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ABSTRACT
In this work, we investigate residual neural network repre-
sentations for the identification and forecasting of dynamical
systems. We propose a novel architecture that jointly learns
the dynamical model and the associated Runge-Kutta integra-
tion scheme. We demonstrate the relevance of the proposed
architecture with respect to learning-based state-of-the-art ap-
proaches in the identification and forecasting of chaotic dy-
namics when provided with training data with low temporal
sampling rates.

Index Terms— Dynamical systems, Data-driven models,
Neural networks, Forecasting, Runge-Kutta methods

1. PROBLEM STATEMENT AND RELATED WORK

The modeling of physical dynamics is a critical issue.
While model-driven strategies based on the definition of or-
dinary differential equations (ODE) governing the observable
phenomena are the classic frameworks to address such a pro-
blem [1]. Limitations in terms of numerical complexity [2] as
well as the ability to better relate models and observation data
for poorly-resolved processes [3] open the venue for data-
driven representations as an appealing alternative [4], where
one can determine a representation of processes of interest di-
rectly from data, especially with the increasing availability of
representative data collections.

Regarding the data-driven identification of dynamical
systems, one may distinguish representations based on physi-
cal priors and machine learning. The first category comprises
polynomial representations [5] and sparse regression fra-
meworks [6]. They are particularly appealing in explicitly
relating the learnt representation and the associated physical
operator. Such methods may, however, fail in representing
complex non-linear systems for which strong priors are not
available. Machine learning methods can greatly broaden
modeling capabilities often however at the expense of a lack
of interpretability. A large interest has for instance recently
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emerged in analog methods, which are based on nearest
neighbours [7], in ocean and atmosphere science. Though
leading to significant advances for simulation and recons-
truction issues, the lack of physical interpretability of such
approaches advocates for frameworks bridging the physical
paradigm and the statistical paradigm underlying machine
learning. In this respect, neural networks, especially Residual
Networks (ResNet), are of key interest [8]. More specifi-
cally, the discretized numerical integration schemes of an
ODE can be stated as a ResNet [9, 10], which allows for
the data-driven identification of the dynamical operator go-
verning a dynamical system of interest. To our knowledge,
previous works mostly focused on the parameterization of
the dynamical operator using or not physical priors (e.g., bi-
linear setting [10], physics-informed parameterization [11]).
Besides the identification of the dynamical operator, the se-
lection of the numerical integration scheme (e.g., explicit
Eurler and Runge-Kutta schemes) may significantly affect
modeling and forecasting performance, especially when the
data available for training may not involve fine-scale time
sampling with respect to the characteristics time scales of the
considered processes, as shown in a previous work [10]. Such
issues appear critical when addressing the identification of
dynamical systems from observation data (e.g., satellite earth
observation data).

In this work, we address the joint data-driven identifica-
tion of the dynamical operator governing a dynamical process
of interest and the associated numerical integration scheme.
We propose a residual integration neural network which
jointly learns a dynamical model and an explicit Runge-Kutta
integration scheme with an arbitrary number of stages. From
an insight on high order numerical integration schemes, we
demonstrate the relevance of the proposed architecture for
identification and forecasting purposes when considering
large integration step. We make explicit the relationship bet-
ween the number of residual blocks and the order of a given
integration scheme in terms of truncation error and show
that increasing the number of residual layers in our archi-
tecture results in a behaviour similar to the integration of an
ODE depending on the integration time-step. Overall, our
key contributions are three-fold : i) we propose a new neural
network architecture for the joint identification of dynami-
cal systems and their corresponding integration scheme ; ii)



we make explicit the link between the considered residual
architecture and high-order integration schemes in terms of
truncation error, iii) we demonstrate the relevance of the pro-
posed architecture for Lorenz-63 and Lorenz-96, which are
representative of chaotic geophysical dynamics.

2. NUMERICAL INTEGRATION AND
RUNGE-KUTTA METHODS

This section briefly introduces Runge-Kutta numerical in-
tegration schemes, that will provide the basis for the definition
and analysis of the proposed residual integration architecture.

Let us consider a dynamical system, whose time-varying
state Xt is governed by the following ordinary differential
equation (ODE) :

dXt
dt

= F (t,Xt) (1)

where F is the dynamical operator. Most of the time, this
ODE cannot be solved analytically and numerical integration
techniques using discrete approximations are implemented.

Assuming that we are provided with an initial condition
Xt0 , we aim to solve the ODE for an interval t ∈ [t0, tf ].
Given a discretization of the interval using a time-step h > 0

as h =
tf−t0
N and tn = t0 + nh, where 0 < n < N

an integer and N is the number of grid points, it comes to
approximate the value of variable Xt at each grid point :
Xt1 , ..., Xtn , ..., XtN . Explicit and implicit numerical inte-
gration schemes may be considered [12]. In this work, we
focus on explicit integration schemes. A one-step explicit
integration scheme is defined as :

Xtn+1 = Xtn + hΦ(tn, Xtn , h) (2)

with Φ(tn, Xtn , h) a numerical integration operator. Here, we
aim to learn a prediction operator based on Φ so that the fore-
casting error (typically, a one-step-ahead error) is minimized.
From an integration point of view, one may rather consider
the truncation error to characterize the numerical integration
scheme. The truncation error is defined with respect to the
true analytic solution XT

t as follows :

en = XT
tn+1

−Xtn+1(tn, X
T
tn , h) (3)

en = XT
tn+1

−XT
tn − hΦ(tn, X

T
tn , h) (4)

A p-order numerical resolution method can be derived,
using the Taylor development of the analytic solution XT

t up
to the order p+ 1. Assuming that F is a Cp function (p times
derivable with a continuous pth derivative), we can write the
Taylor expansion as :

XT
tn+1

= XT
tn +

p∑
k=1

hk
1

k!
F k−1(tn, X

T
tn)

+ hp+1 1

(p+ 1)!
F p(tn, X

T
tn) +O(hp+2)

(5)

The corresponding p-order numerical integration scheme
can be derived by replacing Φ(tn, Xtn , h) in Equation 2 such

as :

Φ(tn, Xtn , h) =

p∑
k=1

hk−1 1

k!
F k−1(tn, Xtn) (6)

The corresponding truncation error of the p-order method
can be deduced by neglecting the term O(hp+2) in equation
5 as :

en = hp+1 1

(p+ 1)!
F p(tn, Xtn) (7)

The explicit Euler method corresponds to p = 1 and its
truncation error is proportional to h2. To use a first-order me-
thod like Euler, the integration time step should be small en-
ough which is not always possible for complex systems due
to computational issues. Higher-order techniques are more
robust to the integration time step [12]. However, the com-
putation of high-order derivatives becomes quickly expensive
which may limit their use in practice. Runge-Kutta integration
schemes were introduced as an efficient trade-off between
high-order approximations and computational complexity. It
relies on the following recurrent update :

Xtn+1 = Xtn +

s∑
i=1

βiki (8)

where s is the number of stages of the method, ki =
F (tn + cih,Xtn + h(

∑i−1
j=1 αi,jkj)) with 0 < j < i ≤ s and∑s

i=1 βi = 1, 0 < ci < 1,
∑i−1

j=1 αi,j = ci. When s = 1, it
simply corresponds to the explicit Euler method. For a given
number of stages s, Runge-Kutta method coefficients need to
satisfy some extra conditions (by matching it to the corres-
ponding Taylor series) to get a given order p [13]. Formally,
the Runge-Kutta method order p is always inferior or equal to
the number of stages s. For s = 4, we retrieve the well-known
Runge-Kutta-4 method. For p > 4, we need more integration
stages s to truly reach a given error order p.

3. RESIDUAL INTEGRATION NETWORK

This section introduces the proposed residual integration
neural network (RINN) framework. We first introduce the
proposed architecture and the associated learning scheme.
We then analyze the characteristics of RINNs in terms of
forecasting error.

3.1. Proposed Neural Network architecture

Let us assume we are provided with representative time
series {X} with a given time sampling rate h, which are
governed by an unknown ODE. For the sake of simplicity,
we consider below a single time series of length N + 1,
{X0, X2, . . . , XN}. The same applies for a dataset formed
by different time series possibly of varying lengths. We aim
to identify the unknown dynamical operator F (Equation (1))
from time series {X} when sampling rate h may be high.
As illustrated in the reported experiments, in such situations,
Euler-based learning schemes [6, 10] may fail in providing
relevant forecasts.



Motivated by the effectiveness of high-order integration
schemes in solving differential equations with relatively high
time-step h, we propose a novel architecture based on resi-
dual networks and Runge-Kutta to effectively identify dyna-
mical systems when provided with observations with low time
sampling rates. The proposed architecture involves a residual
neural network architecture. A residual block FNN is sha-
red upon all the residual layers up to the predefined stage S.
This residual block is the neural-network parameterization of
the dynamical operator F in Equation (1). Our architecture
mimics a Runge-Kutta numerical integration scheme with S
stages, which imposes the following constraints on weighing
parameters {βi}i, {αi,j}i and {ci}i :

ŝ∑
i=1

βi = 1, ∀i, 0 < ci < 1 and
i−1∑
j=1

αi,j = ci (9)

Overall, two main components need to be defined to spe-
cify a RINN :

— The parametrization chosen for the residual block FNN

approximating our true dynamical model F in terms
of neural network structures. It may rely on physics-
informed parameterizations [6, 14, 10, 11]. ;

— The number of stages S of our residual integration net-
work.

The learning procedure is stated as the minimization of
the forecasting error subject to constrain (9) :

min
θNN ,c,β,α

N∑
n=1

‖XT
tn −Ψ(XT

tn−1
, θNN , c, β, α)‖

subject to(9)

(10)

where Ψ is the output of the RINN obtained by applying the
Runge-Kutta recursion (Equation 8) based on the approxi-
mate model FNN and the weights c, α and β introduced
above. θNN are the parameters of operator FNN . We imple-
ment the considered architecture and learning criterion under
pytorch framework. As optimization solver, we consider the
ADAM algorithm [15]. The constrained optimization is sol-
ved by clipping the integration weights after each training
epoch.

3.2. Performance of the learnt RINN

Assuming that the S-stage RINN corresponds to an p̂-
order numerical integration scheme, the loss function of the
RINN relates to the truncation error of the learnt integration
scheme :

ên
2 = (XT

tn+1
− X̂tn+1)2 (11)

where X̂tn+1 is the output of our RINN.
Using the Taylor expansion given by equation 5 over the

true state XT
tn+1

up to the order p+ 1, the training error of the

learnt p̂-order numerical integration scheme is given by :

ên
2 = (

p∑
k=1

hk
1

k!
F k−1(tn, X

T
tn)

+ hp+1 1

(p+ 1)!
F p(tn, X

T
tn)

−
p̂∑
k=1

hk
1

k!
F̂ k−1(tn, X

T
tn))2

(12)

This squared truncation error depends on two learnt para-
meters θNN (i.e., the parameters of dynamical operator FNN )
and p̂. It reaches a minimum for FNN = F and p̂ = p. Hence,
a theoretic lower bound of the training loss function of the
RINN is given by the truncation error of our true dynamical
model :

ên
2 > (hp+1 1

(p+ 1)!
F p(tn, X

T
tn)))2 (13)

Equations 12 and 13 illustrate two main characteristics
about learning neural network representations of dynamical
models : (i) one cannot expect a training error lower then a
theoretical lower bound represented by the truncation error
of the true dynamical model (assuming p to be high enough
to properly integrate the true dynamical system so that terms
proportional to hp+2 or higher are negligible), (ii) we may
jointly tune FNN and p̂ in the RINN architecture to lower the
training loss function. Assuming that the integration time step
h is set by the temporal sampling of our training data, one may
improve the approximation FNN of the true dynamical mo-
del F as mostly studied in the data-driven community [6, 10].
One may also decrease the training loss function through a
greater order p̂ of the integration scheme reproduced by the
RINN, parameterized through the number of stages S. This
clearly motivates the development of residual networks with
several residual layers. Our previous work [10] can be regar-
ded as an illustration of this aspect. We showed that a residual
dynamical model reproducing the Runge-Kutta-4 scheme out-
performs the model reproducing the Euler setting and this
even with a low integration time-step. Those results clearly
relate to Equation 12.

4. NUMERICAL EXPERIMENTS

In this section, we evaluate the proposed framework and
demonstrate its relevance to identify and forecast dynamical
systems governed by an unknown ODE when only provided
with data with a low sampling rate. As case studies, we consi-
der two models widely studied in geophysics as examples of
chaotic patterns in ocean-atmosphere science [16].



4.1. Case studies

Lorenz-63 system : The Lorenz 63 dynamical system is
a 3-dimensional model governed by the following ODE :

dXt,1

dt
= σ (Xt,2 −Xt,2)

dXt,2

dt
= ρXt,1 −Xt,2 −Xt,1Xt,3

dXt,3

dt
= Xt,1Xt,2 − βXt,3

(14)

Under parameterization σ = 10, ρ = 28 and β = 8/3, this
system involves chaotic dynamics with two attractors [16].

Lorenz-96 system : The Lorenz 96 dynamical system is
a 40-dimensional system. It involves propagation-like dyna-
mics governed by :

dXt,i
dt

= (Xt,i+1 −Xt,i−2)Xt,i−1 +A (15)

with periodic boundary conditions (i.e. Xt,−1 = Xt,40 and
Xt,41 = Xt,1) and A = 8. Lorenz-96 system provides means
to demonstrate the relevance of the proposed framework for
higher-dimensional systems.

We simulate Lorenz-63 (resp. Lorenz-96) state sequences
using the LOSDA ODE solver [17] with an integration step of
0.01 (resp. 0.05). We then subsample the simulated sequences
to different timesteps while making sure we don’t exceed the
characteristic time-scale.

Fig. 1: Generated time series of the proposed models. Generated
time series of the proposed models for h = 0.4. For visualization
purpose, the time series were interpolated to an h = 0.01 grid using
a cubic interpolation.

4.2. Results

In this section, we compare several Residual Integration
neural network performances in predicting the Lorenz dyna-
mics from a given initial state. For benchmarking purpose, the
following models were tested :

— Sparse regression model [6] (SR) : This model com-
putes a sparse regression over an augmented states vec-
tor based on second order polynomial representations
of the Lorenz states. The learnt dynamical model is then
integrated to compute forecasts using the LOSDA ODE
solver [17].

Model h=0.3 h=0.4 h=0.5

SR t0 + h 11.10 12.56 7.48
t0 + 4h 9.64 12.51 57.90

RINN1 t0 + h 11.36 10.64 3.83
t0 + 4h 8.09 9.96 8.60

RINN4 t0 + h 2.24 7.66 2.80
t0 + 4h 8.33 10.79 8.64

RINN11 t0 + h 0.23 0.54 0.41
t0 + 4h 1.01 2.22 2.06

Table 1: Forecasting performance of data-driven models for
Lorenz-63 dynamical model : mean RMSE for different forecasting
time steps.

Model h=0.3 h=0.4 h=0.5

RINN4 t0 + h 1.30 2.89 2.76
t0 + 4h 2.69 3.31 3.05

RINN11 t0 + h 0.02 0.68 2.06
t0 + 4h 0.09 2.48 3.34

Table 2: Forecasting performance of data-driven models for
Lorenz-96 dynamical model : mean RMSE for different forecasting
time steps.

— Residual Integration Neural Network 1 (RINN1) :
the proposed residual architecture with a number of
stages equal to one. This corresponds to the first order
Euler integration method.

— Residual Integration Neural Network 4 (RINN4) :
the proposed residual architecture with a number of
stages equal to four. This comprises the fourth-order
Runge-Kutta 4 integration technique with integration
parameters {βi}i, {αi,j}i and {ci}i set to the true
Runge Kutta 4 parameters.

— Residual Integration Neural Network 11 (RINN11) :
Proposed residual architecture with a number of stages
equal to 11. In this architecture, the weights of the inte-
gration scheme are learnt as explained in section 3.1.

In all these reported experiments, the parameterization
used for the neural-network approximation FNN of the dy-
namical operation F is a bilinear architecture as proposed in
[10]. This bilinear architecture ensures that the true model
truly lies within the space of possible model parameteriza-
tions.

We report the forecasting performances in Tab. 1 and 2.
Figure 1 illustrates the trajectories generated using the trai-
ned data-driven models on the Lorenz-63 system with h =
0.4. The proposed residual integration neural network with
11 residual layers leads to the best performances comparing
to identification techniques based on low order integration
schemes. This gain clearly motivates the investigation of such
representations in data-driven dynamical modeling.



5. CONCLUSION

In this work, we demonstrate the relevance of the residual
integration neural network in the identification of dynamical
systems. Through the representation of residual networks as
high order numerical integration schemes, we prove that high
order residual networks can allow the learning of dynamical
models even when provided with training data with low tem-
poral sampling. Further works could investigate a relationship
between the number of stages in our residual network and
the corresponding order of the learnt numerical integration
scheme.
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