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ABSTRACT
Graph Signal Processing has become a very useful frame-
work for signal operations and representations defined on
irregular domains. Exploiting transformations that are de-
fined on graph models can be highly beneficial when the
graph encodes relationships between signals. In this work,
we present the benefits of using Spectral Graph Wavelet
Transform (SGWT) as a feature extractor for machine learn-
ing on brain graphs. First, we consider a synthetic regression
problem in which the smooth graph signals are generated as
input with additive noise, and the target is derived from the
input without noise. This enables us to optimize the spectrum
coverage using different wavelet shapes. Finally, we present
the benefits obtained by SGWT on a functional Magnetic
Resonance Imaging (fMRI) open dataset on human subjects,
with several graphs and wavelet shapes, by demonstrating
significant performance improvements compared to the state
of the art.

Index Terms— graph signal processing, wavelets, neu-
roimaging, regression

1. INTRODUCTION

The emergence of Graph Signal Processing (GSP) is mostly
due to the elegant and powerful analogy between graph lapla-
cian eigenvectors and classical Fourier analysis [1]. As such,
application domains involving graphs to model mutltivariate
dependencies are naturally adapted to the GSP framework. In
particular, recent studies in neuroimaging have leveraged the
use of graph theory to study brain networks, giving rise to
the field of network neuroscience [2]. However, the majority
of network neuroscience studies have focused on analyzing
the properties of the graph itself (e.g. graph theoretical de-
scriptors of white matter connectivity [2]), rather than signals
of brain activity on a brain graph. In turn, most studies ana-
lyzing brain signals relies on the use of massively univariate
statistics, analyzing each brain region independently [3]. Re-
cent methodological efforts push towards the use of machine
learning as multivariate methods able to capture whole brain
dependencies of neural activity [4].

Our aim with the present paper is to demonstrate the po-
tential of simultaneously using brain connectivity and sig-
nals from neuroimaging data to boost performance of ma-
chine learning tasks, by leveraging the GSP framework. In
particular, we aim at testing the benefits of using SGWT as a
feature extractor for machine learning on neuroimaging data.

The remainder of the paper is organized as follows. In
section 2 we will present previous studies related to SGWT
and GSP applied to machine learning in neuroimaging. In
section 3 we will present our experimental setup, the formu-
lation of SGWT that will be used in this paper and the proce-
dures used to build our graph models. In section 4 we present
experiments and results on a synthetic regression problem and
fMRI signals. Finally, we conclude in section 5.

2. RELATED WORK

With the development of GSP, frameworks based on wavelets
on graphs have become promising, due to their over-complete
analysis in both localization on graph nodes and different
scales with respect to the spectrum of the graph. To obtain
such analysis on irregular domains such as graphs, several
formulations of graph wavelets have been proposed [5, 6, 7].
For example, Narang reports a compact comparison of sev-
eral formulations in terms of significant properties such as
perfect reconstruction or orthogonality [5]. In this paper, we
use Spectral Graph Wavelet Transform (SGWT) introduced
in [7]. Basically, SGWT exploits the Fourier transform anal-
ogy that is defined on graphs [1] and defines wavelet kernel
functions in the spectral domain.

While there is a growing literature applying GSP to neu-
roscientific questions, (for a review, see [8]), most studies use
GSP to derive descriptors (such as alignement of functional
signals to the underlying graph [9]) that are further analyzed
using inference based statistics (e.g. [10]). For example,
Leonardi [11] shows the statistical relevance of SGWT coeffi-
cients in different scales with varying experimental conditions
in an fMRI paradigm.

However, studies applying GSP for machine learning in
neuroimaging are relatively scarce. In [12], the authors de-



fined a low rank, dimensionality reduction approximation
and recovers the underlying graph, showing performance
improvements when using the learnt approximation as fea-
tures for supervised classification. In [13], the authors used
GSP as dimensionality reduction and feature extraction in a
supervised learning setting with fMRI. The authors show per-
formance improvements in both simulated cases and real data.
A recent contributions uses GSP to extract features for brain
computer interfaces based of near-infrared spectroscopy brain
signals [14], showing significant performance improvements
compared to previous work on the same dataset. Neverthe-
less, to the best of our knowledge, there is no published study
exploiting SGWT as feature extractor for machine learning in
neuroimaging.

3. METHODS

3.1. Graph Wavelet Transform

Using graph wavelet transform enables multi-scale signal rep-
resentations adapted to the underlying graphs, which in turn
facilitate the detection of abnormal changes or discontinuities
in the original domain, and ease the interpretation of signals
in both localization and frequency. With these motivations,
we adopt the formulation of SGWT [7].

As in classical signal processing, wavelet functions are
defined as ψs,a(x) for different scales s, and translations a.
Graph Wavelets can be also interpreted in the Fourier domain
as:

ψs,a(x) =
1

2π

∫ ∞
−∞

ψ̂(sω)e−jωaejωxdω (1)

where ψ̂(sω) is the Fourier transform of the scaled wavelet,
e−jωa is the Fourier transform of the spatial translation,
(which can be seen as the Fourier Transform of a delta local-
ized at a) and ejωx is the Fourier basis function. These terms
will be addressed to corresponding terms in graph wavelet
transform definition.

Let an undirected, weighted graph G, with a vertex set
V such as |V | = N , and weight matrix W ∈ RN. W is a
symmetric matrix of weights wij . The Laplacian operator of
G is defined as follows:

L = D −W (2)

where D is a diagonal matrix such as Dii =
∑
j |wij |. Here,

weights wij are allowed to be negative, and we deal with is-
sues related to semi-positiveness of the L by using the abso-
lute diagonal degree matrix [11]. Also, the normalized Lapla-
cian is defined as Lnorm = D−1/2LD−1/2. Analogous to
classical signal processing, eigenvectors U and eigenvalues
of the Laplacian matrix L correspond to the Fourier basis and
frequency values, respectively. A graph signal f is a vector
in RN defined in the vertex domain [1], and spectral filtering
operations f are done through Graph Fourier Transform, de-
fined by f̂ = UT f .

By interpreting scaling and translation operations, as in
equation 1, it is possible to define graph wavelets as follows:

ψs,a =

N∑
n=1

g(sλn)δ̂(n)un (3)

where g is a band-pass kernel defined in the spectral domain,
corresponding to the Fourier transform of the wavelet at scale
s in equation 1, and δ̂(n) is the Graph Fourier transform of δ
localized at a, corresponding to the spatial translation compo-
nent in equation 1. Finally, un are the columns of U, eigen-
vectors of L. The complete frame for the wavelet transform
is computed by adding a low-pass filter, h(λ), also called the
scaling function. As a result, the obtained transform covers
all parts of the graph spectrum. The final transformation for a
graph signal f is the following inner product:

Wf (s, a) =< ψs,a, f > (4)

3.2. Graph Wavelet Kernel Design

The informative property of SGWT as signal representation is
highly related to the selection of the scaling and wavelet func-
tions, h(λ) and g(λ). Such a choice impacts the stability of
reconstruction of the original graph signal. As reported in [7]
and [15], a wavelet frame would be tight if the sum of squares
of all kernels remains constant through the spectrum (Parse-
val identity), a necessary condition for perfect reconstruction
of a signal. However, it is possible to relax this constraint by
accepting some variation, resulting in more freedom of kernel
selection (e.g. using cubic splines). Another aspect of kernel
design is spectrum coverage. For a graph model, the spec-
trum is defined by the eigenvalues of L, and any continuous
function that is defined in the spectral domain (as a function
of λ) is only evaluated at those eigenvalues, λn, [15]. There-
fore, one should examine the eigenvalue locations through the
spectrum when designing kernel functions.

Shuman et al.provides tight and spectrum adapted wavelet
kernels, called Warped Translates. In [15], a tight frame is
generated with a special function:

q(λ) :=

K∑
k=0

ak cos

(
2πk(ω(λ)− 1

2
)

)
10≤λ<1 (5)

and its translated versions in the graph spectrum, q
(
ω(λ)− m

R

)
where

∑K
k=1(−1)kak = 0, and ω is a non-decreasing warp-

ing function that modifies the kernels’ behaviour on the
spectrum. For example, choosing a warping function as the
approximated cumulative distribution function of eigenvalues
concentrates the kernels in ranges in which the eigenvalues
are densely placed (see Fig. 1). In [15], the superior discrim-
inatory power of warped translates is clearly demonstrated,
because different parts of the evaluated spectrum are perfectly
covered and segmented by different kernels.



Fig. 1. Warped Translate Wavelet Kernels on Spectral Do-
main, in the case of the KNN-Correlation Brain Graph. Ver-
tical lines depict placement of eigenvalues.

3.3. Synthetic Graph Signals and Regression Problem

In this work, synthetic signals are generated for getting more
understanding on the behavior of SGWT in a regression prob-
lem, in the case where the signals are smooth on the graph.
The workflow that generates the input and output starts with
creating a Erdos Renyi graph (with a probability of edge pres-
ence of p = 0.1), G with N nodes and associated weight ma-
trix W. A diffusion operator is computed using a lazy random
walk, A = (I + D−1W ). Secondly, we generate a random
signal matrix R of size M ×N , where M is number of sam-
ples and N is number of features, and the generated set of
signals are diffused by multiplying it by the diffusion opera-
tor, A, such as the diffused signals are R̂ = RA. The third
step is to generate a random vector of regression weights β,
and compute the nonlinear function output as y = log(βT R̂).
Finally, zero-mean Gaussian noise is added on the graph sig-
nals, so the final observed signals are X = R̂+N (0, σ2),
with σ = 0.1. With this procedure, we are able to obtain
graph signals, and also generate a problem that cannot be eas-
ily solved by linear regressors. Those signals are smooth on
the graph likewise the FMRI signals on the brain nodes.

3.4. fMRI Datasets

We consider here an open dataset of fMRI data on human
subjects who rated pictures with emotional content [16].
We fetched statistical maps of whole brain activity during
single trials for each subject, from neurovault [17] (collec-
tion number 1964). The supervised learning task consists
in predicting the rating given by the subject from brain
maps. As this dataset didn’t include connectivity data that
could be used to compute subject-specific graphs, we es-
timated average brain graphs from resting state fMRI data
(i.e. spontaneous fluctuations of the brain at rest) from
158 subjects of an open resting-state dataset [18]. We used

the preprocessed resting-state data, described here https:
//neuroanatomyandconnectivity.github.io/
opendata/. As both datasets were spatially normalized in
the standard MNI space, we defined regions of interest (ROI)
to enable the correspondance between the graph, defined on
the resting-state dataset, and the signals from the emotional
rating dataset. Therefore, we parcellated all resting-state
time-series and brain maps on 523 non-overlapping ROIs
from the finest scale of BASC atlas (444 networks) [19].

3.5. Graph Construction

We explain here the different graph inference methods applied
on the parcellated resting state time-series. The weight ma-
trix, W formulations are as follows:

• Functional Connectivity with Covariance or Correla-
tion Graph: We derive graphs from temporal covari-
ance and correlation. As variant of these graphs, thresh-
olded and binary versions of these adjacency matrices
are also defined.

• KNN Covariance/Correlation Graph: Another variant
to previous graphs is generated by limiting the numbers
of neighbors per node. For each node, the K strongest
edges are kept and rest are set to a weight of 0. For the
symmetry, when Wij is set with nonzero edge, same
value is kept in Wji. Binary versions are also generated
by setting nonzero values to 1.

• Semi-Local Graph: Another strategy that exploits both
the geometrical structure and functional connectivity is
the semi-local graph, as tested in [13]. The semi-local
graph uses a threshold (set to keep the graph connected)
on the euclidean distance between baricenters of nodes,
and sets connection weights corresponding to long dis-
tances to 0.

• Kalofolias Graph: We used the method from Kalofo-
lias [20], which relies on defining a smoothness prior
to infer the graph from the data.

3.6. Dimensionality Reduction and Regression

For the synthetic dataset, generated inputs X are first trans-
formed using SGWT, followed by dimensionality reduction
using 100-best feature selection. Performances of linear re-
gression predicting y are compared with and without SGWT
for different kernels. For the fMRI dataset, we reproduced the
methods from the original paper [16] to be able to compare re-
sults. A PCA with 121 components is used for dimensionality
reduction, and regression is performed with Lasso. Careful
cross-validation (CV) is performed over subjects and regu-
larization parameter for LASSO, using leave-one-subject-out,
enabling reliable generalization. We compared the original
pipeline that uses no parcellation (original signal), parcellated
signals on BASC ROI, and SGWT representations.



Data
Repr.

CV Results Test Results Transform Properties
RMSE R2-score Pearson RMSE R2-score Pearson Graph Kernel

Original 1.080 ±0.028 0.204 ±0.073 0.810 ±0.018 1.036 0.451 0.693 NA NA
ROI 1.054 ±0.031 0.231 ±0.079 0.827±0.017 1.022 0.466 0.701 NA NA

SGWT-1 1.047 ±0.029 0.234±0.082 0.832 ±0.015 0.983 0.506 0.725 Corr. Warped
SGWT-2 1.067±0.030 0.205 ±0.085 0.840 ±0.014 0.987 0.502 0.737 KNN Corr. Warped
SGWT-3 1.056±0.034 0.205±0.085 0.839±0.014 0.988 0.500 0.722 KNN Cov Meyer
SGWT-4 1.033 ±0.030 0.245 ±0.082 0.828±0.016 0.990 0.498 0.720 Kalofolias Cubic Spline
SGWT-5 1.062 ±0.031 0.196 ±0.107 0.843 ±0.014 0.991 0.487 0.730 KNN Corr. Iter. Sinus

Table 1. Results for the fMRI Dataset

Wavelet Kernels MSE R2-score
Cubic Spline 1514.45e-05 0.392438

Meyer 1518.24e-05 0.390937
Iterated sinusoidal 1515.33e-05 0.392079
Warped Translate 1507.40e-05 0.395246

No Wavelet 1533.48e-05 0.384859

Table 2. Results for the Synthetic dataset

4. RESULTS

For the evaluation of results on the synthetic dataset,R2-score
and Mean Square Error (MSE) are used, whereas for the fMRI
dataset, Root mean square error (RMSE) and Pearson corre-
lation are employed , to be consistent with [16]. Variability
in generalization is reported using the average and the stan-
dard error of the mean (SE) over CV folds for each score. In
addition, we report results on a generalization test set using a
predefined, separate hold-out test dataset as explained in [16].

Table 1 presents results obtained for the fMRI dataset. Re-
sult for SGWT are picked from the set of best results for dif-
ferent graphs and wavelet function. In Table 1, the best five
results for SGWT are reported and these scores stands for
the results of different graph and kernel selections. SGWT
provides significant performance gains when compared to us-
ing only parcellated ROI signals, or original signals with no
parcellation. In particular, warped translate have a better po-
tential for generalization to the test dataset. We suggest that
SGWT enables an efficient exploitation of underlying mul-
tivariate dependencies, using spectrum-adapted wavelet ker-
nels on a brain graph. While the magnitude of performance
gain is strongly dependent to underlying information inferred
by the graph, warped translates are able to extract more infor-
mative features in terms of regression problems.

Comparisons for the synthetic dataset are reported in Ta-
ble 2. The experiment for this analysis is repeated 500 times
with randomly generated graphs with 500 nodes, and average
scores are interpreted. As indicated by Table 2, SGWT, and
in particular warped translate kernels are able to generate fea-
tures that are significantly more informative to solve the re-
gression problem. This indicates that the regression problem

Fig. 2. Significant Scale-Localization map on brain. Positive
and negative weights are denoted with ± sign.

considerably benefits from using discriminative, spectrum-
adaptive coverage of kernels w.r.t. others.

We depict in Fig. 2 the different scale and spatial local-
ization of the largest LASSO coefficients that solve the re-
gression problem. Conceptually, this representation shows
the most important graph scales for each localization in brain.
Negative and positive weights are separately examined and
the largest contribution for each node is denoted with its sign
and scale in Fig.2.

5. CONCLUSION

In this contribution, we have demonstrated the potential of
combining SGWT and machine learning using synthetic
data and fMRI data from open datasets. A key point of the
proposed approach is to rely on Warped Translated kernels
for wavelet definitions, which optimizes spectral coverage of
SGWT. We showed that using features from SGWT can boost
performance in a challenging regression task on neuroimag-
ing data. In future work, we plan to better examine how the
estimated features can be used to enhance interpretability
of the trained models. Another perspective is to define new
models based on dynamic graphs in order to fully exploit the
temporal dimension of brain activity, instead of relying solely
on spatial maps as graph signals.
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