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Abstract—Hybrid energy powered cellular networks
are key for proposing green and cost-efficient wireless
networks. Yet, the related energy management imposes
severe challenges to efficiently manage the power allocation
between the Renewable Energy (RE) source, the batteries
and the smart power grid. The energy storage element
(i.e., battery) is prone to irreversible aging mechanisms,
requiring intelligent management that takes into account
both the energy cost and requirements preventing battery
degradation. In this work, we include this important con-
straint before proposing an energy management and base
stations switch off algorithm for a partially RE-equipped
cellular network in a variable electricity price environment.
Results show that our algorithm outperforms a benchmark
algorithm with a gain up to 20% in terms of electric bill
reduction and enhances the battery life time by 35%.

I. INTRODUCTION

With the explosive increase in Information and
Communication Technology (ICT) devices and wireless
services, several orders of magnitude base stations (BSs)
have been deployed. This has incurred significant energy
consumption and carbon footprints. For instance, it is
estimated that ICT consumes around 4.7% of the world’s
electrical energy, releasing into the atmosphere about
1.7% of the global CO2 emissions [1]. Moreover, with the
evolution of 5G mobile communications, it is forecasted
that the global mobile data traffic will witness an increase
of sevenfold between 2016 and 2021 [2]. Under the
pressure of this escalation of energy consumption and
CO2 emissions, renewable energy (RE) is becoming a
promising candidate for green communication systems.

In order to cater for the vision of green 5G
communication systems, a lot of studies have investigated
the use of RE in wireless cellular networks as an economic
and ecological friendly technique, that can harvest clean
and cheap RE from ambient surrounding [3]. Nevertheless,
RE is highly intermittent, thus it requires intelligent
management to efficiently use it. In [4], we showed that
intelligent usage of RE in a hybrid powered BS system
results in higher cost savings in a variable electricity price
environment. Based on state of charge (SoC) of the battery
and electricity price, we introduced SPAEMA, an energy
management algorithm, that decides whether to store or use
RE. We then extended the work in [5] to cellular networks
with the possibility to switch off BSs, and to adjust the

network configuration to increase the utilization of RE.
However, both studies ignore the possibility of storing grid
energy in the battery for future use. Moreover, [5] considers
that all BSs are equipped with RE. Energy cooperation
between BSs powered by a hybrid energy source is
addressed in [6]. The authors showed that their scheme can
significantly improve the grid power consumption of the
network. However, their objective focused on the energy
consumed by the network rather than its cost. Furthermore,
[6] ignores sleep mode technique and considers that all
BSs are equipped with RE. Minimizing the grid energy
cost in a large-scale green cellular network powered by
a hybrid energy source with sleep mode is studied in [7].
However, the authors assumed a RE farm and a centralized
energy storage powering all the BSs of the network.

The above mentioned studies use RE as a tool
to minimize the grid cost however, they do not take
into account the health degradation of the battery that
represents a significant cost to the operator. A typical
energy storage (i.e., battery) requires expensive investment
cost and is prone to irreversible degradations. Some
of these degradations are subject to energy exchanges
with the battery, and are known as cycle aging. Other
degradations occur when the battery is at rest, and they
are known as calendar aging [8]. Among the few studies
that consider the aging of batteries while studying cellular
networks powered by RE is [9]. This study shows that by
respecting some battery aging constraints, the battery life
span can enhance up to 50% of its initial state of health per
year. This results in an increase in the opex cost savings.
However, this work considers the case of a single BS and
assumes non-causal information of the RE generation.

In contrast to [9], in this paper we study the case
of cellular network where BSs can cooperate under
RE and smart grid (SG) environment, while respecting
the constraints imposed on the battery that expand its
life span. We consider a large-scale cellular network
where a percentage of its sites is equipped with local
RE and battery storages. These sites are powered by a
hybrid energy source (RE and SG). Under this model, we
investigate the allocation of RE, the possibility to store grid
energy for future use and the potential to switch off BSs.
Furthermore, we propose an online algorithm with causal
information about RE generation that minimizes the grid
energy bought from the SG. Our simulation results show



that the proposed solution outperforms the benchmark
algorithm by more than 15% operational cost reduction.

II. BATTERY MODEL

Compared with traditional used batteries, i.e., lead acid
or nickel cadmium, lithium batteries technologies feature
high energy density, high power density, high energy
efficiency, large service life and environmental friendliness
[10]. However, a typical used battery generates expensive
investment cost due to its finite life span. This operational
limitation is a result of irreversible degradations from
chemical and physical changes, affecting its electrical
performance, and hence, degrading its efficiency. In the
following, we describe the constraints imposed on the
battery that prevent its fast capacity degradation.

A typical battery is described by the following metrics:

1) SoC (State of Charge): It is the ratio of the
remaining charge of the battery to the total charge while
the battery is fully charged [10].

3) DoD (Depth of Discharge): It is used to describe
how much the battery is discharged.

2) SoH (State of Health): It is a figure of merit that
represents the condition of the battery compared to its ideal
conditions [10]. It can be defined as the ratio of the current
capacity and the rated capacity given by the manufacturer:

SoH(t)=
Cref (t)

CN
(1)

The degradation of the battery reference capacity is
caused by two aging processes: during operation (i.e.
cycling), denoted by cycle aging and at rest, denoted by
calendar aging [8]. Even though in this paper we do not
focus on calculating the battery capacity degradation, we
translate the constraints imposed on the battery in [9] to
fit our model, in order to minimize the above mentioned
degradations. In the following, we summarize the battery
constraints used in our work.

1) Cycle aging: It is the result of the energy exchange
with battery. It depends on the battery SoC variations [11].
Fig. 1 illustrates the ideal operating range of SoC that is
recommended for lithium batteries [12]. As a result, the
lithium battery usage is restricted on a specific range of:

B(t)=[20%,90%] (2)

Fig. 1: Recommendation for the operating range of SoC for
lithium ion battery [12]

2) Calendar aging: The battery calendar life is the time
elapsed until the battery becomes unusable. It is influenced
by the battery temperature and time [9]. Thus, in order to
operate the lithium battery in a safe operating area restricted
to temperature, high (dis)charge currents should be avoided.
Consequently, the following constraint must be respected:

|B(t)−B(t−1)|≤α×B(t−1), ∀t=2,...,T. (3)

where α takes a value between 0 and 1.

In addition to the capacity degradation, the battery
witnesses energy losses while (dis)charging. Each time
the battery is (dis)charged with E units of energy, only
η ·E is used/stored, where 0≤η≤1 represents the storage
inefficiency.

III. SYSTEM MODEL

A. Network Description

We consider a large-scale wireless downlink cellular
network, where the traffic loads, the harvested RE, the
grid electricity price and the wireless channel gains from
each BS to the users are all varying over time in the
network. Let B={1,...,m,...,M} be the set of BSs, and
Um ={1,...,u,...,km} be the set of users served by BS m.
Initially, the users are associated with and served by the
BSs, based on best signal-to-interference-plus-noise ratio
method (Best SINR) that is managed by a centralized
energy management unit (EMU). Each user measures the
SINRs by using pilot signals from all BSs and sends it
to the centralized EMU.

B. System Architecture

In this work, we assume that every BS receives its
energy from the power grid (i.e., the SG). In addition,
some BSs are equipped with a RE harvesting source, and
a battery to store the harvested energy in order to use
it for future transmission. Hence, these BSs are powered
by a mix of hybrid energy sources (SG+RE). We denote
by BSgrid, the set of BSs powered solely from the grid
and not equipped with a RE source, and by BSmix, the
set of BSs equipped with a RE source.

A schematic diagram for the system architecture is
illustrated in Fig. 2. The amount of RE generated at BS
m∈BSmix during time t is denoted by REm(t). It can
be either stored in the battery (REb

m(t)) or used directly
to power the BS (REBS

m (t)). Similarly, the SG can be
used either to directly power the BS (pg,BS

m (t)) or to
store in the battery (pg,bm (t)). Consequently, we have the
following equality constraints:

REm(t)=REBS
m (t)+REb

m(t)+wm(t) (4)

pgm(t)=pg,bm (t)+pg,BS
m (t) (5)

where wm(t) is the amount of RE lost at BS m.

Due to battery imperfections, a part of the energy is
lost while (dis)charging the battery. During (dis)charging,
(1− η) of energy is lost. The local EMU manages the
allocation of RE, whether to be used or stored in the
battery. It also decides when and how much to store grid



energy. On the other hand, the centralized EMU (not
shown in the figure) controls the operational mode of the
BSs (active or sleep) following our sleep mode strategy
presented in [13]: SINR threshold-based method. This
algorithm turns-off BSs ∈BSgrid according to an SINR
Switch-Off Threshold (SINRSOT). A candidate BS m
switches off if the SINRs measured by the users served
by m from neighboring BSs m′ are above the SINRSOT:

SINRm′(u)≥SINRSOT, ∀u∈Um, m∈BSgrid

and m′∈{B\m}.
(6)

If Eq. (6) is satisfied, BS m offloads its users to
neighboring BSs with the highest received SINRs.
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Fig. 2: An example of a cellular network with one BS equipped
with a solar panel and a battery.

C. Energy Consumption Model

In order to calculate the power consumption of the
BS, we use the power model provided by EARTH [14].
Accordingly, the power consumption of a BS consists
of a static part P0 and a traffic dependent part PTx.
Moreover the power demand depends on the number of
active resource blocks (RBs). Because of the nearly linear
relationship that exists between the RF power and the
BS power consumption, the power consumed by BS m
at time t can be expressed as follows:

pm(t)={
NTx(P0+ym(t)×∆p×PTx

m (t)), 0<PTx≤Pmax,

NTxp
sleep
m (t), PTx =0.

(7)

where NTx is the number of transceivers. ∆p and psleepm are
the load dependent parameter and the power consumption
of the BS in sleep mode, respectively. ym(t) is the share
of resources used by BS m during time t. It is expressed
in terms of RBs such as, ym(t)=

nt
RB

nTotal
RB

, where ntRB and
nTotal
RB are the number of active RBs at time t and the

maximum number of RBs available to the BS, respectively.

D. Downlink Transmission Model

We measure the downlink transmission quality
between the serving BS m and a user u based on the
SINR as follows:

SINRm(u)=
PTx
m hm(u)

σ2+
∑

m′∈B,m′ 6=m

Pm′hm′(u)
(8)

where PTx
m is the transmitted power of BS m, hm(u) is

the channel gain from BS m to user u, which accounts
for the path loss and shadowing effect, and σ2 is the
additive white Gaussian noise power density.

We can express the rate offered to user u and served
by BS m using Shannon-Hartley theorem as follows:

Rm(u)=ym(u)×BWRB×log2(1+SINRm(u)) (9)

where ym(u) is the share of resources allocated to user
u by BS m, and BWRB is the bandwidth of one RB.

E. Energy Storage

As shown in Fig. 2, the battery can store the harvested
energy from the local PV system and the energy purchased
from the SG. To make sure that the BS m uses only the
energy that is available before the beginning of each time
slot, we need the following energy causality constraints:

Bm(t)=B0

+

t−1∑
i=1

(
η(REb

m(i)+pg,bm (i))−pbm(i)−wm(i)
)
≥0,

∀t=1,...,T , ∀m∈BSmix.
(10)

The term wm(t) introduced refers to the amount of
RE lost at the end of time t. This is due to the limited
battery capacity, Bmax. Consequently, the battery has to
discard the excess harvested energy, wm, to satisfy the
following battery capacity constraints:

Bm≤Bmax,∀t=1,...,T,∀m∈BSmix. (11)

IV. PROBLEM FORMULATION

Denote the real-time price of electricity at each time
step t as a(t). We aim at minimizing the grid energy
bought from the SG while satisfying the users’ quality of
service (i.e., minimum rate requirement), and reducing the
battery aging. This is achieved by allocating the power
flow between the RE source, the battery storages, the
SG and the BSs. In addition, we consider switching-off
some BSs, and resource allocation between active BSs
and their served users to save energy. In the following,
we consider that (p,pg,BS,pg,b,pb,w,REBS,REb) =

(φt,m)t=1,...,T,m∈BSmix ∈ RT×BSmix

+ where φ is a
matrix variable, π = (πt,m)t=1,...,T,m∈B ∈ {0, 1},
x = (xt,m,u)t=1,...,T,m∈B,u,∈Um ∈ {0, 1} and
y=(yt,m,u)t=1,...,T,m∈B,u,∈Um ∈WT×M×K .

min
p,pg,BS,pg,b,

pb,x,y,π,w,

REBS ,REb

T∑
t=1

Cost(t)=

T∑
t=1

∑
m∈B

a(t)

(
πm(t)(pm(t)+

pg,bm (t)−η ·pbm(t)−REBS
m (t))+(1−πm(t))psleepm (t)

)
(12)



Given that:

pg,BS
m (t)=pm(t)−η ·pbm(t)−REBS

m (t) (13)

and from Eq. (5), we can rewrite (12) as follows:

min
p,pg,BS,pg,b,

pb,x,y,π,w,

REBS ,REb

T∑
t=1

∑
m∈B

a(t)

(
πm(t)pgm(t)+

(1−πm(t))psleepm (t)

)
(14)

subject to:

ym(t,u)×BWRB×log2(1+SINR(t,u))≥Rreq,

∀u∈Um,∀m∈B,∀t=1...T, (15)

p(t)=pg,BS(t)+η ·pb(t)+REBS(t),

∀t=1...T, (16)∑
u∈U

ym(u)≤1, ∀m∈B, (17)∑
m∈B

xu(m)=1, xu(m)∈{0,1},∀u∈U , (18)

p≥0,pg≥0,pb≥0,pg,BS≥0,pg,b≥0,

w≥0,REBS≥0,REb≥0, (19)
Other constraints: (2),(3),(4),(5),(10),(11).

where x represents the BS-user association matrix, and πm
is a binary variable that represents the state mode of BS
m (πm =1: BS is active; πm =0: BS is in sleep mode).
The first set of constraints (15) guarantee a minimum rate
requirement for the users in order to satisfy a certain QoS
level. Next, we have the RE usage, grid power usage and
BS power equality constraints in (4),(5) and (16), respec-
tively. The causal energy constraint in (10) ensures that the
total RE used up until time t will not exceed the available
amount that was harvested and stored in the previous time
slot t−1. On the other hand, (11) is the battery capacity
constraint. Consequently, in case of battery overflow, the
excess energy must be discharged through the auxiliary
variable w. (2) and (3) restrict the SoC operating range and
the (dis)charging current of the battery, respectively. Finally,
the resource allocation and BS-User association constraints
are given in (17) and (18). The last set of constraints in
(19) depict the non-negative constraints of the vectors.

The problem formulated above is a mixed-integer
non-linear programming (MINLP) problem, which is hard
to solve due to its non-convexity. In the next section, we
propose a new online sub-optimal solution. And we will
show that it performs better than some existing online
algorithms.

V. DESCRIPTION OF THE PROPOSED ALGORITHM

Due to the complexity and the non-causality of RE
information in the problem formulated above, in this
section we propose a distributed online solution that
manages the energy allocation between the RE source,

the SG and the batteries of the BSs equipped with RE.
Hence, in the following, we develop an algorithm that
doesn’t require information about future RE generation.

A. Grid Energy Purchase Policy and Resource sharing

According to Eq. (7), the minimum amount of power
required to power the BS up until the observation time T is:

Pmin(t)=

T∑
i=t

pmin(i)

=

T∑
i=t

(
P0+

1

nTotal
RB

×∆p×PTx(i)

) (20)

Eq. (20) gives the minimum power required for the
BS to be in operational mode, i.e., by serving only one
RB, from time t until the end of the day.

Proposition 6.1 (Grid energy purchase policy): The
amount of purchased energy from the grid should satisfy
the following conditions:

1) Condition #1: The current grid electricity price
is low enough, a(t)≤min(a(t+1)...a(T )).

2) Condition #2: The future harvested energy is

low,
T∑
i=t

RE(i)≤Pmin(t).

If the above conditions are satisfied:

pg,b(t)=

min

(
α.(Bmax−B(t)),α.(Pmin(t)−

T∑
i=t

RE(i))

)
(21)

Proposition 6.1 decides when to purchase grid energy,
and how much to store in the battery. Condition # 1
allows buying grid energy only when the price is at its
lowest compared to the future price. This policy is in
accord with the daily grid energy price that is low at
the beginning of the day and assumes future knowledge
of the electricity price [15]. However, condition # 2
requires the exact amount of RE that will be harvested
in the future. Since this information is missing, we will
predict this energy using weather forecast programs, such
as [16]. Thus, we can rewrite condition # 2 as follows:

G(t)≤Pmin(t) (22)

where G(t) is the green energy budget predicted from
time t until the end of the observation time, T .

Proposition 6.2 (Max-Min Fairness Algorithm): In
order to share the resources of the BS among the users it
is serving in order to satisfy their QoS requirements, we
use the Max-Min fairness algorithm detailed in [17], [13].
The algorithm starts by computing the share of resources
needed for each user. Then, it will divide the resources
evenly among them. If a user gets more resources than his
requirement, additional resources will be divided among
other users that haven’t yet achieved their requirements. If
all users are satisfied, excess resources will be turned off



to save energy. In our model, we consider that the BS has
a fixed number of resources expressed in terms of RBs.

B. Joint Power Allocation and Resource Sharing with
Sleep Mode Algorithm (JPARS-SM)

The general algorithm procedure, summarized in Algo-
rithm 1, is detailed in the following. We start by setting the
SINR threshold (SINRSOT) that specifies when the BS can
switch to sleep mode. This threshold is set in order to obtain
the best trade-off between QoS and energy savings [13].
Then after setting the BS-Users association and resource
allocation matrices (x and y), JPARS-SM scans for the BSs
solely powered by the power grid and checks the possibility
to switch them to sleep mode, one by one, starting with
the BS having the lowest load following Eq. (6). Finally,
we apply the battery aging and price aware algorithm (i.e.,
BAPA) on the remaining BSs (equipped with RE) to effi-
ciently allocate the power between the RE source, the SG
and the battery in order to minimize the electric bill of the
operator. In the next subsection, we detail BAPA algorithm.

Algorithm 1: Joint Power Allocation and
Resource Sharing with Sleep Mode Algorithm

(JPARS-SM)
1: Initialization: Set the SINR switch-off threshold

SINRSOT .
2: Set x(t=1) based on Best SINRs method;
3: Find y(t = 1) by solving Max-Min fairness

algorithm;
4: for t=1:T do
5: for m=1:M do
6: if (6) is satisfied then
7: Switch m to sleep mode;
8: Update x(t) by offloading the users to

nearest BSs with highest received SINRs;
9: Update y(t) by solving Max-Min fairness

algorithm;
10: end if
11: if m∈BSmix then
12: Find pgm(t) and Bm(t) by solving BAPA

algorithm;
13: end if
14: end for
15:end for

C. Battery Aging and Price-Aware (BAPA) Algorithm

BAPA algorithm is divided into three parts. The first
part (Lines 2-6) finds how much grid energy to store in
the battery, and when to purchase it following Section
V-A. The second part (Line 7) finds the allowed amount
of RE that can be stored in the battery (REb

m), while
respecting the battery constraints in (2) and (3). Finally,
the last part (Lines 8-14) decides whether to use the
battery to power the BS or save its energy for future use
(i.e., when there is enough RE).

Algorithm 2: Battery Aging and Price-Aware
(BAPA) Algorithm

1: Initialization: Set the battery specific usage
range, α and DoD.

2: Predict the green energy budget Gm(1) for the
whole day.

3: Calculate pm(t) from eq. (7);
4: if conditions 1 and 2 in proposition 6.1 are

satisfied then
5: Find pg,bm (t) from eq. (21);
6: end if
7: Find REb

m(t) and REBS
m(t) from: eq. (4),

pm(t) calculated in line 5 and the battery
constraints (2) and (3);

8: if G(t)≥Pmin(t) then (use battery)
9: Find pbm(t), while satisfying (10), and the

battery constraints in (2) and (3);
10: Update Bm(t) from eq. (10);
11: Find pg,BS

m (t) from eq. (13);
12:else (store in the battery)
13: Find Bm(t)=Bm(t)+η.REb

m(t)+
η.pg,b

m(t);
14: Find pg,BS

m (t)=pm(t)−REBS
m(t);

15:end if

VI. SIMULATION AND RESULTS

In this section, we provide simulation results to
evaluate the behavior of the system under the battery
model proposed in Section II. First, we compare the
operational cost gains between imposing the battery aging
constraints and ignoring them. As a benchmark, we use
the algorithm provided in [4]: SPAEMA. Then we evaluate
the performance of our proposed solution and compare
it with the benchmark algorithm.

We obtain our results via Monte-Carlo method using
MATLAB. Furthermore, we consider the month of June as
an example to harvest RE, due to its high solar potential.
We set our observation time T = 24 hours and divide
each hour into 10 steps to have a better resolution. During
each time step, the amount of RE harvested is assumed to
be constant, as well as the number of served users. Only
the channel gains and the distribution of the users change
during this short period. We summarize the simulation
parameters in Table I.

A. System Evaluation under Battery Constraints

The battery aging constraints limit its usage. Thus,
on the short term, we expect to observe a degradation in
the system performance, in terms of grid energy electric
bill. In Fig. 3, we compare the grid cost over one day for
different percentage of sites equipped with RE. We observe
a decrease of 5% in the cost reduction gain with strict
battery utilization compared with aggressive utilization
that ignores battery degradations. The 23% price reduction
obtained when none of the BSs are equipped with RE
source is a result of the resource allocation (Max-Min
fairness) algorithm that turns off excess RBs to save
energy. However, and by looking at the long term



TABLE I: Parameters’ values and assumptions

Parameters Values
Number of BSs 25

Number of sectors 3
Bandwidth 10 MHz, FDD

Maximum transmitted power 43 dBm
Inter-cell distance 1000 m

RB 50
BWRB 180 KHz

Max. number of users K 400
User min. required rate 1 Mb/s

Noise power -174 dBm/Hz
P0 118.7 W
∆p 5.32

Number of slots per hour period 10
Current restriction α 0.3

Depth of Discharge DoD 70%
Battery energy efficiency η 0.96

SINRSOT -32 dB

operational cost of the system in Fig. 4, we observe that
while respecting the battery aging constraints, we lose
on average 40% of the battery initial capacity after one
year compared to 75% when these constraints are ignored.
The latter results in a decrease in the operational cost
of about 4% compared to BAPA algorithm, after one year.
The details of estimating the battery capacity degradations
are derived in [9] and are omitted here for brevity. Even
though these degradations are pessimistic, they serve as
a benchmark to compare the different algorithms.
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Fig. 3: System performance over one day under battery aging
constraints. The solar panels harvest 50% of the total BS energy
consumption and equipped with a 3KWh batteries.

B. Performance of BAPA Algorithm

In this section, we evaluate the performance of BAPA
by comparing it with the benchmark scheme. We evaluate
this benchmark under two cases: with and without battery
degradation constraints. BAPA algorithm outperforms
the benchmark for the distinct cases and for the different
percentage of sites equipped with RE, as shown in Fig.
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Fig. 4: Grid energy cost savings with the average evolution
of the battery SoH after one year.

5. With high daily average RE, our algorithm surpasses
SPAEMA by more than 15% cost reduction points. This
amelioration is the result of storing grid energy when
the price is low, and then use it at high electricity prices.
Such operation avoids using grid energy at high prices
and thus, decreases the operational cost of the operator.
The down performance in the case of low average RE, is
due to the limited battery capacity that restricts the proper
energy allocation between the energy stored from the grid
and from the RE source. With a small battery capacity,
our algorithm stores energy from the grid but is not able
to use it efficiently due to the battery constraint in Eq. (3)
that limits the (dis)charging capacity during a time step.

We illustrate the waste of energy in Fig. 6 and 7. The
waste of energy reduces when applying sleep mode, as
shown in Fig. 6. When some BSs switch to sleep mode,
some of their users offload to BSs equipped with RE,
increasing their energy consumption and thus, their RE
usage. This will avoid battery overflow. From Fig. 7,
BAPA algorithm shows slightly higher energy losses in
the case of large battery capacity. This is because the
(dis)charging rate limit of the battery increases with its
size allowing more energy to be stored/used. And, since
BAPA algorithm allows the possibility to store energy
from the grid for future use, more energy is lost (due to
battery inefficiency) compared to the benchmark algorithm
that ignores storing energy from the grid.

VII. CONCLUSION

In this paper, we have addressed the grid energy cost of
a hybrid energy powered cellular network by jointly consid-
ering RE management, resource allocation and sleep mode,
under a battery aging constraint model. First, we have com-
pared the cost gain achieved between strict battery utiliza-
tion that expands its life span, and aggressive utilization that
ignores battery degradations. Simulation results have shown
that even though the operator loses 5% points in operational
cost savings when restricting the battery usage on the short
term, the battery calendar aging will be enhanced by 35%
points. Then, we have proposed a new online algorithm that
manages the energy allocation between the RE source, the
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Fig. 5: Performance evaluation comparison of our algorithm
and the benchmark algorithms for different average amount of
RE (all sites are equipped with RE).
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smart grid and the battery, with the possibility to store grid
energy for future use, taking into account the battery aging
constraint model. Our results outperforms the benchmark
algorithm by around 20% more cost reduction points, and
surpasses the case where the battery is aggressively used by
15% points. In future work, we intend to estimate the evolu-
tion of the total cost of management over time. Despite the
decrease in cost reduction in the short term, longer battery

life would reduce the investment cost and would decrease
the total cost. The study of the time evolution of the system
performance based on the battery model should provide
interesting recommendations for green cellular networks.
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