G. Evensen, Data Assimilation, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00229825

S. Hong and J. Dudhia, Next-generation numerical weather prediction : Bridging parameterization, explicit clouds, and large eddies, Bulletin of the American Meteorological Society, vol.93, issue.1, pp.6-9, 2012.
DOI : 10.1175/2011bams3224.1

URL : http://journals.ametsoc.org/doi/pdf/10.1175/2011BAMS3224.1

P. J. Van-leeuwen, Nonlinear data assimilation in geosciences : an extremely efficient particle filter, Quarterly Journal of the Royal Meteorological Society, vol.136, issue.653, pp.1991-1999, 2010.

P. Tandeo, P. Ailliot, B. Chapron, R. Lguensat, and R. Fablet, The analog data assimilation : application to 20 years of altimetric data, International Workshop on Climate Informatics, pp.1-2, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01356222

J. Paduart, L. Lauwers, and J. Swevers, Identification of nonlinear systems using Polynomial Nonlinear State Space models, Automatica, vol.46, issue.4, pp.647-656, 2010.

L. Steven, J. L. Brunton, J. Proctor, and . Nathan-kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the National Academy of Sciences, vol.113, issue.15, pp.3932-3937, 2016.

R. Lguensat, P. Tandeo, P. Ailliot, M. Pulido, and R. Fablet, The Analog Data Assimilation, Monthly Weather Review, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01609141

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 2015.
DOI : 10.1109/cvpr.2016.90

URL : http://arxiv.org/pdf/1512.03385

Y. Wang and C. Lin, Runge-Kutta neural network for identification of dynamical systems in high accuracy, IEEE Transactions on Neural Networks, vol.9, issue.2, pp.294-307, 1998.

R. Fablet, S. Ouala, and C. Herzet, Bilinear residual Neural Network for the identification and forecasting of dynamical systems, SciRate, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01686766

A. Emmanuel-de-bezenac, P. Pajot, and . Gallinari, Deep learning for physical processes : Incorporating prior scientific knowledge, CoRR, 2017.

I. Fried, Numerical Solution of Differential Equations, 1979.

J. C. Butcher, Coefficients for the study of runge-kutta integration processes, Journal of the Australian Mathematical Society, vol.3, issue.2, pp.185-201, 1963.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems, 2018.

P. Diederik, J. Kingma, and . Ba, Adam : A Method for Stochastic Optimization, 2014.

E. N. Lorenz, Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences, vol.20, issue.2, pp.130-141, 1963.

A. C. Hindmarsh, ODEPACK, a systematized collection of ODE solvers, IMACS Transactions on Scientific Computation, vol.1, pp.55-64, 1983.