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Abstract—In this paper, we study the grid energy
consumption of a hybrid energy powered base station
system equipped with a renewable source and a battery.
We focus on the energy storage element that is prone
to irreversible aging mechanisms, thus requiring precise
management that takes into account both energy cost
and constraints preventing fast battery degradation.
We propose a Battery Aging and Price-Aware (BAPA)
algorithm that brings down the grid energy consumption
of the operator while including battery degradation
constraints. We decompose the problem into three
subproblems: Resource allocation problem, grid energy
purchase problem and power allocation problem. We show
that our algorithm performs very close to optimality (up
to 99%) and outperforms a benchmark algorithm.

I. INTRODUCTION

In order to meet the challenges of high energy
demand and CO2 emissions, green cellular networks
with improved energy efficiency have become a key
factor in future 5G cellular networks. According to
the power consumption breakdown in [1], the major
part of energy demand comes from the base station
(BS), consuming more than 50% of the power of a
cellular network. Therefore, reducing the grid power
at this level is important for economic and ecological
concerns. For instance, it is estimated that Information
and Communication Technology (ICT) consumes around
4.7% of the world’s electrical energy, releasing into the
atmosphere about 1.7% of the global CO2 emissions [2].
Among the different energy saving solutions proposed
for wireless communication, providing energy harvesting
capabilities to cellular BSs from renewable energy (RE)
sources is another effective approach to increase the
energy savings and reduce the carbon footprint.

A lot of studies have investigated the use of RE
in wireless cellular networks as an economic and envi-
ronmental friendly technique that can harvest clean and
cheap energy from ambient surrounding (see [3] and ref-
erences therein). Since this energy source is intermittent,
a battery is used as an energy storage to address this
limitation and add flexibility in the energy utilization.
However, most of these studies focus on brining down the
grid energy consumption without taking into account the
health degradation of the battery that represents a signif-
icant cost. For example, we showed in [4] that managing

the use of RE according to the price of electricity and
the battery state of charge (SoC) in a hybrid power BS
system can significantly bring down the operational cost
for the operator. We further extended this work in [5] to
cover cellular networks equipped with RE and batteries.
By adjusting the network configuration, we were able
to increase the utilization of RE, resulting in further re-
duction in the grid energy consumption. Enabling energy
cooperation between BSs equipped with RE to maximize
the network energy efficiency is addressed in [6]. Under
the smart grid infrastructure, the authors showed that
by exchanging the harvested energy between BSs, more
improvement in the network energy savings is observed.

However, a typical battery requires expensive invest-
ment cost and is prone to irreversible degradations. Some
of these degradations are subject to energy exchanges
with the battery, and are known as cycle aging. Others
occur when the battery is at rest, and they are known
as calendar aging. Among the few studies that consider
the aging of batteries while studying cellular networks
equipped with RE is [7]. This study demonstrates that by
taking into account the necessary requirements that pre-
vent the battery from the above mentioned degradations,
its state of health can extend up to 50% per year, resulting
in an increase in the opex cost savings. However, this
work considers only offline solution. Hence, it is limited
to non-causal information of the RE generation.

In this paper, we study the grid energy price
reduction of a BS powered by a hybrid energy source
(RE and smart grid) in a variable electricity price
environment. We decompose the problem into three
sub-problems: resource sharing problem, grid energy
purchase problem and power allocation problem. In
contrast to [7], we propose an online algorithm that
does not require the knowledge of future RE generation.
Then, we demonstrate the efficiency of our solution
by comparing it with the optimal offline approach. We
show that our algorithm can reach up to 99% optimality,
and outperforms an online benchmark algorithm.

II. SYSTEM OPERATION MODEL

A. System Architecture

As illustrated in Fig. 1, we consider an architecture
composed of:



• A BS covering an area of radius R and serving
K mobile users. Let U = {1,...,K} be the set
of served users. The users request a minimum
data rate of Rreq .

• A RE source (Photo-Voltaic (PV) system) that
harvests solar energy to produce electricity.

• A battery to store energy either from the PV
system or the power grid (i.e., smart grid). This
storage unit allows flexibility in the energy
utilization.

• The smart grid as the second source in providing
energy to the system. It can directly power the
BS or get stored in the battery for future use
(i.e., when the price of electricity is low).

• A local Energy Management Unit (EMU)
responsible for managing the flow of energy,
and allocating power (grid and RE) to
efficiently maximize the utilization of RE, and
thus minimize the grid energy cost.

The amount of RE generated during time t, denoted
by E(t), is stored in the battery (Eb(t)) and is also
available for use directly (EBS(t)). Similarly, the
amount of grid power purchased from the smart grid
is used to power the BS (pg,BS(t)) and, if necessary, to
store in the battery (pg,b(t)) for future use. This results
in the following equalities:

E(t)=EBS(t)+Eb(t)+w(t) (1)

pg(t)=pg,b(t)+pg,BS(t) (2)

where w(t) is the amount of waste in RE.

The local EMU manages the allocation of RE,
whether to be used or stored in the battery. It also
decides when and how much to store grid energy.
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Fig. 1: System architecture. The BS serves K users and is
powered by a hybrid energy source.

B. Time Scales for Network Operations

Due to the fast variations of the traffic load distri-
bution and the downlink wireless channels compared
to the slow variations of the grid energy prices and the
amount of harvested RE, we consider two time scales
in our model. One is longer than the other. As shown in

Fig. 2, each large-time scale period is decomposed into
L time slots. During these time slots, only the channel
gains and the position of the users vary. We define the
large-time scale periods long enough so that the traffic
load, the RE arriving rate and the price of electricity
are unchanged during each of these time periods.
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Fig. 2: System time scales. The price of electricity, the traffic
load and the RE arrivals vary slowly compared to the channel
fading and users distribution.

C. Downlink Transmission Model

We measure the downlink transmission quality
between the serving BS and a user m, based on the
SNR as follows:

SNR(m)=
PTx×h(m)

σ2
(3)

where PTx is the transmitted power of the BS, h(m) is
the channel gain from the BS to user m, which accounts
for the path loss and shadowing effect, and σ2 is the
additive white Gaussian noise power density.

We express the rate offered to user m and served by
the BS using Shannon-Hartley theorem as follows:

R(m)=y(m)×WRB×log2(1+SNR(m)) (4)

where y(m) is the share of resources allocated to
user m. It is expressed in terms of RBs such as,
y(m) = nRB(m)

nTotal
RB

, where nRB(m) and nTotal
RB are the

number of allocated RBs to user m and the maximum
number of RBs available to the BS, respectively. WRB

is the bandwidth of one RB.

III. BATTERY MODEL

Compared with traditional used batteries, i.e., lead
acid or nickel cadmium, lithium batteries technologies
feature high energy density, high power density, large
service life and environmental friendliness [8]. This new
technology provides interesting efficiency improvements
from 10% and 20% compared with other batteries.
However, a typical used battery generates expensive
investment cost due to its finite life span. This operational
limitation is a result of irreversible degradations from
chemical and physical changes, affecting its electrical
performance, and hence, degrading its efficiency. In the



following, we describe the constraints imposed on the
battery that prevent its fast capacity degradation.

A typical battery is described by the following
metrics:

1) SoC (State of Charge): It is the ratio of the
remaining charge of the battery and the total charge
while the battery is fully charged at the same specific
standard condition [8].

3) DoD (Depth of Discharge): It is used to describe
how deeply the battery is discharged. It is defined in
percent. For instance, if the battery has delivered 70%
of its energy, we say that the DoD of the battery is 70%.

2) SoH (State of Health): it is a figure of merit that
represents the condition of a battery compared to its
ideal conditions [8]. We can define this metric as the
ratio of the current capacity to the rated capacity:

SoH(t)=
Cref (t)

CN
(5)

The degradation of the battery reference capacity is
caused by two aging processes: during operation (i.e.
cycling), denoted by cycle aging and at rest, denoted
by calendar aging [9]. Calculating the battery capacity
degradation is not the focus of this work. However,
we will use the constraints imposed on the battery to
prevent such degradation.

1) Cycle aging: It is the result of the energy
exchange with battery. It depends on the battery SoC
variations [10]. Fig. 3 illustrates the ideal operating
range of SoC that is recommended for lithium batteries
[11]. As a result, the lithium battery usage is restricted
to a specific range of:

BL(t−1)+s=[20%,90%], ∀t=1,...,T,∀s=1,...,L. (6)

Fig. 3: Recommendation for the operating range of SoC for
lithium ion battery [11].

2) Calendar aging: The battery calendar life is the
time elapsed until the battery becomes unusable. It is
influenced by the battery temperature and time [7].
Thus, in order to operate the lithium battery in a safe
operating area restricted to temperature, high (dis)charge
currents should be avoided. Consequently, the following
constraint must be respected:

|BL(t−1)+s−BL(t−1)+s−1|≤α×BL(t−1)+s−1,
∀t=1,...,T,∀s=1,...,L,\{(t=1)∧(s=1)}. (7)

where α takes a value between 0 and 1.

In addition to the capacity degradation, the battery
witnesses energy losses while (dis)charging. Each time
the battery is (dis)charged with E units of energy, only
η · E is used/stored, where 0 ≤ η ≤ 1 represents the
storage inefficiency.

IV. HYBRID ENERGY MANAGEMENT MODEL

A. Energy Consumption Model

In order to calculate the power consumption of the
BS, we use the power model provided by EARTH [12].
Accordingly, the power consumption of a BS consists
of a static part P0 and a traffic dependent part PTx.
Moreover, the power demand depends on the number
of active RBs. Because of the nearly linear relationship
that exists between the RF power and the BS power
consumption, the power consumed by a BS at time slot
i can be expressed as follows:

p(i)={
NTx(P0+y(i)×∆p×PTx(i)), 0<PTx≤Pmax,

NTx×Psleep, PTx=0.

(8)

where NTx is the number of transceivers. ∆p and
Psleep are the load dependent parameter and the power
consumption of the BS in sleep mode, respectively. y(i)
is the number of active RBs at time slot i.

B. Energy Storage

As shown in Fig. 1, the battery can store the
harvested energy from the local PV system and the
on-grid energy that is purchased from the smart grid. At
each time slot, the local EMU decides how much energy
to store from the RE source, and how much to buy from
the grid, by jointly considering the BS energy demand,
the hybrid energy storage, the price of electricity and
the battery constraints imposed on the battery to prevent
fast capacity degradation.

Denote the storage level of the battery at the
beginning of slot s of time t as BL(t−1)+s ≥ 0, the
amount of the grid energy purchased and stored in the
battery as pg,bL(t−1)+s ≥ 0, and the amount of power
drawn from the battery as pbL(t−1)+s≥ 0. To make sure
that the BS uses only the energy that is available before
the beginning of each time slot, we need the following
energy causality constraints:

BL(t−1)+s=B0+

t∑
i=1

s−1∑
j=1

(
η(Eb

L(i−1)+j+pg,bL(i−1)+j)

−pbL(i−1)+j−wL(i−1)+j

)
≥0,

∀t=1,...,T,∀s=1,...,L.
(9)

The term w introduced refers to the amount of RE
lost at the end of the observed slot. This is due to
the limited battery capacity, Bmax. Consequently, the
battery has to discard the excess harvested energy (w),
to satisfy the following battery capacity constraints:

BL(t−1)+s≤Bmax, ∀t=1,...,T,∀s=1,...,L. (10)



V. JOINT POWER
AND RESOURCE ALLOCATION: OFFLINE APPROACH

Denote by a(t) the real-time price of electricity at
each time step t. We aim at minimizing the on-grid
energy consumption of the energy harvesting BS taking
into account the battery degradation model. This is
achieved by jointly allocating the power between the
power grid, the RE source, the battery, and the resources.

In the following, we formulate the offline power
and resource allocation problem for the hybrid wireless
system. The first set of optimization variables are
the vector of power allocation p=(pt)t=1,...,T ∈ RT

+
used for the BS, and the matrix of resource allocation
y=(yt,u)t=1,...,T,u∈U ∈ RT×K

+ used for the served
user. In addition, we optimize the following four
power usage vectors for the BS: (1) the grid-BS
power vector pg,BS=(pg,BS

t )t=1,...,T ∈ RT
+ used from

the power grid to power the BS, (2) the battery-
BS power vector pb=(pb

t )t=1,...,T ∈ RT
+ used to

power the BS from the battery, (3) the grid-battery
power vector pg,b=(pg,b

t )t=1,...,T ∈ RT
+ bought from

the power grid and stored in the battery for future
use, and (4) the renewable power wastage vector
w=(wt)t=1,...,T ∈ RT

+ that the BS will not be able to
use or store. Finally, we optimize the use of RE vectors
EBS and Eb=(EBS,Eb)t=1,...,T ∈RT

+.

min
p,y,pg,BS,pb,pg,b,

w,EBS,Eb

T∑
t=1

L∑
s=1

at
(
pL(t−1)+s+pg,bL(t−1)+s

−ηpbL(t−1)+s−EBS
L(t−1)+s

)
(11)

Given that pg,BS
i =pi−η.pbi−EBS

i , and from Eq.(2),
we can rewrite (11) as follows:

min
p,y,pg,BS,pb,pg,b,

w,EBS,Eb

T∑
t=1

L∑
s=1

at×pgL(t−1)+s (12)

subject to:

yL(t−1)+s,m×WRB×log2(1+SNRL(t−1)+s,m)≥Rreq ,
∀t=1,...,T,∀s=1,...,L,∀m∈U , (13)
EL(t−1)+s=Eb

L(t−1)+s+EBS
L(t−1)+s+wL(t−1)+s,

∀t=1,...,T,∀s=1,...,L, (14)

pgL(t−1)+s=pg,bL(t−1)+s+pg,BS
L(t−1)+s,

∀t=1,...,T,∀s=1,...,L, (15)

pL(t−1)+s=pg,BS
L(t−1)+s+η ·pbL(t−1)+s+REBS

L(t−1)+s,

∀t=1,...,T,∀s=1,...,L, (16)∑
m∈U

yL(t−1)+s,m≤1, ∀t=1,...T,∀s=1,...,L, (17)

p≥0, y≥0, pg≥0, pb≥0, pg,BS≥0, pg,b≥0,
w≥0, EBS≥0, Eb≥0, (18)
Other Constraints: (6),(7),(9),(10).

The first set of constraints (13) guarantee a minimum
rate requirement for the users in order to satisfy a certain
QoS level. Next, we have the harvested energy usage,
grid power usage and BS power equality constraints
in (14), (15) and (16), respectively. Then, the resource
allocation constraints are given in (17). Furthermore, the
energy storage constraints are summarized in (9) and
(10). the causal energy constraints (9) ensure that the
total RE used up until the i-th time slot will not exceed
the available amount that was harvested and stored in the
previous (i−1)-th time slots. On the other hand, (10) is
the battery capacity constraint. Consequently, in case of
battery overflow, the excess energy must be discharged
through the auxiliary variable w. Moreover, (6) and (7)
describe the battery usage constraints. Finally, we have
the non-negative vectors constraints in (18).

The offline optimization problem described above
is a convex linear program. Hence, it can be solved
efficiently using an optimization solver such as
MATLAB using the dual-simplex algorithm. However,
solving it requires the knowledge of all system variables
in advance. In the next section, we will develop an
online algorithm that achieves near-optimal solution
without the requirement of future knowledge.

VI. BATTERY
AGING AND PRICE-AWARE (BAPA) ALGORITHM

In this section, we provide an online solution based
on the design philosophy of the offline algorithm. We
propose BAPA, a new algorithm that does not require the
knowledge of RE generation. We decompose the problem
into three subproblems: Resource sharing problem, grid
energy purchase problem and power allocation problem.
Then, we summarize our algorithm in Algorithm 1.

A. Resource Sharing Problem (Max-Min Fairness
Algorithm)

In order to share the BS radio resources among the
users it is serving to satisfy their QoS requirements,
we use the Max-Min fairness algorithm detailed in
[13], [14]. The algorithm starts by computing the share
of resources needed for each user. Then, it divides
the resources evenly among them. If a user gets more
resources than his requirement, additional resources will
be divided among other users that have not yet achieved
their requirements. If all users are satisfied, excess radio
resources will be turned off to save energy. In our
model, we consider that the BS has a fixed number of
resources expressed in terms of RBs.

B. Grid Energy Purchase Problem

According to Eq. (8), the minimum amount of power
required to power the BS during the observation time T
is:



Pmin
L(t−1)+s=

T∑
i=t

L∑
j=s

pmin
L(i−1)+j

=

T∑
i=t

L∑
j=s

NTx

(
P0+

1

nTotal
RB

×∆p×PTx
L(i−1)+j

) (19)

Eq. (19) gives the minimum power required for the
BS to be in operational mode, i.e., by serving only one
RB, from time t until the end of the day.

Proposition 1 (sub-optimal on-grid energy purchase):
The amount of purchased energy from the grid should
satisfy the following conditions:

1) Condition #1: Low current on-grid electricity
price. a(t)≤min(a(t+1),...,a(T )).

2) Condition #2: Low future renewable energy.
T∑
i=t

L∑
j=s

EL(i−1)+j≤Pmin
L(t−1)+s.

If the above conditions are satisfied:

pg,bL(t−1)+s=min((Bmax−BL(t−1)+s)×α,

(Pmin
L(t−1)+s−

T∑
i=t

L∑
j=s

EL(i−1)+j)×α).
(20)

where α is the current restriction coefficient that limits
the (dis)charging rate of the battery to keep it in a safe
operational area restricted to temperature. It will not
allow the battery to be (dis)charged more than α% of
its current capacity.

Proposition 1 decides when to purchase grid energy,
and how much to store in the battery. Condition # 1
allows buying grid energy only when the price is at its
lowest compared to the future price. This policy is in
accord with the daily grid energy price that is low at
the beginning of the day and assumes future knowledge
of the electricity price [15]. However, condition # 2
requires the exact amount of RE that will be harvested in
the future. Since this information is not known, we will
predict this energy using weather forecast programs, such
as [16]. Thus, we can rewrite condition # 2 as follows:

GL(t−1)+s≤Pmin
L(t−1)+s (21)

where Gt is the green energy budget predicted from
time t until the end of the observation time.

C. Power Allocation Problem

The power allocation problem is divided into two
parts. The first part (Line 10) finds the allowed amount
of RE that can be stored in the battery (Eb), while
respecting the battery constraints in (6) and (7). The
second part (Lines 11-18) decides whether to use the
battery to power the BS or save its energy for future
use (i.e., when there is enough battery).

Algorithm 1: BAPA algorithm
1: Initialization: Set the battery specific range, its

current restriction parameter (α) and its DoD.
2: Predict the green energy budget, G(1), for the

whole day.
3: for t=1:T do
4: for s=1:L do

\\Subproblem 1: Resource Sharing Problem
5: Obtain yL(t−1)+s by solving Max-Min

algorithm;
\\Subproblem 2: Grid Energy Purchase

Problem
6: Find pL(t−1)+s from Eq. (8);
7: if conditions 1 and 2 in proposition 1 are

satisfied then
8: Find pg,bL(t−1)+s from Eq. (20);
9: end if

\\Subproblem 3: Power Allocation Problem
10: Find Eb

L(t−1)+s and EBS
L(t−1)+s

from Eq. (1), pL(t−1)+s calculated in line
6 and the battery constraints (6) and (7);

11: if GL(t−1)+s≥Pmin
L(t−1)+s then (use battery)

12: Find pbL(t−1)+s, such that pL(t−1)+s=

η.pbL(t−1)+s+Eb
L(t−1)+s, while

satisfying (6), (7) and (9);
13: Update BL(t−1)+s=BL(t−1)+s+

η.Eb
L(t−1)+s−pbL(t−1)+s;

14: Find pg,BS
L(t−1)+s=pL(t−1)+s−

EBS
L(t−1)+s−pbL(t−1)+s;

15: else (store in the battery)
16: Find BL(t−1)+s=BL(t−1)+s+

η.Eb
L(t−1)+s;

17: Find pg,BS=pL(t−1)+s−EBS
L(t−1)+s;

18: end if
19: end for
20: end for

VII. SIMULATION AND RESULTS

We consider a macro BS covering a radius of 500
m equipped with a RE source and an energy storage
(i.e., battery). The users are uniformly distributed in the
simulation area with a maximum of 20 users requesting
simultaneously data from the designated BS. We use a
lithium type battery with a DoD of 70%. Furthermore,
we restrict the (dis)charging battery rate α = 0.3. In
other words, during one hour, the battery cannot be
(dis)charged more than 30% of its current capacity. In
the following, we compare BAPA with two benchmark
algorithms: the optimal solution provided in Section
V and an online algorithm called SPAEMA that we
introduced in [4]. The latter decides when to store RE
and when to use it based on the SoC of the battery
and the current price of electricity. Table I details the
assumptions and parameters used in our simulation.

In Fig. 4, we plot the normalized grid energy
consumption of the BS for different daily average



TABLE I: Parameters’ values and assumptions.

Parameters Values
BS area radius R 500 m

Number of sectors 3
Bandwidth 10 MHz, FDD

Maximum transmitted power 43 dBm
RB 50
WRB 180 KHz

Max. number of users K 20
User min. required rate 4 Mb/s

Noise power -174 dBm/Hz
P0 118.7 W
∆p 5.32

Number
of slots per hour period L

10

Battery current restriction α 0.3
Battery energy efficiency η 0.96

RE generation rates (RETotal), where ETotal is the
average daily energy demand of the BS. The grid energy
consumption is normalized with the BS energy demand
at full load. Furthermore, we size the battery capacity in
proportion to the PV cell installed. In other words, the
bigger the solar panel is, the larger the battery capacity
becomes. In the following, we consider three PV panel
sizes, each with different daily average RE generation
rate. First, BAPA consumes excess grid energy at the
beginning of the day, as shown at t=1,3,4,5. During these
periods, our algorithm buys energy from the grid and
stores it in the battery for future use. By inspecting the
grid energy purchase policy in proposition 1, we observe
that the grid energy is at its lowest during these periods,
hence condition #1 is satisfied. Regarding condition
#2, we equip the BS with PV cells that harvest energy
less than the demand required by the BS during the day.
Thus, at the beginning the day, condition #2 is always
satisfied. Second, we observe that the bigger the PV cell
is (bigger battery capacity, resp.), the more the system
is able to store grid energy during the first hours of the
day. This is because BAPA restricts the charging rate
of the battery based on its current capacity, in order to
preserve its SoH. As a result, small batteries will not
be able to store enough grid power for future use.

In Fig. 5, we compare our algorithm (BAPA) with
the optimal solution and SPAEMA. We observe that the
performance of our algorithm is close to the optimal
energy and resource allocation problem (up to 99%),
whereas SPAEMA diverges away from optimality. The
reason is twofold: First, BAPA allows the possibility to
store grid energy when the price is low and to use it later
at high energy prices. Second, SPAEMA is a threshold
based algorithm that depends on fixed battery SoC and
current energy price thresholds. Hence, increasing the
battery capacity for instance, forces SPAEMA to store
more energy until the threshold of using RE is reached.
BAPA, on the other hand, depends on the current price
of electricity with respect to future prices, and on the
difference between the available RE and required energy
demand. This results in a more accurate RE utilization
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We illustrate the waste of energy in Fig. 6. We
consider the case of a solar panel harvesting 50% of the
total BS energy demand. We observe that for high battery
capacities, BAPA shows slightly higher energy losses
than SPAEMA (4% points). The reason is that BAPA al-
gorithm stores energy from the grid. However, due to the
battery inefficiency, some of this energy is lost, resulting
in additional waste in energy compared with SPAEMA.

BAPA algorithm relies on the RE predicted
throughout the day. As discussed in Section VI-B,
this prediction is based on weather forecast programs,
and thus is prone to errors. In Fig. 7, we show that a
prediction error of 10% in the harvested RE degrades
the performance of BAPA by less than 1% point.
Whereas a prediction error of 30% decreases the grid
price reduction to about 7% points.
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Fig. 7: On-grid price reduction with different harvested energy
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VIII. CONCLUSION

In this paper, we have addressed the problem of
grid energy consumption in hybrid BS cellular network
equipped with RE. In contrast to most studies that
focus only on reducing the opex cost of the operator
by bringing down the grid energy consumption of
the network, our work takes into account the battery
degradation model that represents a significant cost to the
operator. We proposed BAPA, an energy management
algorithm that brings down the grid energy consumption
of the operator, while preserving the life of the battery.
Our results show that BAPA can reach up to 99% grid
energy savings compared to the optimal solution and
outperforming a benchmark algorithm.

This work opens a new axis for future research. En-
ergy storages represent expensive capex and opex costs
for cellular network operators. Thus, careful utilization
of these elements is essential and should not be ignored.
For future work, we plan to perform a detailed study on
the long term evolution of the system performance under

the battery aging model. This would provide interesting
recommendations to future green cellular networks.
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