξx, αx, Tx), where for the

link between x and the typical user located at O, hx denote the

small scale fading assumed to be exponentially distributed with

unit mean, χx is the shadowing effect assumed to be arbitrarily

distributed, αx is the path-loss exponent, Tx is the SINR

threshold of x, and ξx is the vector ξx = (ξxh
, ξxt , ξxa , ξxb

)
of RNPO parameters, such as the received power at O from

the BS x ∈ Φb is

Prx =
χxhxPtx

(Ψ (rx;αx; ξx))
αx
, (1)

where rx is the horizontal distance between x and O, and

Ψ(.) is a generalized function to capture RNPO parameters

combined with the path-loss function. If there is such a func-

tion, it is reasonable to require of it the following properties: (i)

monotonically increasing such as Ψ(0; .; ξxh
= 02) = Ψ0 ≥ 1

at the origin O, this is in order to cover realistic bounded

path-loss models and ensure that the received power cannot

exceed the transmitted one, (ii) Ψ(rx; .; ξx) ≡ Ψ(r; .; ξ′x) such

as r =
√
r2x + ξ2xh

and ξ′x is the vector ξ′x = (ξxt , ξxa , ξxb),

(iii) the mean value of the shot noise process is finite, i.e.,

from the Campbell’s theorem [10, Corollary 1.4.6.], we have

E

{
∑

x∈Φb

Prx

}
= λbPtx

∫

R3

E {χx} dx

(Ψ(rx;αx; ξx))
αx

<∞, (2)

The marked PPP, will be denoted, with a slight abuse of

notation, also as Φb.

Remark 1. The proposed model is general enough to ac-

commodate various choices of RNPO parameters and path-

loss models, e.g., if the power law path-loss is adopted

and BS height is the only RNPO parameter considered

[3], ξx = ξxh
captures BSs height and Ψ(rx; .; ξx) =√

r2x + ξ2x. When considering also tilt angle [5], azimuth

angle [6] and RE biais [7], we have Ψ(rx;αx; ξx) =√
r2x + ξ2xh

[Gtilt (ξxt)Gazimut (ξxa)B (ξxb
)]

−1

αx , where Gtilt (.)
is the antenna vertical radiation pattern parametrized by

ξxt , Gazimut (.) is the antenna horizontal radiation pattern

parametrized by ξxa and B (.) is the association bias

parametrized by ξxb
.

B. Path Loss process with shadowing and RNPO parameters

We define the path-loss process with shadowing and RNPO

parameters (PLPSR) of Φb, the point process mapped from Φb

on R
+, as

Σ =
{
y = χ−1/αx

x Ψ(rx;αx; ξx), x ∈ Φb

}
. (3)

Moreover, in order to capture the SINR threshold distribu-

tion, we consider the following independently marked PLPSR

∆ = {(Σ, Tx), x ∈ Φb} . (4)

The following lemma gives the intensity measure of ∆,

which generalizes several previous results in [11] [12].

1We omit the dependence scenario here, e.g., ξx and αx may be correlated
when a tunning of the RNPO parameters ξx can impact αx by determining
the link nature (LOS or NLOS) between a BS and the typical user.

2ξx ≡ 0 is equivalent to no RNPO parameter considered on x, i.e., BS
antenna is omnidirectional with 0 meter elevation and B(ξb) ≡ 1.

Lemma 1. The point process ∆ is a 1D independently marked

PPP on R
+ with intensity measure

Λ∆(s, t) =
4πλb

3
E

{[
Ψ−1(sχ

1
αx
x ;αx; ξ

′
x)

]3
1(Tx ≤ t)

}
, (5)

Proof. By the displacement theorem [10, Theorem 1.3.9] and

the Campbell’s theorem. ∆ is a PPP with intensity measure

Λ∆(s, t) = λbE





∫

R3

1


Ψ(rx;αx; ξx)

χ
1

αx
x

≤ s, Tx ≤ t


 dx





(a)
= 4πλbE





∫

R+

1


Ψ(r;αx; ξ

′
x)

χ
1

αx
x

≤ s


1(Tx ≤ t)r2dr





=
4πλb

3
E

{∫

R+

[
Ψ−1(su

1
αx ;αx; ξ

′
x)
]3
1(Tx ≤ t)Pχx {du}

}

=
4πλb

3
E

{[
Ψ−1(sχ

1
αx
x ;αx; ξ

′
x)

]3
1(Tx ≤ t)

}
,

where (a) follows from the marks independence of the process

∆ and property (ii) of Ψ(.).

Remark 2. If we assume that Tx ≡ T is constant over all BSs

of Φb. It is easy to mention from lemma 1 that for the defined

RNPO parameters (Remark 1), ∆ is generally a homogeneous

PPP with density

λ∆(s) = lim
t→∞

1

4πs2
∂Λ∆(s, t)

∂s
, (6)

independent from s and proportionally related to

E

{
χ
3/αx
x

}
, e.g., when considering only height (ξx ≡ ξxh

),

we have λ∆ = λbE
{
χ
3/αx
x

}
<∞.

Definition 1. Similarly to [11, definition 1] and [12, defi-

nition 2], a 3D marked PPP Φb is said to be equivalent in

distribution to a 2D marked PPP Φ′
b if they generate the same

1D marked PPP ∆ with the intensity measure Λ(s, t).

Proposition 1. The marked process Φb ∈ R
3 is stochastically

equivalent to a marked PPP Φ′
b ∈ R

2 in which shadowing

and RNPO parameters are not considered, i.e., χ′
x ≡ 1 and

ξ′x ≡ 0, and endowed with marks T ′
x ≡ Tx whose distribution

is

G′
s(t) =

1

4πs2λ∆(s)

∂Λ∆(s, t)

∂s
, (7)

and the density of Φ′
b is expressed as λ′b(s) = 2sλ∆(s) (8)

Proof. The proof of proposition 1 is analogous to that of

[11, proposition 4]. In fact, the intensity measure of ∆′–

the independently marked PLPSR of Φ′
b– when χ′

x ≡ 1 and

ξ′x ≡ 0 is

Λ∆′(v, t) = 2πE

{∫

R+

1(u ≤ v)1(T ′
x ≤ t)λ′

b(u)udu

}
(9)

= 2π

∫ v

0

G′
u(t)λ

′
b(u)udu

(a)
= Λ∆(v, t), (10)

where (a) holds if equations (7) and (8) are met.

From Proposition 1, if noise, small scale fading and path-

loss exponent are the same, we have then



SINR(x0) =

hx0
χx0

(Ψ(rx0
;αx0

;ξx0
))αx0

∑
x∈Φb\{x0}

hxχx

(Ψ(rx;αx;ξx))
αx + ( 1

SNR
)

∣∣∣∣∣∣
λb

(d)
=

hy0
y
−αy0

0∑
y∈Φ′

b\{y0}
hyy−αy + 1

SNR

∣∣∣∣∣
λ′
b

= SINR(y0),

where
(d)
= denotes equivalence in distribution,

x0 = argmaxx∈Φb

{
Ptxχx (Ψ(rx;αx; ξx))

−αx
}

and

y0 = argmaxy∈Φ′
b

{
y−αy

}
.

III. A TRACTABLE CASE STUDY

Now, for mathematical convenience and model tractability,

we take a minor detour from studying the stochastic equiv-

alence between a 3D network with shadowing and RNPO

parameters and a 2D network where they are absorbed into the

model. In fact, we assume that the equivalent PPP Φ′
b ∈ R

2

is homogeneous λ′b = λ, the SINR target is constant over

all BSs T ′
x = T, and the path-loss exponent α′

x is distance-

dependent according to the transmission path (LOS or NLOS)

between BSs and the typical user, i.e., α′
x ∈ {αlos, αnlos} such

as η = αnlos/αlos ≥ 1. We consider that each BS x ∈ Φ′
b has

a LOS path towards the typical user with a LOS probability

denoted Plos.

A. The H–LOS probability model

Since common LOS probability functions are build upon

exponentially decreasing functions [13] rendering analysis less

tractable, we propose to approximate them by the following

piece-wise linear model, consistent with the models adopted

by 3GPP [14] and dubbed here the H–LOS model,

Plos(rx) =





1 if 0 ≤ rx ≤ Rlos

1− rx−Rlos

Rnlos−Rlos
if Rlos ≤ rx ≤ Rnlos

0 if rx > Rnlos

, (11)

where Rlos is the maximum link distance between a LOS

BS and the typical user such as there are no nearer NLOS BS

to the typical user, while Rnlos is the minimum link distance

between a NLOS BS and the typical user such as there are no

farther LOS BS. Mathematically,

Rlos = max
x∈Φlos

{rx; rx < ry ,∀ y ∈ Φnlos} , (12)

Rnlos = min
y∈Φnlos

{ry ; rx < ry,∀ x ∈ Φlos} , (13)

such as Φlos and Φnlos are the PPPs of LOS and NLOS BSs

of Φ′
b respectively.

Fig. 1 shows the three regions of the network generated

by the H–LOS probability model in (11). Note that Rlos and

Rnlos can be expanded by low shadowing effect and/or RNPO

actions that expand cells size (uptilt, increasing association

biais, azimuth that avoid blockages...). We propose therefore

the interpretation that shadowing and RNPO parameters are

absorbed into the 2D PPP Φ′
b, but their impact is still captured

via the fluctuation of aggregated parameters Rlos and Rnlos.

The NLOS probability is obtained as Pnlos(rx) = 1 −
Plos(rx), ∀x ∈ Φ′

b, and the path-loss function as

L(rx) =
{
r−αlos
x with probability Plos(rx)

Kr
−αnlos
x with probability Pnlos(rx),

(14)
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Fig. 1. Slos and Snlos regions contain only LOS and NLOS BSs respectively,
while Shlos contains a mixture of the two with probability p(r) = 1 −

r−Rlos
Rnlos−Rlos

for LOS BSs and 1− p(r) = r−Rlos
Rnlos−Rlos

for NLOS BSs.

where K , R
αnlos−αlos
los is a parameter to ensure the continuity

of the path-loss function as in [9].

For positive reals m and R, we consider the following path-

loss functions of interest3

L1(m; rx) = r−m
x and L2(R; rx) =

{
r
−αlos
x if rx ≤ R

Kr
−αnlos
x if rx > R.

(15)

B. User Association Policy under the H–LOS probability

model

We consider the average power-based cell association pol-

icy. Since η = αnlos/αlos ≥ 1 and the H–LOS probability

model is adopted, the strongest BS is the nearest one in the

regions Slos and Snlos, while it is not necessarily the case in

the transitional region Shlos. To address this issue, we then

examine the distribution of distances between the typical user

and the serving BS as a result of two events: the transmission

link type (LOS or NLOS), and the region to which the serving

BS belongs (Slos, Snlos or Shlos). For i ∈ {los, nlos}, denote by

S1i the LOS and NLOS BSs of the Shlos region respectively,

by Di the link distance from the typical user to Bi, the nearest

BS of LOS and NLOS BSs respectively, and by S the serving

region, i.e., the region that contains the serving BS. For BSs

in Φi, the PDF of the horizontal distance rx is then expressed

as

fDi(rx) = 2πλrxPi(rx) exp

(
−2πλ

∫ rx

0

uPi(u)du

)
(16)

Now given that Di = rx and Bi belongs to the Shlos region,

it can be the serving BS if it verifies the following constraints:

{
D−αlos

i > KD−αnlos
nlos ⇒ Dnlos > r0 ; for i = los

KD−αnlos
i > D−αlos

los ⇒ Dlos > r1 ; for i = nlos,
(17)

where r0 = R
1− 1

η

los r
1
η
x and r1 = Min(Rnlos, r

η
x/R

η−1
los ) holds

since Snlos does not contain any LOS BS.

3Note that L(.) ≡ L1(αlos; .) when αlos = αnlos, i.e., Rlos → ∞ or
Rnlos → 0, and L(.) ≡ L2(Rlos; .) when Rlos = Rnlos.



Given that Di = rx, the probability that the typical user

will be connected to Bi is then given by

Πi(rx) =





1 if 0 ≤ rx ≤ Rlos

P(Dnlos > r0) for i = los

P(Dlos > r1) for i = nlos

}
if Rlos ≤ rx ≤ Rnlos

1 if rx ≥ Rnlos

,

while P(Dnlos>r0) and P(Dlos>r1) are computed using (16).

Remark 3. For j ∈ J = {los, 1los, 1nlos, nlos}, The association

probability Aj = P(S = Sj) that a typical user connects to a

BS from Sj , can be computed by integrating Πi(rx)fDi(rx)

over each region radius interval. An interesting observation

for the Slos region, is that for fixed parameter Rlos, Alos =

1−exp(−πλR2
los) increases with λ, while the average number of

users connected to Slos—expressed as Ñlos = (λu/λ)Alos, where

λu is the density of the users PPP— decreases. However, for

fixed λ, expanding Rlos leads to an increase in Alos and Ñlos

simultaneously. More discussions are provided in Section V.

IV. COVERAGE PROBABILITY ANALYSIS

In this section, we analyze the coverage probability under

our tractable system model provided in Section III, and aimed

to capture the random impact of generalized shadowing and

RNPO parameters via the fluctuation of aggregated parameters

Rlos and Rnlos.

A. Coverage Probability

We define the coverage probability under the path-loss

function defined in (14) , as the probability PSINR
L (.) that the

received SINR is greater than a threshold T when the serving

BS belongs to one of the four sets Slos, S1los, S1nlos or Snlos.

Theorem 1. The coverage probability under the path-loss

function (14) is given by

PSINR
L (.) = PSINR

los + PSINR
1los + PSINR

1nlos + PSINR
nlos , (18)

where for j ∈ J = {los, 1los, 1nlos, nlos}, PSINR
j stands for the

coverage probability when the serving BS belongs to Sj and the

supplementary equations are listed in the top of the next page such as

a = −1/(Rnlos−Rlos), b = −Rnlos/(Rnlos−Rlos), ρm = (Rnlos/Rlos)
m

for m ∈ R, and δp0 = p/αlos and δp1 = p/αnlos for p = 2 or 3.

Proof. The sketch of the proof is as follows: The coverage
probability is expressed as PSINR

L (.) =
∑

j∈J PSINR
j (.) =∑

j∈J AjP (SINR > T|S = Sj), and each component of

PSINR
L (.) will be computed with the following similar steps

PSINR
los =Alos

∫ Rlos

0

P(SINR > T|u, S = Slos)fDlos
(u|S = Slos)du

(a)
=

∫ Rlos

0

P(SINR) > T|u, Slos)Πlos(u)fDlos
(u)du

(b)
= 2πλ

∫ Rlos

0

u exp

(
− T

SNR
uαlos − πλu2

)
LISlos\{Blos}

(s)LIS1los
(s)

× LIS1nlos
(s)LISnlos

(s)du,

where s = Tuαlos . (a) follows from

fDlos
(u|S=Slos)=

d

du

P(Dlos ≤ u, S=Slos)

P(S = Slos)
=
Πlos(u)fDlos

(u)

Alos

.

(b) holds since hBlos
∼ exp(1) and the aggregated interfer-

ence Iagg =
∑

x∈Φ′
b
\{Blos}

hxL(rx) is seen as the summation

of the interference power (normalized by Ptx) from each set
U ∈ {Slos \ {Blos} , S1los, S1nlos, Snlos}, i.e.,

LIagg(s) = LISlos\{Blos}
(s)LIS1los

(s)LIS1nlos
(s)LISnlos

(s).

We get the desired result for PSINR
los (.) in (19) by using the

PGFL theorem to compute the Laplace transforms LIU (.) and

some variable changes.

Remark 4. Although the expression of coverage probability

under the H–LOS model is in complicated form, it instigates an

intuitive algorithmic development. Moreover, the expression is

general enough to accommodate several previous expressions.

For example, it reflects the 3GPP case 1 study in [14] when

Rlos → 0, and approximates the 3GPP case 2 study when

Rlos → ǫd1 and Rnlos → d1/ǫ where 0 < ǫ < 1 is to adjust

the approximation’s error. More precisely, (18) generally ap-

proximates the coverage analysis under the models in [13]

by simply adjusting the parameters a and b. Furthermore,

when Rnlos ≃ Rlos, L becomes a dual-slope path-loss model

L2 and (18) is simplified under the expression in [3, Th. 1].

If αnlos ≃ αlos, (18) will be the same expression as [2, Th. 2].

B. The H–LOS model and Ultra-Dense Networks

We consider the scenario of ultra-dense networks [2], where

the interference Iagg dominates the noise normalized by the

transmit power (σ2/Ptx). SINR is then approximated by SIRL ,

SINRL| σ2

Ptx
=0

Remark 5. In the interference-limited regime, the coverage

probability in (18) remains invariant as long as λR2
los and

λR2
nlos are invariant. In other words, the impact on cover-

age probability of increasing/decreasing λ is analogous to

increasing/decreasing (Rlos,Rnlos) simultaneously, which is a

generalization of [9, Fact 1].

In the following proposition, comparisons are made for PSIR

under L1, L2 and L.

Proposition 2. The following SIR coverage ordering holds for

arbitrary 0 < αlos ≤ αnlos and Rlos 6 Rnlos

(i) PSIR
L(.) > PSIR

L2(Rnlos;.)
> PSIR

L1(αlos;.)
.

(ii) PSIR
L(.) < PSIR

L2(Rlos;.)
< PSIR

L1(αnlos;.)
.

(iii) lim
λ→∞

PSINR
L(.) = lim

λ→∞
PSIR
L(.) = PSIR

L1(αlos;.)
.

(iv) lim
λ→∞

PSINR
L(.) = lim

λ→∞
PSIR
L(.)(.) = 0 when αlos ≤ 2.

(v) lim
λ→0

PSIR
L(.) = PSIR

L1(αnlos;.)
.

Proof. The proof of (i) and (ii) is similar to that of [9, Lemma

2], the main change is to proceed by considering the two cases

when the serving BS x0 ∈ (Slos ∪ Snlos) (where L ≡ L2)

and x0 ∈ Shlos. (iii) and (v) follows from the observation of

Remark 5 where λ → ∞ ≡ (Rlos,Rnlos) → ∞ and λ → 0 ≡
(Rlos,Rnlos) → 0. Such scaling in the definition of L(.) results

in L1(αlos; .) or L1(αnlos; .). (iv) follows from combining (ii)

and [9, Proposition 1]. While PSINR
L(.) → PSIR

L(.) as λ → ∞
completes the proof.



P
SINR
los (T) = πλR2

los

∫ 1

0
exp

(

−
TR

αlos
los

SNR
x

αlos
2 − πλR2

los

[

A
(1)
los

(x) + ρ2A
(2)
los

(x) +
2a

3
RlosA

(3)
los

(x) + bA
(4)
los

(x)

]

)

dx, (19)

P
SINR
1los (T) = 2πλ

∫ Rnlos

Rlos

(

ar2 + br
)

exp

(

−
T

SNR
rαlos − πλ

[

r20A
(1)
1los(r) + R2

nlosA
(2)
1los(r) +

2a

3
A

(3)
1los(r) + bA

(4)
1los(r)

])

dr, (20)

P
SINR
1nlos (T) = 2πλ

∫ Rnlos

Rlos

(

[1− b] r − ar2
)

exp

(

−Trαnlos

K SNR
− πλ

[

r2A
(1)
1nlos(r) + R2

nlosA
(2)
1nlos(r) +

2a

3
A

(3)
1nlos(r) + bA

(4)
1nlos(r)

])

dr, (21)

P
SINR
nlos (T) = πλR2

nlos

∫ ∞

1
exp

(

−
TR

αlos
los

ραnlos

SNR
x

αnlos
2 − πλR2

nlosxF−δ21(T)

)

dx, (22)

A
(1)
los

(x) = x

[

1−Fδ20

(

1

T

)]

+ ρ2 Fδ21

(

ραnlos

Tx
1

δ20

)

+

[

Fδ20

(

1

Tx
1

δ20

)

− Fδ21

(

1

Tx
1

δ20

)]

,A
(2)
los

(x) = F−δ21

(

T

ραnlos

x
1

δ20

)

− 1,

A
(3)
los

(x) = ρ3

[

Fδ30

(

ραlos

Tx
1

δ20

)

− Fδ31

(

ραnlos

Tx
1

δ20

)]

−

[

Fδ30

(

1

Tx
1

δ20

)

− Fδ31

(

1

Tx
1

δ20

)]

,

A
(4)
los

(x) = ρ2

[

Fδ20

(

ραlos

Tx
1

δ20

)

− Fδ21

(

ραnlos

Tx
1

δ20

)]

−

[

Fδ20

(

1

Tx
1

δ20

)

− Fδ21

(

1

Tx
1

δ20

)]

,

A
(1)
1los(r) = 1− Fδ21

(

1

T

)

, A
(2)
1los(r) = Fδ21

(

ραnlos
R
αlos
los

Trαlos

)

+ F−δ21

(

Trαlos

ραnlos
R
αlos
los

)

− 1,

A
(3)
1los(r) = r30

[

Fδ31

(

1

T

)

− 1

]

− r3
[

Fδ30

(

1

T

)

− 1

]

+ R3
nlos

[

Fδ30

(

R
αlos
nlos

Trαlos

)

− Fδ31

(

ραnlos
R
αlos
los

Trαlos

)]

,

A
(4)
1los(r) = r20

[

Fδ21

(

1

T

)

− 1

]

− r2
[

Fδ20

(

1

T

)

− 1

]

+ R2
nlos

[

Fδ20

(

R
αlos
nlos

Trαlos

)

− Fδ21

(

ραnlos
R
αlos
los

Trαlos

)]

,

A
(1)
1nlos(r) = 1− Fδ21

(

1

T

)

, A
(2)
1nlos(r) = Fδ21

(

R
αnlos
nlos

Trαnlos

)

+ F−δ21

(

Trαnlos

R
αnlos
nlos

)

− 1,

A
(3)
1nlos(r) = r3

[

Fδ31

(

1

T

)

− 1

]

− r31

[

Fδ30

(

Kr
αlos
1

Trαnlos

)

− 1

]

+ R3
nlos

[

Fδ30

(

ραlos
R
αnlos
los

Trαnlos

)

− Fδ31

(

R
αnlos
nlos

Trαnlos

)]

,

A
(4)
1nlos(r) = r2

[

Fδ21

(

1

T

)

− 1

]

− r21

[

Fδ20

(

Kr
αlos
1

Trαnlos

)

− 1

]

+ R2
nlos

[

Fδ20

(

ραlos
R
αnlos
los

Trαnlos

)

− Fδ21

(

R
αnlos
nlos

Trαnlos

)]

.

C. The Regime of Optimal BS Density

We define the optimal BS density λoptL as the specific λ
that maximizes the coverage probability under the path-loss

function L. Mathematically,

λoptL (.) = arg
λ

[
∂PSINR

L (.)

∂λ
= 0

]
. (23)

Using a combination of proposition 2 and [9, lemma 4],

PSINR
L (λ) is a decreasing function when λ > λopt

L and SINR ≃
SIR. λopt

L can then be seen as the BS density to enter the

SIR regime. We define the optimal regime under L, the

regime where the BS density λ ≃ λopt
L . In this regime, the

noise normalized by the transmit power is small w.r.t. the

aggregated interference but it is non-zero. Consequently, (i)-

(ii) of proposition 2 are at first stages to be met. We have then

PSINR
L1(αlos;.)

< PSINR
L(.) < PSINR

L1(αnlos;.)
. (24)

λoptL2(Rnlos;.)
< λoptL < λoptL2(Rlos;.)

. (25)

Due to the lack of general closed-form expression for PSINR
L1(α;.)

that would avoid the computation of a two-fold numerical

integral in [1, theorem 1], almost all literature works focus on

the Q-function based expression when the path-loss exponent

α = 4, which is only typical for terrestrial propagation at

moderate to large distances. The following proposition over-

come this limitation by developing closed-form expressions for

PSINR
L1(α;.)

considering all integer α > 2 (not only α = 4) and

then conclude closed-form bounds for PSINR
L(.) in the optimal

regime.

Proposition 3. For integer path-loss exponents αlos and αnlos

such as 2 < αlos < αnlos. P
SINR
L is bounded in the optimal

regime as follows PSINR
L1(αlos;.)

< PSINR
L(.) < PSINR

L1(αnlos;.)
such as

the lower and upper bounds are achievable by respectively

increasing Rlos and decreasing Rnlos, and where for even and

odd values of α, respectively

PSINR
L1(α;.) =

2πλ

α (T/SNR)
2
α

α
2
−1∑

k=0

(−1)kκk

k!
Γ

(
2 + 2k

α

)

× 1Fα−2

2

(
1

4+2k
α

, ..., α+2k
α

∣∣∣∣
(−κ)

α
2

(α
2
)
α
2

)
,

PSINR
L1(α;.) =

2πλ

α (T/SNR)
2
α

α−1∑

k=0

(−1)kκk

k!
Γ

(
2 + 2k

α

)

× 2Fα−1

(
1, 1

2
+ k+1

α
2+k
α

, ..., α+k
α

∣∣∣∣
4(−κ)α

αα

)
,

such as κ = πλF−δ(T)

(T/SNR)δ
, δ = 2

α , Γ(.) is the complete

Gamma function and pFq(.) is the generalized hypergeometric

function.

Proof. By the variable change (T/SNR)xα/2 → x, the expres-

sion of PSINR
L1(α;.) in [1, Theorem 2] can be rewritten as



PSINR
L1(α;.)

=
2πλ

α (T/SNR)
2
α

∫ ∞

0

x
2
α−1e−xe−κx2/α

dx

=
2πλ

α (T/SNR)
2
α

∫ ∞

0

x
2
α−1e−x

0F0(.; .;−κx
2/α)dx.

Depending on the parity of α, we use [15, Eq. (43)] (with

α/2 order for the even case and α order for the odd one).

Next, we explore the integral transformation of hypergeomet-

ric functions in [16, (1.7.525)]. The proof is completed by

combining (24) with Remark 5.

Using Proposition 3, the Q-function based expression for

α = 4 in [1], can be rewritten for κ = πλF−0.5(T)
√

SNR/T as

PSINR
L1(4;.)=

π
3
2 λ

2
√

T/SNR

[
0F0

(
−;−

∣∣ κ
2

4

)
− κ√

π
1F1

(
1; 3

2

∣∣ κ
2

4

)]

=
π

3
2 λ√

T/SNR
Q
(

κ√
2

)
exp

(
κ2

4

)
.

While proposition 3 gives a complete characterization of PL

in the optimal regime. The following proposition gives the

scaling law of λoptL as Rlos → ∞ and Rnlos → 0.

Proposition 4. Under the H–LOS probability model such as

2 < αlos < αnlos, the optimal BS density scales as follows

(i) λopt
L = Ω

((
T

SNR

)δ20
1

πF−δ20(T)

)
if Rlos → ∞. (26)

(ii) λopt
L = O

((
T

SNR

)δ21
1

πF−δ21(T)

)
if Rnlos → 0. (27)

Proof. Using [9, Theorem 1], PSINR
L2(Rc;.)

is expressed for a

given radius Rc as

PSINR
L2

= λπR2
c

∫ 1

0

e−If (x)−Wf (x)dx

︸ ︷︷ ︸
f(.)

+ λπR2
c

∫ ∞

1

e−Ig(x)−Wg(x)dx

︸ ︷︷ ︸
g(.)

,

where If (x) = λπR2
c

(
Fδ20

(
1

Tx
1

δ20

)
+ F−δ20

(
Tx

1
δ20

))

+ λπR2
cx

(
1− Fδ20

(
1

T

))
− λπR2

c ,Wf (x) =
T

SNR
Rαlos

c x
αlos
2 ,

Ig(x) = πλR2
cxF−δ21(T) and Wg(x) =

T

SNR
Rαlos

c x
αnlos

2 .

We note that If and Ig are the terms reflecting interfer-
ence while Wf and Wg are those capturing noise. In the

optimal regime under L2, i.e., λ ≃ λopt

L2(Rc;.)
, Wf and Wg

are respectively negligible w.r.t. If and Ig but non zero.

We expand then the terms e−Wf (x) and e−Wg(x) as e−µ =∑n
k=0

(−µ)k

k! +En(µ), where En is the error of approximation

such as En(µ) ≤
|µ|n+1

(n+1)! [17]. The error of approximation of

PSINR
L2

in the optimal regime is then upper bounded as

|En| ≤ λπR2
cA

n+1Un + λπR2
cB

n+1Vn,where (28)

A ≃ T

(λπF−δ20(T))
αlos
2 SNR

, B =
TR

αlos
c

(λπR2
cF−δ21(T))

αnlos
2 SNR

,

Un =
γ((n+ 1)αlos

2
+ 1, πλR2

cF−δ20(T))

(n+ 1)!
, and

Vn =
Γ((n+ 1)αnlos

2
+ 1, πλR2

cF−δ21(T))

(n+ 1)!
,

where γ(s, x) =
∫ x

0 t
s−1e−tdt and Γ(s, x) =

∫∞

x ts−1e−tdt
are the lower and upper incomplete gamma function.

For any given error tolerance ǫ, the bound (28) gives

A ≤
(

ǫ

λπR2
c

1

2Un

) 1
n+1

, B ≤
(

ǫ

λπR2
c

1

2Vn

) 1
n+1

. (29)

If Rc → ∞ and since αlos > 2, Un → ∞ as n → ∞ and

then
(

ǫ
λπR2

c

1
2Un

) 1
n+1

→ 1 as n→ ∞. (29).1 simplifies as

λ ≥
(

T

SNR

)δ20 1

πF−δ20(T)
, (30)

⇒ ∃ωf ≥ 1 such as λopt

L2(Rc;.)
=

(
T

SNR

)δ20 ωf

πF−δ20(T)
. (31)

If Rc → 0 and since αnlos > 2, Vn → ∞ as n→ ∞ and then(
ǫ

λπR2
c

1
2Vn

) 1
n+1

→ 1 as n→ ∞. (29).2 simplifies as

λ ≥
(

T

SNR

)δ21 1

πF−δ21(T)
, (32)

⇒ ∃ωg ≥ 1 such as λopt

L2(Rc;.)
=

(
T

SNR

)δ21 ωg

πF−δ21(T)
. (33)

The proof is completed by combining (31) and (33) with

(25).

Remark 6. By varying one parameter and fixing the others in

(26) and (27), λopt

L is monotonically increasing with the SINR

target T, the noise variance σ2 and the path-loss exponents,

while it is decreasing with the transmit power Ptx (intuitively,

the higher you increase Ptx the less you will need more BSs).

Besides, λopt

L cannot be increased indefinitely with T. In fact,

for a real 0 < m < 1, ψm : T → Tm/F−m(T) is an in-

creasing function bounded as ψm(T) ≤ lim
T→∞

ψm(T) = 1
ϕ(m) ,

where ϕ(m) =
∫∞

0
du

1+u
1
m

is finite (Riemann integral).
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V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical results to assess our

theoretical analysis. In the following, SNR = 0dB, integral

expressions are evaluated using Matlab and Monte carlo

simulations are performed with 106 iterations.

A. Validation of the model

The expression of coverage probability in (18) configured

with path-loss exponents αlos = 2, αnlos = 4 and a given

realization of BSs, shadowing and RNPO parameters such

as Rlos = 1m and Rnlos = 10m, is plotted in Fig. 2. The
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plots show that the analytical expression match the simulation

results well, and hence the accuracy of our theoretical analysis

is validated. In particular, Fig. 2 shows that the coverage

probability increases at first with network density λ until

achieving the optimal value λopt

L , after that PSINR
L shrinks down

as densification continue.

B. The Association probabilities and operational regimes

A combination of Fig. 3 and Fig. 4, reveals that when λ <
0.0035 BSs/m2, the serving BS is potentially to be a BS from

the Snlos set and the operational regime is the noise-limited



regime where Iagg ≪ (σ2/Ptx); this is due to the observation

that the network will be more sparse and the inter-distance

between BSs is high enough such that Iagg can be ignored.

As λ slightly increases (λ → 0.0035 BSs/m2), the typical

user is more likely to connect unsteadily to an NLOS BS

from the hybrid region Shlos. By continuously adding more

BSs (0.0035 BSs/m2 < λ < 0.2 BSs/m2), the serving BS

crosses to be a LOS BS from Shlos. Once λ is large enough

(λ > 0.2 BSs/m2), the typical user is most likely to connect to

a BS from Slos and thus the coverage probability continues to

increase until λ achieves a specific value λoptL ≃ 0.4 BSs/m2.

At that level, PSIR
L3

achieves its maximum value and follows

the regression driven by interference Iagg as λ continue to

increase.

C. Coverage Probability and BS Density Scaling in The

Optimal Regime

Fig. 4 and Fig. 5 verifies Proposition 2 in the optimal

regime as the coverage probability PSINR
L and the optimal BS

density λopt
L remain bounded between those achieved under

the standard and dual-slope path-loss functions. Numerically,

0.12 < PSINR
L < 0.9 and 0.1 BSs/m2 < λopt

L < 1 BSs/m2. In

particular, the lower and upper bounds are achievable for suf-

ficient expansion and shrinking on Rlos and Rnlos respectively.

Fig. 6 is consistent with Proposition 3 and 4. In fact, for the

purpose to assess the accuracy of PL bounds approximation in

the optimal regime, we limit first the scaling of PL with T into

this regime by considering the combinations (λ = λg ;Rlos =

1;Rnlos = 2), (λ =
λf+λg

2 ;Rlos = 10;Rnlos = 20) and (λ =

λf ;Rlos = 100;Rnlos = 200), where λf = Tδ20

πF−δ20
(T) and

λg = Tδ21

πF−δ21
(T) . As can be observed from Fig. 6 for αlos = 3

and αnlos = 4, λf and λg are increasing with the SINR target

T until a stage where they become stable and independent

from T (Remark 6). Moreover, PSINR
L remains bounded by

the hypergeometric closed-form expression of PSINR
L1

(αlos;T)
for λ = λf and PSINR

L1
(αnlos;T) for λ = λg .

VI. CONCLUSION

In this paper, we investigated the importance of introducing

generalized shadowing and conventional RNPO parameters

into the cell-selection model. Using tools from SG, we estab-

lished an SINR distribution equivalence between a 3D network

with shadowing and RNPO parameters and a 2D network in

which they are ignored.

Next, for mathematical convenience and model tractability,

we proposed an equivalent 2D network based on the H–

LOS probability model such as the effect of shadowing and

RNPO parameters is interpreted as captured via the fluctuation

of aggregated parameters Rlos and Rnlos. We derived then

the coverage probability and confirmed that its formulation

generalizes that of several previous works. Moreover, the

regimes where coverage probability is maximized as well

as the interference-limited one are investigated based on the

scaling of Rlos and Rnlos, which implicitly reflects different
realization of shadowing and RNPO parameters. An inter-

mediary result is a generalisation of the special case closed-

form expression in [1]. Our results give practical insights for

operators and vendors considering the deployment of ultra-

dense 5G networks.
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