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Abstract—In 5G networks, specific requirements are defined
on the periodicity of Synchronization Signaling (SS) bursts. This
imposes a constraint on the maximum period a Base Station
(BS) can be deactivated. On the other hand, BS densification is
expected in 5G architecture. This will lead to an energy crunch
if kept ignored. In this paper, we propose a distributed algorithm
based on Reinforcement Learning (RL) that controls the states of
the BSs while respecting the requirements of 5G. By considering
different levels of Sleep Modes (SMs), the algorithm chooses
how deep a BS can sleep according to the best switch-off SM
level policy that maximizes the trade-off between energy savings
and system delay. The latter is calculated based on the wake-up
time required by the different SM levels. Results show that our
algorithm performs better than the case of using only one type of
SM. Furthermore, our simulations show a gain in energy savings
up to 90% when the users are delay tolerant while respecting the
periodicity of the SS bursts in 5G.

Index Terms—Energy consumption, 5G, sleep modes, Q-
learning

I. INTRODUCTION

With the explosive increase in the number of mobile sub-
scribers and services, mobile networks will have to support a
much higher capacity demand [1]. Nevertheless, the growing
increase in traffic demand is proliferating the energy consump-
tion of the Information and Communication Technology (ICT)
sector. It is estimated that ICT consumes around 4.7% of the
world’s electrical energy, releasing into the atmosphere about
1.7% of the global CO2 emissions [2].

On the other hand, the Fifth Generation of Cellular Mo-
bile Communications (5G) is expected to provide ubiquitous
internet access with 1000 times higher data rate compared to
present cellular systems. As a result, the innovations in 5G
systems are not limited to physical layers techniques, but also
introduce new network architectures and application scenarios.
In particular, a major trend in 5G networks is the deployment
of a large number of small-scale BSs, also known as network
densification. Trying to achieve this ambitious goal relying on
the above paradigm and architecture is not sustainable since
it will lead to an energy crunch with serious economic and
environmental concerns.

Owing to the economic concerns of mobile operators as
well as the environmental ones and in order to cater for the
vision of 5G communication systems, a lot of studies have
investigated distinct approaches to reduce the energy con-
sumption in mobile networks. Since the energy consumption
of a telecommunication network is dominated by the Radio

Access Network (RAN) and in particular the BS consuming
75 − 80% of the network’s energy [3], most of the work
focus on reducing the power at this level to enhance the
energy efficiency of cellular networks. Several techniques
attack the aforementioned challenge on different layers: a) net-
work planning and deployment, b) switching-off techniques, c)
radio resource management optimization, d) component level
enhancement, and e) the use of renewable energy resources
[4]. Among the different layers, sleep mode techniques are
considered to be among the most efficient approaches for
energy savings.

In [3], 5G BSs sleep model are proposed to reduce the en-
ergy consumption of a cellular network. The proposed model
describes different levels of SM the BS can switch to, where
each SM level is characterized by an activation/deactivation
period and a power consumption. Implementing these different
stages of SM in 4G networks is challenging due to backwards
compatibility and reference signaling requirements. However,
in 5G, the Cell Reference Signals (CRS) are removed [5]
making it possible for a BS to explore these different SM
levels. In contrast to models that apply only one type of SM,
in this work, we study the trade-off between energy savings
and added service delay, i.e., the time the user has to wait in the
buffer until the BS reactivates. We consider a cellular network
with unbalanced traffic where each BS chooses its appropriate
SM level in order to achieve a desirable balance between
energy consumption and latency. We propose an adaptive sleep
scheme algorithm based on RL that controls the states of the
BSs, where each BS has access only to its local information
in order to learn the best energy saving policy.

The rest of the paper is organized as follows. Section II
presents an overview of the existing work. In Section III, we
detail the system model along with the 5G sleep mode model.
We give an overview of the distributed Q-learning algorithm
in Section IV, whereas the proposed algorithm is presented in
Section V. Finally, we present the simulation results in Section
VI before concluding in Section VII.

II. RELATED WORK

The literature on Energy Efficiency (EE) cellular networks
is huge [6], [7], and the references therein. BS ON-OFF
switching is considered among the best methods to save
energy since it does not require changes to current network
architecture, and it is easy to implement. This well known



method initially proposed in IEEE 802.11b [8] has attracted
a lot of attention on the research community. For example,
the authors in [9] studied the energy savings problem by
switching-off macro BSs under coverage constraints using
stochastic geometry. Their results achieved an EE gain of
around 1.6 compared to the case where all the BSs are
active. In [10], the authors opted to maximize the EE of
a heterogeneous network using ON-OFF switching subject
to traffic load constraints. In [11], the authors proposed an
optimization mechanism based on delay-constrained energy-
optimal BS sleeping policies. In [12], dynamic programming
is applied to find the optimal BS ON-OFF policy given the
on-grid energy price in order to minimize the on-grid energy
cost purchased by the operator while assuring the downlink
transmission quality at the same time. However, the above
mentioned work focused only on one level of SM, and do not
take into account the activation/deactivation times required for
the BS to switch between states ON and OFF.

In contrast to binary BS models (active and sleep), recent
models have split the SMs state into several levels [13]–[16].
Considering that a BS can switch to different SM levels gives
it more flexibility to adjust with the type and pattern of traffic
to further enhance the system performance. In [13], the EE of
a heterogeneous network is studied by switching small cells
to different SM levels while preserving the Quality of Service
(QoS). Using stochastic geometry, the authors determined the
optimal operating probability for each SM level of each BS.
However, the proposed solution is offline, and the SM levels
discussed are not suitable for 5G networks. In [14]–[16],
the authors proposed the concept of Advanced Sleep Mode
(ASM) which corresponds to gradual deactivation of the BSs
components in order to decrease the energy consumption of
the BS. Even though the used sleep model do not violate the
5G requirements, [14], [15] focused on the energy savings
potential and not the best SM policy to be applied, while [16]
is limited to only one BS.

Recently, artificial intelligence has received significant at-
tention as a highly effective alternative to conventional meth-
ods [17]. In particular, machine learning has found wide-
ranging applications in wireless networks [18]. In [19], a
cognitive engine with reinforcement learning is implemented
at each BS to improve the system capacity and QoS. Fur-
thermore, a BS switching operation algorithm is proposed to
dynamically switch between sleep and active modes. In [20],
the authors presented a distributed Q-learning-based algorithm
that learns energy inflow and traffic demand patterns in a
heterogeneous network. By interacting with the environment,
each agent (i.e. BS) decides its optimal policy (ON or OFF) to
improve the system performance. The authors in [21] proposed
a method for optimizing ON-OFF policies for ultra dense net-
works. The mechanism is based on Deep Q-Learning (DQL)
to solve the dynamic optimization problem. Using DQL, the
authors looked for maximizing the EE while respecting the
QoS of the network.

The above mentioned studies take advantage of machine
learning in order to find the best ON-OFF policy to reduce

the energy consumption of the BS. However, none of them
respect the requirement of 5G on the SS bursts that need to
be transmitted periodically (ranging from 5 to 160ms); hence,
limiting the duration time a 5G BS can switch to SM. For
example, [13] applies SMs that requires several seconds for
the BS to wake up from. The work in [16] use Q-learning to
apply 5G adapted SMs; however, the work is limited to only
one BS.

In this paper, in contrast to most prior work we focus on
5G SM proposed in [3]. We do not limit the work to only
one type of SM, rather we consider a network where each
BS can choose different SM states to switch to. We propose
a distributed Q-learning approach that finds the best policy
for each BS in order to reduce the energy savings while
maintaining the QoS of the users under the 5G requirements.

III. SYSTEM DESCRIPTION

A. 5G Energy Savings Sleep Modes

In [3], GreenTouch identified four distinct SM levels by
grouping sub-components with similar transition latency when
being activated or deactivated. The presented model enables
to quantify the power consumption of the BS in each of the
four SMs. These are:
• SM 1: It considers the shortest time unit of one OFDM

symbol (i.e. 71µs) comprising both deactivation and
reactivation times. In this mode only the power amplifier
and some processing components are deactivated.

• SM 2: It corresponds to the case of sub-frame or Trans-
mission Time Interval (TTI) (i.e. 1 ms). In this SM, more
components enter the sleep state.

• SM 3: It corresponds to the frame unit of 10 ms. Most
of the components are deactivated in this mode.

• SM 4: This is the deepest sleep level. Its unit corresponds
to the whole radio frame of 1s. It is the standby mode
where the BS is out of operation but retains wake-up
functionality.

Higher energy savings can be achieved when switching BSs
to a deeper SM, since more components will be deactivated.
However, this will be associated with longer transition latency
which may impact the QoS of the system. In Table I, we
present the SM levels characteristics.

Along with SM and users’ dynamics, the BS has to wake up
periodically to send signalling bursts. In contrast to Long Term
Evolution (LTE) systems where each antenna must transmit
every 0.2 ms a unique CRS for channel quality estimates and
mobility measurements among other SS, no CRS is required
for 5G [5]. Instead, SS and Physical Broadcast CHannel
(PBCH) are transmitted in SS/PBCH block periodically. It has
been agreed in Third Generation Partnership Project (3GPP)
[5] that this periodicity can be set to any value among [5, 10,
20, 40, 80, 160 ms]. With these values, SM 4 cannot be used.
Hence, we limit our work to the first three SM levels.

B. Network Description

We consider a large-scale wireless downlink cellular net-
work composed of M BSs serving K users. We further



TABLE I: BS Sleep Modes Characteristics [3].

Sleep
level

Deactivation
duration

Minimum
sleep duration

Activation
duration

SM 1 35.5 µs 71 µs 35.5 µs
SM 2 0.5 ms 1 ms 0.5 ms
SM 3 5 ms 10 ms 5 ms
SM 4 0.5 s 1 s 0.5 s

consider that each BS can switch to one of the following SM
levels: SM 1, SM 2 or SM 3.

Whenever a user requests a service from a BS in SM, it
triggers the activation mode and the user is buffered until the
BS wakes up. This has an impact on the latency added to the
system. The deeper the SM is, the more time the user will
have to wait until the BS reactivates. When the user is served
and if the BS is in idle mode, it goes back to its SM level to
save energy until the next users arrival.

We further consider BSs with different users arrival rates.
Thus, we divide the BS into two sets. One corresponds to the
BSs with high users arrival rate denoted by BDense, and the
other grouping the BSs with low users arrival rate denoted by
BLight, such that |B| = |BDense| + |BLight| = M . Note that
the users are uniformly distributed within the cell of each BS.

C. Downlink Transmission Model

We measure the downlink transmission quality between the
serving BS m and a user k based on the Signal-to-Interference-
plus-Noise Ratio (SINR) as follows:

SINRm(k) =
PTx
m hm(k)

σ2 +
∑

m′∈S,m′ 6=m
Pm′hm′(k)

(1)

where PTx
m is the transmitted power of BS m, hm(k) is the

channel gain from BS m to user k, which accounts for the
path loss and shadowing effect, and σ2 is the additive white
Gaussian noise power density.

We can express the peak rate offered to user k and served
by BS m using Shannon-Hartley theorem as follows:

Rm(k) = α×W × log2(1 + SINRm(k)) (2)

where W represents the bandwidth and α the fraction of
bandwidth used for the data transmission.

IV. DISTRIBUTED Q-LEARNING

Distributed Q-learning is an online optimization technique
that aims at controlling multi-agent systems, i.e., a system
featuring M BSs which take decisions (select the appropriate
SM level) in an uncoordinated fashion. Each BS has to learn
independently a policy (SM 1, SM 2 or SM 3) through
real-time interactions with the environment. Q-learning finds
the optimal policy in the sense that it maximizes the ex-
pected value of the total reward (Q-value) over all successive
episodes. The agents (i.e., BSs) have a partial view of the
overall system, and their actions may differ since the users
are unevenly distributed over the network. In particular, the
decision of a BS to choose a SM level is affected by how

many users it has to serve, and on how delay-tolerant these
users are.

In Q-learning, each agent takes an action atm from an action
set A, then moves to a new state st+1

m while receiving a reward
rtm. This reward is then used to update the Q-value locally,
Q(stm, a

t
m), indicating the level of convenience of selecting

action atm when in state stm. The Q-value is updated following
the update rule:

Q(stm, a
t
m)← Q(stm, a

t
m)+

α[rtm + γmax
a∈A

Q(st+1
m , at+1

m )−Q(stm, a
t
m)] (3)

where α is the learning rate that represents the speed of con-
vergence, and γ ∈ [0, 1] is the discount factor that determines
the current value of the future state costs.

During the learning phase, each agent selects the corre-
sponding action based on the ε-greedy policy, i.e., it selects
with probability 1−ε the action associated with the maximum
Q-value, and with probability ε selects a random action:

atm =

argmax
a∈A

Q(stm, a
t
m), if y > ε

rand(A), otherwise
m = 1, . . . ,M.

(4)
By implementing the ε-greedy policy, the BS would have

explored all possible actions and avoided local minima. For
more details on RL and Q-learning the reader is referred to,
e.g., [22].

V. ADAPTIVE PARTIAL SCHEME ALGORITHM

In this section, we present the proposed Q-learning-based
algorithm that controls the states of the BSs. Consider the state
representation S of the BSs. Each BS can be active (serving
users), in sleep mode (SM 1, SM 2 or SM 3) or idle (active
but not serving any user).

S = {Active, Idle,SM 1,SM 2,SM 3}

We define the set of possible actions A the state to which
the BS can switch to. In contrast to schemes that implement
only one type of SM (i.e., SM 1, SM 2 or SM 3), in this work
we emphasis the potential of traffic-aware scheduling where
each group of BSs in a given network can switch to different
SM levels. This will fully utilize the advantages of BSs in the
different states for both energy savings and delay reduction.
For instance, the group of BSs switching to SM 1 will serve
rate sensitive users (i.e. VoIP), whereas the other group of
BSs in SM 3 level will serve delay tolerant users (i.e. HTTP
requests). We call such a schedule an adaptive partial scheme.
The final policy is then to determine how many BSs chose to
switch to SM 1, SM 2 and SM 3.

An episode starts when all the BSs are in idle mode, and
it finishes when all the users are served. During each episode,
a BS chooses an action, then stores a quality-value linking
the states s ∈ S to the chosen action am ∈ A following Eq.
(3). The action consists of choosing the best sleep mode level
having the highest Q-value.



Our goal is to find the best combination of SMs levels each
group of BSs can switch to in order to maximizes the reward
rtm. We define the reward as the weighted-sum of the energy
gain G and the added delay D, both resulting from the sleep
mode level chosen during an episode.

r = (1− η)G− ηD (5)

where η ∈ [0, 1] is a parameter which controls the trade-off
between energy gain and the delay performance. Note that for
η = 0, the problem reduces to maximizing the energy gain
without considering the added delay, whereas for η = 1 the
problem becomes minimizing the delay. We note the delay
measured in this work is the time a user has to wait in the
buffer until the BS reactivates from its sleep mode state.

VI. NUMERICAL ANALYSIS

A. Simulation Parameters

We consider a network of 25 BSs with an inter-site distance
of 500 m. We model the arrival of the users following a
Log-normal distribution with mean λa and variance ν. We
consider that a user request to download a file with mean
size 500 MBytes. The file size follows a Weibull distribution
having a CDF of F (x) = 1 − e−(x/λ)

k

, where λ > 0 is
the scale parameter, and k > 0 is the shape parameter. Table
II summarizes the assumptions and parameters used in our
simulation.

TABLE II: Simulation Parameters.

Parameter value
Antenna height 30 m
BS Tx Power 45 dBm
Bandwidth 20 MHz
Thermal noise −174 dBm/Hz
Pathloss 128.1 +37.6 log10(d) dB
Shadowing Log-normal (6 dBm)
User’s arrival Log-normal, λa = 1, υ= λa/10
Service type file with mean=4 Mbps
Scale parameter λ = 441.305
Shape parameter k = 0.8

In order to show the impact of SM levels on the energy
consumption, we consider in this study a low load traffic with
mean arrival rate λa = 1 user/s/Km2. We run 500 independent
simulations on Matlab in order to acquire the average energy
gain and the average added delay on the performance of
the network. From [23], we found the power figures for the
different states of the BS. These values are given in Table III.

TABLE III: Power Consumption of a 2× 2 MIMO BS.

Active Idle SM 1 SM 2 SM 3
250 W 109 W 52.3 W 14.3 W 9.51 W

B. Convergence Analysis

The Q-learning algorithm requires a training phase in which
the agent explores the state-action couples to converge towards
the optimal policy. Fig. 1 shows the convergence of the
momentary Q-values (initialized to zero) corresponding to the
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Fig. 2: States of the BSs for different different values of η.

best action over the different states summed over all the BSs
with η = 0.7. Then, the best policy is stored in a look-up
table that will be used during the exploitation process. We
can observe that after few iterations, the algorithm converges
for all BSs and over all the state-action pairs.

C. Numerical Results

In Fig. 2, we present the distribution of the states of the BSs
for different values of η, where 25% of the sites ∈ BDense.
We observe that when energy saving is prioritized over delay
(η = 0), all BSs choose SM 3 that saves energy the most,
whereas staying idle policy is preferred when the users are
delay sensitive (η = 1). The states combination is observed
for other values of η. In these cases, we observe a gradual shift
from SM 3 to the other states. The incentive behind this shift
is in the non-uniformity distribution of the traffic resulting in
having some BSs with no traffic (since the overall traffic is
low), thus able to switch to a deeper sleep mode level than
the others.
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Figures 3 and 4 illustrate the average network energy
savings and added delay for different values of η and for
different percentage of BSs with higher users arrival rate. We
observe that the performance of the system depends on the
reward function and in particular η. An energy saving gain of
around 90% is achieved but at a cost of increased delay (5ms).
It is then important to carefully choose η in order to satisfy
the requirements of the different 5G use cases. We also note
that having an unbalanced traffic diversifies the best policy for
each BS, and thus we observe better performance when having
different arrival rates for each BS.

In Fig. 5 and Fig. 6, we compare our algorithm with a
benchmark that uses only one type of sleep mode. We observe
that the adaptive scheme outperforms all three benchmarks
in terms of energy savings. Even though using SM 3 only
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Fig. 5: Energy savings comparison between our proposed
algorithm and the cases of using only one type of sleep mode.
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Fig. 6: Added delay comparison between our proposed algo-
rithm and the cases of using only one type of sleep mode.

has slightly better energy savings for some range of η, it
adds more delay to the user as shown in Fig. 6. Thus,
for applications when there is a hard restriction on delay,
using SM 3 only may not be tolerated, rather an adaptive
scheme is required. Similarly, in applications where both delay
and energy consumption are considered, the adaptive scheme
algorithm finds its best policy to combine the different sleep
modes to achieve the necessary requirements.

In order to show the performance of our proposed algorithm,
we compare the reward that evaluates both the energy savings
and added delay. We notice that the adaptive algorithm com-
bines the advantages of the different sleep mode levels in order
to maximize the reward. For instance, the adaptive algorithm
prefers SM 3 when the users are rate sensitive (small epsilon)
and SM 1 when the users are delay sensitive. The combination
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of these states gives a higher reward than if these states where
solely chosen.

VII. CONCLUSIONS

In this work, we investigated the problem of energy savings
and delay associated with 5G networks. While it is critical
to reduce the energy consumption of these networks, hard
constraints are agreed on in the 5G requirements to period-
ically activate 5G cells for signaling synchronization. In this
work, we proposed an adaptive partial sleep scheme algorithm
based on reinforced learning that controls the state of the base
stations in order to maintain a desirable trade-off between
energy consumption and delay. We focused on 5G sleep modes
that respect the 5G requirements. We showed that having a
combination of different states of sleep modes in a network
can achieve better performance than having one state only.
Simulation results revealed an energy gain ranging between
90% and 50% for rate and delay tolerant users, respectively.

This work opens the door for accessing the performance of
dense networks, where a huge number of cells are deployed,
without violating the 5G requirements. The effect of signaling
bursts on the energy consumption is not studied in this work.
This might affect the optimal policies that might be used
for different signaling periodicities allowed in 5G networks.
Another interesting topic is to study the optimal policies in the
context of renewable energy and smart grid where the amount
of energy harvested varies from one location to another, and
the price of electricity varies from one retailer to another.
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