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Abstract

Downlink data rates can vary significantly in cellular networks, with a poten-

tially non-negligible effect on the user experience. Content providers address

this problem by using different representations (e.g., picture resolution, video

resolution and rate) of the same content and switch among these based on mea-

surements collected during the connection. Knowing the achievable data rate

before the connection establishment should definitely help content providers to

choose the most appropriate representation from the very beginning. We have

conducted several large measurement campaigns involving a panel of users con-

nected to a production network in France, to determine whether it is possible to

predict the achievable data rate using measurements collected, before establish-

ing the connection to the content provider, on the operator’s network and on the

mobile node. We establish evidence that it is indeed possible to exploit these

measurements to predict, with an acceptable accuracy, the achievable data rate.

We thus introduce cooperation strategies between the mobile user, the network

operator and the content provider to implement such anticipatory solution.
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Network monitoring and measurements, Content delivery

1. Introduction

In cellular networks, Quality of Service (QoS), in particular the throughput,

can significantly vary depending on factors like the wireless channel conditions,

users’ activity, and location. To deal with changing QoS, content providers im-

plement adaptive delivery strategies, where the quality and the characteristics

of the delivered content are adjusted to match the achievable QoS of each user.

These adaptive strategies are reactive: the characteristics of the content deliv-

ered at time t are based on measurements collected between the beginning of

the connection and t.

Yet, content providers should take some key decisions at the beginning of

the delivery. For instance, most web sites have different versions of their pages,

with a variable number of elements and different versions, e.g., pictures with dif-

ferent resolutions [1, 2]. The decision of which version to deliver must be taken

at the very beginning of the connection, even though no past observation of

the network path performance is available. Another example is adaptive video

streaming, where video is divided into several chunks, and each chunk encoded

at different bit-rate, each one corresponding to a quality level. Throughout the

connection, the client selects the highest quality representation with respect to

an estimation of the available bandwidth based on the most recent history. At

the very beginning, though, no such history is available. The delivery often

starts with a medium or low quality representation to be on the safe side [3].

In the case of interactive communications like voice and video calls, the ser-

vice provider (or the application) must select the data rate used to encode the

voice and video signals at the beginning, and then this rate changes slowly [4].

Similarly, the settings of cloud-based applications with stringent real-time con-

traints, such as cloud gaming [5], should be done at the very beginning of the

session and can sometimes hardly be changed (for instance the choice of the

server). In each of these cases, content providers could avoid the guess work if
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they could get a reasonably accurate estimate of the achievable data rate of a

given client. This estimate does not need to be extremely precise. Getting the

order of magnitude right can already be enough in most cases. Typically, the

number of web page versions (for a web provider) and the number of available

video representations (for a video provider) are limited.

The abundant literature on throughput prediction, which is detailed in Sec-

tion 2, does not meet our demand for historyless estimation of the time needed

to download a file. Many previous proposals for throughput prediction are based

on end-to-end (or path) metrics, such as the Round-Trip Time (RTT) and the

packet loss rate. While these proposals can be very effective, they need mea-

surements of end-to-end metrics, which are not available at the very beginning

of the connection. A second group, sometime called history-based, relies on the

throughput history, as its name implies. These techniques, which are mainly

used in adaptive video streaming, predict the throughput in the immediate fu-

ture [6, 7, 8]. As in the case of proposals based on end-to-end measurements,

history-based proposals are not an option at the very beginning of a connection.

More recently, Lu et al. [9] have proposed to exploit physical layer measurements

to make very short term (a few hundreds of milliseconds at most) throughput

predictions. While such short term predictions can be useful for congestion con-

trol and packet scheduling purposes, they are less relevant for content providers

as the time scales involved are too short: clients need a few seconds to download

the typical web page or video segment.

Our goal in this paper is to study whether it is possible to get an accurate

estimate of the time needed to download the first few elements requested by

the client (for instance the different components of a web page or the first

segments of a video). In other words, we study the prediction of the average

throughput on a time period that is much longer than what was studied in the

aforementioned recent proposals. We focus on the case of cellular networks,

which are a challenging environment since the QoS performance can change

dramatically.

The key idea of our prediction approach is to use machine learning algorithms
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on a set of data coming from different sources, such as radio channel metrics

(e.g., received signal strength), Global Positioning System (GPS) coordinates,

speed, terminal category, frequency band of the mobile, and cellular network

metrics (e.g., average cell throughput, the average number of users, the connec-

tion success rate). These different elements are available either on the mobile

station and/or cellular base station and in the cellular network management

system. We have presented some preliminary results in a previous paper [10] in

which we verified on a small dataset the validity of our approach.

In this paper, we comprehensively study the idea of using machine learn-

ing to predict, without any prior end-to-end measurement, the time needed to

download a file. For the sake of completeness, we use a large dataset, which we

collected at different time periods in a production mobile network, and four ma-

chine learning algorithms. Our main contributions are the following: (i) we ana-

lyze the bivariate relationship between each input variable and the throughput,

to better understand the contribution of each variable to the cellular network

throughput prediction; (ii) we show that an instantaneous prediction of user

achievable throughput is possible; (iii) we highlight that the accuracy depends

on the type of information in input; (iv) we discuss possible implementations of

this approach to improve the adaptive delivery strategies.

The remainder of the paper is organized as follows: After a review of re-

lated work in Section 2, we describe the measurement campaigns and the input

dataset in Section 3. We analyze the bivariate correlation between different in-

put variables and the throughput in Section 4. We then exploit these results in

the comparison of different machine learning algorithms to predict the through-

put in Section 5. Finally, we discuss our approach and introduce implementation

strategies in Section 6.

2. Related work

We review, in the following, previous work on throughput prediction. We

distinguish three main families of studies, whether the prediction is based on
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knowledge of the end-to-end path characteristics, on measured throughput his-

tory, and on information about the physical layer. We conclude by summarizing

the main differences between our work and existing solutions.

2.1. End-to-End Path Knowledge-Based Throughput Prediction

Scientists have analyzed the behavior of Transmission Control Protocol (TCP)

to obtain accurate models for the prediction of the instantaneous throughput on

a given end-to-end path. Various models have been studied for the past twenty

years [11, 12, 13, 14, 15, 16, 17]. The theoretical findings include the strong

ties between the throughput dynamics, the RTT, and the packet loss rate. It

is possible to get an accurate estimation of any of these end-to-end parameters

from the two others. These studies however do not meet our motivations to

estimate the throughput before the beginning of the connection, when no past

measurement is available. Since we consider that the system is aware of neither

the RTT nor the packet loss rate, we cannot directly use these models to obtain

an estimate of the average throughput on a typical 10 s period.

Another set of scientific studies [18, 19] has aimed at replacing the end-to-

end parameters in the throughput models by a set of other metrics that can

be obtained quickly by light path probing. The prediction error is however less

accurate than with RTT and packet loss rate due to the uncertainty on the

validity of the probed metrics. Moreover our motivation is to have no probing

phase at all, and to rely exclusively on information that can be instantaneously

available before the beginning of the connection.

2.2. History-Based Throughput Prediction

A line of research on throughput prediction is the development of models

that are based on past measures of the throughput. The motivation is to use

approaches related to time series analysis (e.g., smoothing or moving average)

to forecast throughput by observing its past evolution. For example, Xu et al.

[20] provide a framework dedicated to network performance forecasting, includ-

ing forecasting the throughput during the next 500ms based on the last 20 s.
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In a similar vein, Jiang et al. [21] use a harmonic mean of the previously ob-

served throughput. Li et al. [22] also use a smoothing function to predict the

throughput. Sun et al. [23] divide the session into periods of 6 s (epochs) and

use a Hidden Markov Model (HMM) to predict the throughput of each period.

Adaptive video streaming technologies use a variant of the history-based

throughput prediction to determine which bit-rate is the most appropriate for

the next x seconds (x ranging from 1 to 10 s) [21, 22]. The prediction is based

on buffer monitoring techniques [6], where the buffer level drives the video rate

selection. However, when the buffer is empty at the beginning of the streaming

session, a bandwidth estimation is necessary, as highlighted by Mok et al. [3].

While having proven effective in wired networks [20, 21, 22], these strategies

do not perform as well in cellular networks due to the frequent radio link qual-

ity variations, which influence the bandwidth. Yao et al. [24] have highlighted

this weakness showing that, in cellular networks, the current throughput should

rather be predicted by the user location, which has a stronger impact on ra-

dio link quality. More recently, Zou et al. [8] study more accurate bandwidth

prediction methods with respect to radio link quality variations.

These approaches do not address our motivation for getting an estimation

(which does not need to be as accurate as in these proposals) without any pre-

vious history available at the client side. We study in a comprehensive manner

the combination of various available information, in particular related to user

location, to identify the set of parameters that have the highest influence of

throughput prediction.

2.3. Physical Layer-Based Throughput Prediction

Amore recent approach is to predict throughput by using measurements that

have been collected at the physical layer by the network operator. Our paper

falls into this category, which has been recently explored for cellular networks

in a series of papers [9, 25].

Lu et al. [9] rely on the fact that the mobile nodes and the base stations

periodically exchange radio channel measurements, which are used by the base
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station to make scheduling decisions. Among these measurements, Lu et al.

suggest to use the Channel Quality Indicator (CQI), which they directly map

to a throughput estimation. The suggested estimation is valid only for a short

time frame (500ms is the longest tested time frame [9]), as the CQI is very

dynamic. This approach does thus not fit our needs since our motivation is to

address the downloading of data chunks that can be several seconds long (up to

15 s for a video segment [26]). More generally, we are interested in predicting

the time needed to download a large file.

The framework presented by Xie et al. [25] aims to infer the available band-

width from the Physical Resource Blocks (PRBs) utilization rate. Their pro-

posal is to estimate a “sojourn” time of the network bandwidth (the validity

duration of this bandwidth estimation) using a Pareto model. The approach

of estimating the PRBs utilization is equivalent to exploiting directly the Ref-

erence Signal Received Quality (RSRQ), which already provides the channel

quality information without the need of implementing another radio resource

monitoring system. This approach does not enable an instantaneous predic-

tion, as the previous bandwidth value and its sojourn time must be constantly

recorded.

The main difference between these approaches and ours is that we collect

data from both user devices and base stations, including physical layer and

aggregated cell performance data. Our goal is to extend this series of work by

having a systematic analysis of all the available measurements (without probing

the end-to-end path) and their significance as throughput predictors.

2.4. Summary

The popularity of adaptive delivery technologies has reinforced the need of a

throughout prediction that is both reasonably accurate and that does not rely on

time consuming path probing. We reviewed the existing approaches, which can

be based on end-to-end path performance analysis, on the history of through-

put measurements, and on some physical layer information. Only the latter

approach provides an instantaneous prediction and is well suited for cellular
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networks. Previous studies are limited to short time scales (e.g., 500ms in [9]).

In this paper, we complete the physical layer-based instantaneous throughput

prediction by adding as input several aggregated Radio Access Network (RAN)

performance data and user context information to obtain a more accurate pre-

diction of the average throughputfor a longer time scale. We also compare the

inputs by measuring the contribution of each one to the prediction.

3. Input Dataset

To evaluate our approach on real datasets, we conducted a series of measure-

ment campaigns in 2016, involving more than 50 volunteers spread over several

cities in France (Europe). In the following, we first give an overview of the

different campaigns. Then, we present in Section 3.2 a detailed description of

the collected data. Finally, the preprocessing of the data (including cleaning

and filtering) is detailed in Section 3.3.

3.1. Measurement Campaign

Each User Equipment (UE) periodically downloaded a specific file through

an Android application [27] from a dedicated well-provisioned server. The size

of the downloaded file ranges from 4 to 50MB, depending on the measurement

campaign. This range of sizes allows us to test our prediction solutions in a wide

set of configurations. To make a few comparison, the average size of a webpage

has exploded in the recent years and is planned to be above 4MB in 2019 [28].

Based on the recommended video encoder setting, a typical 2 s chunk of a 4K

video is above 10MB [29]. The time needed to download these files were in the

order of a few seconds, which is in conformance of our motivation.

The measurements were performed on a production Long Term Evolution

(LTE) network, using TCP. For each measurement, the application logged vari-

ous data from the UE Operating System (OS), at the beginning and at the end

of the connection. Meanwhile, a series of measurements regarding the cellular

network performance was collected in parallel from the operator RAN manage-

ment system, which include dozens of Key Performance Indicators (KPIs). An
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Table 1: Main characteristics of the dataset

campaign

A B C all

General Information
dates early 2016 early 2016 end of 2016

nb. testers 40 5 5
nb. entries 5,441 2,632 15,011 23,084

nb. phone models 23 5 5 26
nb. cells 390 40 122 497
nb. cities 112 14 41 147

File Size
4MB / 20MB / 50MB 5,441 / 0 / 0 0 / 2,632 / 0 0 / 12,437 / 2,574 5,441 / 15,069 / 2,574

Cell Frequency Band
proportion of LTE2600 /LTE800 0.58 / 0.42 0.88 / 0.12 0.63 / 0.37 0.64 / 0.36

Device Category
proportion of cat.3 0.23 0.00 0.00 0.05
proportion of cat.4 0.70 0.59 0.77 0.74
proportion of cat.6 0.07 0.41 0.23 0.21

Context
proportion of indoor / outdoor / unknown 0.41 / 0.15 / 0.44 0.47 / 0.31 / 0.22 0.59 / 0.26 / 0.15 0.52 / 0.24 / 0.23
proportion of static /mobile / unknown 0.57 / 0.08 / 0.35 0.60 / 0.20 / 0.20 0.83 / 0.02 / 0.15 0.74 / 0.06 / 0.20

median / average speed (in m/s) 0.00 / 0.45 0.00 / 0.39 0.00 / 0.14 0.00 / 0.23
median / average distance to base station (in m) 857 / 1,302 702 / 1,387 2,931 / 2,777 1,879 / 2,336

Radio
median / average RSRQ (in dB) -7.7 / -8.3 -6 / -7 -8 / -8 -8 / -8

median / average RSRP (in dBm) -106 / -104 -110 / -109 -111 / -109 -111 / -108
median / average RSSI (in dBm) -79 / -80 -83 / -83 -80 / -82 -80 / -82

RAN
median / average cell avg. throughput (in Mbit/s) 29 / 27 30 / 29 29 / 28 29 / 28

median / average avg. nb. of user 14 / 20 2 / 9 9 / 16 7 / 15
median / average block error rate 0.05 / 0.06 0.05 / 0.05 0.08 / 0.09 0.07 / 0.07

median / average conn. success rate 0.999 / 0.997 1.000 / 0.999 0.999 / 0.998 0.999 / 0.998

Throughput (in Mbit/s)
1st quartile /median / 3rd quartile 13 / 23 / 36 25 / 37 / 46 11 / 24 / 34 12 / 26 / 36

average 25 34 23 25

exhaustive description of the collected data is provided in Section 3.2. Figure 1

illustrates the different elements involved.

In more details, we undertook three measurement campaigns (respectively

identified in the following by A, B and C), differing in context, downloaded file

sizes, and mobility patterns of the UEs. This diversity is representative of the

typical settings that are observed in the network. During each campaign, the

application has configured to periodically perform measurements throughout

the whole day for all the UEs involved in the campaign. Table 1 presents the

details of each campaign.

Campaign A was held early 2016. It involved 40 volunteers spread over several

cities in France. This campaign presents a large diversity of cells, with an
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Figure 1: Overall architecture of our data collection campaign

emphasis on urban contexts. To avoid overusing the data allowance of the

volunteers’ wireless plans, we limited the download size to 4MB.

Campaign B was held during the same period as Campaign A, but involved

five test smartphones with dedicated SIM cards associated to unlimited

data plans. The download size was then fixed to 20MB for these UEs.

This campaign was held in better cellular conditions by users in well-

covered mid-size and touristic cities, but it presents a lower diversity of

cells.

Campaign C was held during end of 2016, using the same five test smart-

phones as in Campaign B. It has been performed to collect data over

more various conditions. In this campaign, the download size was set to

50MB for one sixth of the measurements, and 20MB otherwise. It rep-

resents mostly static usage in various locations (for instance, connection

from different houses), mostly in rural areas.

The collected data consist of 23,084 entries. This includes only the smart-

phones that successfully performed the tests. 26 different smartphones models

have been used, with different LTE UE categories [30] (6 in cat. 3, 18 in cat. 4

and 2 in cat. 6 ). About 500 cells, which are spread over 147 communes in France,

appear in the data, which are split into 64% LTE2600 and 36% LTE800. In or-

der to avoid measurement artifacts, connections that experienced a handover

are not considered in this study.
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Figure 2: Cumulative distribution function of the file download time

3.2. Dataset Description

We now describe the metrics collected in the measurement campaigns, grouped

by type from the business and accessibility points of view.

3.2.1. Average Throughput

The main measure that we target is referred to as the average throughput,

which we compute as the file size divided by the downloading time. TCP [31]

includes a congestion control algorithm that is designed to adjust the sending

rate to the available bandwidth. A TCP session includes two phases: slow-start

and congestion avoidance. The former corresponds to a rapid increase of the

sending rate from the beginning until a threshold is reached or packet losses

are detected. Then, the congestion avoidance phase starts, where the sender

increases the sending rate until a packet loss is detected and the rate is reduced.

Different TCP versions use different congestion control algorithms to increase

the rate and use different multiplicative factors when reducing it but the main

idea is the same, at least for congestion control based on loss detection, which

are the most widely used.

We used different file sizes during our measurement campaign to cover vari-

ous cases: small files to measure the average throughput in the case of networks

with low bandwidth without extending the transmission duration. Large files to
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measure network configuration with high bandwidth in not too short sessions.

Some of our measurements in campaign A-4MB may have stopped before the

end of the TCP slow start. Nevertheless, since 70% of the sessions lasted more

than 1 s for this campaign, we believe that the range of its session durations is

large enough to be representative of typical network configurations. The em-

pirical cumulative distribution function is shown in Figure 2. For the campaign

B-20MB (resp. C-20MB and C-50MB), all the sessions lasted more than 1.5 s

(resp. 2.5 s and 7 s).

3.2.2. UE Category and Cell Frequency Band

LTE defines UE categories, which determine their performance specifications

and enable base stations to be aware of their expected performance level.

Cellular networks use several frequency bands: 2.6GHz for LTE2600 and

800MHz for LTE800 base stations. LTE2600 is particularly used in city-based

scenarios since it uses a larger band (20MHz) and does not cover a wide area.

LTE800 uses a smaller band (10MHz). Its carrier frequency is generally used

in a rural setting to take advantage of its wider coverage.

3.2.3. Physical Layer

On the UE we collect:

Received Signal Strength Indicator (RSSI) the total wide-band signal power

received by the UE.

Reference Signal Received Power (RSRP) the reference signal power across

the channel bandwidth.

Reference Signal Received Quality (RSRQ) the ratio between RSRP and

Received Signal Strength Indicator (RSSI) multiplied by the number of

resources blocks allocated to the UE. RSRQ measures the quality of re-

ception of the reference signal.

While other metrics such as Signal to Interference and Noise Ratio (SINR)

and CQI do exist, we have observed that most UEs do not report accurate values,
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possibly because of the OS and the device itself, or most likely, a combination

of both.

The Application Programming Interface (API) offered by the OS, allows

applications to obtain information about the UE. On Android UEs radio data

availability depends on the OS version and the energy saving policies of the

manufacturer. For example, we discovered that a screen in idle mode can shut

down the access to some radio link KPIson some UEs. Since our measurements

have been performed on each smartphone without specific user intervention,

many tests have been done while the smartphone was idle, so many logs do not

contain all the data.

It is worth noting that CQI data are no longer available in more recent

Android UEs. This explains why Lu et al. [9] use a complex setup using Qual-

comm’s QXDM software to capture radio layer traces including CQI reports.

Since we focus on a lightweight data collection and throughput prediction, we

ignore the CQI in our campaign and used RSRQ as our main quality indicator.

3.2.4. Radio Access Network

Operators use Network Manangement System (NMS) to monitor their net-

works by collecting raw counters of network events, typically aggregated over a

period of a few minutes. Among all the available metrics, we selected those that

are both well correlated to the user throughput and least correlated between

them. They are: the average cell throughput, the average number of users in

the cell, the Block Error Ratio (BLER) of the cell, and the Radio Resource

Control (RRC) setup success rate. Each metric is computed over a period of

fifteen minutes.

Finally, we would like to note that, despite the relative stability of the NMS,

we also missed a part of RAN data due to some data gathering issues.

3.2.5. Context Information

Intuitively, the context in which the download operation occurs can help to

predict QoS. Context awareness has been used in various other applications [32,
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Table 2: Definition of the ten main schemas for the entries
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s1 X X X X X X X X X X X X 9,459
s2 X X X X X X X X 7 7 7 7 3,347
s3 X X 7 7 7 7 7 7 X X X X 1,445
s4 X X X X 7 7 7 7 X X X X 1,232
s5 X X X X 7 X X X X X X X 1,224
s6 X X X 7 7 X X X X X X X 1,079
s7 X X X X 7 X X X 7 7 X X 731
s8 X X 7 7 7 X X X 7 7 X X 572
s9 X X X X 7 X X X 7 7 7 7 540
s10 X X 7 7 7 7 7 7 7 7 7 7 502

Total missing 0 0 3,587 4,877 9,351 4,638 4,679 5,234 7,543 7,543 5,357 5,357

33]. In this paper, we consider the following indicators:

Indoor/Outdoor: provided by the application that we have used on the UEs

(heuristic based on the number of visible GPS satellites).

Distance to cell: based on the GPS coordinates provided by the application

and the topology database with the location of the base stations of the

cellular network.

Speed: estimated thanks to the GPS and the accelerometer.

3.3. Data Preprocessing

Every time a UE downloads the file, it generates an entry. This entry con-

tains a timestamp and the time it took to download the full file, which we

use to compute what we call average throughput. An entry also contains the

measurements that we presented in the previous section.

Some entries are incomplete. For example, only a subset of the radio channel

measurements is available, depending on the make and model of the UE as well

as the version of the OS. The location (GPS coordinates) is not always available

too. Finally, some devices do not report radio link measurements when in idle

mode. We have thus to deal with some missing data.
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Table 3: Correlation between collected information and throughput

Radio Context RAN
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Pearson correlation coef. - - 0.67 0.39 -0.17 -0.64 0.00 - 0.59 -0.53 -0.39 0.07
Spearman correlation coef. - - 0.71 0.45 -0.15 -0.66 0.11 - 0.62 -0.57 -0.43 0.47

MIC - - 0.37 0.18 0.33 0.62 0.07 - 0.49 0.30 0.20 0.24
Point-biserial correlation coef. - 0.69 - - - - - 0.09 - - - -

MaxNMI 0.09 0.48 0.32 0.14 0.32 0.49 0.02 0.03 0.38 0.24 0.13 0.19

We distinguish ten different cases, depending on the missing metrics. We

call them schemas. Each schema is characterized by the missing metrics: all the

entries belonging to the schema have the same missing metrics and have valid

measurements for all the others. Table 2 shows the ten most frequent schemas in

our measurement campaign. The schema s1, in which all metrics are present, is

the most frequent with 9,459 entries. We were able to exploit the other schemas

as well given that the prediction algorithm (presented in Section 5) can use only

a subset of the available metrics. For instance, when using the radio information

and the context information, we include schemas s1 and s2.

We preferred this approach of mixing different schemas. The other tradi-

tional approaches to deal with missing data are either imputation—the missing

values are replaced by the mean of the variable, its median or any other value

learned from the dataset [34]— , or entry removal —the whole entry is ignored.

Both approaches do not fit well with our problem. In the case of imputation,

the choice of the imputed value can have a significant impact on the results and

there is no value which is obviously appropriate for such a purpose. The ap-

proach based on entry removal would significantly reduce the amount of entries

for our supervised learning approaches.

4. Bi-Variate Correlations

We first calculate the several correlation coefficients to study the bi-variate

correlations. We use linkspotter [35], a package for the R statistical software [36].

We provide a summary of the correlations in Table 3.
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Pearson coefficient indicates a linear positive (or negative) relationship be-

tween the variable and the throughput. The closer the value to is to 1

(respectively -1), the higher the correlation is (inverse correlation respec-

tively).

Spearman coefficient is comparable to the Pearson coefficient, but rather

denotes a monotonic relationship between the variable and the through-

put.

Maximal Information Coefficient (MIC) [37] indicates several types of

correlation including linear, non linear, monotonic and non monotonic

ones. The closer it is to 1, the higher the correlation.

Point-biserial coefficient is similar to the Pearson coefficient but applies to

binary variables.

MaxNMI [35] correlation coefficient (Maximal Equal-Freq Discretization-

Based Normalized Mutual Information) enables the evaluation of the cor-

relation between any couple of variables regardless of their types (qual-

itative and quantitative). Any quantitative variable is discretized into

intervals of equal frequency so as to maximize the normalized mutual in-

formation of the couple. With this normalization, we obtain a coefficient

between 0 and 1 (the closer it is to 1, the stronger the relationship is),

which can be compared between different couples of variables. Moreover,

the discretization fulfills a condition to avoid overfitting data and to limit

the calculation time [37].

Based on the results given in Table 3, we identify the metrics that are loosely

correlated to throughput: the user location (in or out-door), the speed, and the

device category. The two former measurements are hard to obtain accurately,

so it is possible that the low correlationis due to a failure in the data collection

process.

We provide a general graphical view of the correlation between each collected

metric and the throughput by a series of figures: for the cell frequency band,
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Figure 3: Throughput according to other factors

Figure 4: Correlation between throughput and radio data

the UE category, the transfer size and measurement campaignin Figure 3, for

the radio link datain Figure 4, for the context datain Figure 5, and for the RAN

datain Figure 6. We present the results using box plots. They describe the

entire distribution of the average throughput on each interval obtained by an

equal-frequency discretization of the corresponding KPI. A box represents the

quartiles and its whiskers the range of the data (excluding potential outliers).

Our observations include: (i) the high correlation between the cell frequency

band and the throughput is visible in Figure 3 where the connection to a

LTE2600 has a better throughput than a connection to a LTE800 cell. The

higher throughput of LTE2600 may be due to the larger bandwidth, which

allows higher maximal data rate. (ii) Figure 3 illustrates the low correlation

between the throughput of the transfer size and the campaign. The differences

between the three campaigns, particularly the transfer size, have not impacted

the throughput. Nevertheless, the campaign B obtained higher throughputs

due to the over-representation in this campaign of LTE2600 cells and lightly
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Figure 5: Correlation between throughput and context data

Figure 6: Correlation between throughput and RAN data

loaded cells (see Table 1). (iii) the radio link information exhibits a high corre-

lation with throughput in Figure 4 but the number of outliers is still significant.

(iv) Figure 5 denotes an inverse correlation between the distance to the base

station and the throughput. The larger distance values from the base station

correspond to the most frequent tests performed on LTE800 cells, which have

a wider coverage and generally provide a lower throughput as explained in Sec-

tion 3.2. (v) Figure 6 highlights that the four metrics that we chose from the

RAN entries have a high correlation with the throughput. These metrics reflect

several high impact factors related to the cell.

5. Input Combination for Prediction

In the previous section, we analyzed the bi-variate correlation between each

metric and the throughput. Now, we expand our study by considering a through-

put prediction based on a combination of these metrics. In our study, we check

the accuracy of the throughput prediction based on a combination of metrics

18



Figure 7: The machine learning process

as input. We call predictor every combination of input metrics that can be

considered for the prediction. We consider predictors reflecting the data clas-

sification presented in Section 3.2. For each predictor we performed a machine

learning process as described by Figure 7. The first phase consists in build-

ing a predictive model from a pre-processed training dataset, composed by the

predictor metrics and the measured throughput, using a learning algorithm. In

the second phase, we compute a predicted throughput from the predictor in a

pre-processed test dataset with to the corresponding prediction algorithm and

assess the prediction accuracy by a comparison with the measured throughput

in a test dataset.

5.1. Methodology

The predictors are built as follows. First, we always include the UE category

and the cell frequency band since both metrics are always available. Then, we

consider the different types of metrics, as described in Section 3.2: context,

radio link, and RAN. We consider all the configurations of available metrics

for each type. Let i be an entry of our measurement campaign. Let yi be the

throughput of the file downloading operation associated with i. The subset of
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metrics that has been accurately captured during the entry i corresponds to one

of the schemas, which we introduced in Table 2. Based on the schema, the entry i

can be used in some predictors. For example, an entry i that matches the schema

s1 can be used for three different predictors: when only RAN information is

available, when only radio link information is available, and when both RAN and

radio link information is available. For each predictor, the algorithm predicts

the throughput ŷi. We then compare the predicted throughput ŷi to the actual

throughput yi.

We use four supervised learning algorithms to make sure that the accuracy

of the prediction from a given predictor is not due to a bias in the learning

algorithm but rather in the correlation between this predictor and the through-

put. Supervised learning is a field of machine learning to learn the relationship

between a set of variables called input or predictors and another called output

or target. We use the following algorithms: Random Forest (RF) [38], a Lin-

ear Model (LM), a particular design of a Generalized Linear Model (GLM) [39]

using Partial Least Squares (PLS-GLM) [40], and an artificial Neural Network

(NN) [41]. We describe each of these algorithms in Section 5.3. We use the R

statistical software [36] and several packages that implement these algorithms:

randomForest [42], stats [36], an extension that we coded from the package

pls [43], and nnet.

To evaluate the algorithms, we randomlyseparate the dataset into two sub-

sets: a training one (60%) and a test one (40%). The training dataset is used to

build the models using the machine learning algorithms. The prediction is then

done using input variables from the test dataset. This validationmethodology is

a standard machinelearning technique to check whether a model that has been

built with a (hopefully large enough) number of entries can then accurately

predict the throughput of any new entry.

5.2. Performance Metrics

We measure the accuracy of the prediction from different perspectives, in

order to avoid biases due to the performance metrics. In Table 4 presents two
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metrics that are frequently used in machine learning:

The coefficient of determination, R2 , represents the proportion of the vari-

ance in the throughput that is predictable from the predictor. It is com-

puted as

R2 = 1 −
∑n

i=1 (ŷi − yi)
2∑n

i=1 (ȳ − yi)
2 (1)

where ȳ is the mean throughput calculated from the test dataset consisting

of n measurements.

The median absolute error ratio, Ē is the error ratio that half of the pre-

dictions reach. It measures the median deviation of the prediction as a

percentage. The error ratio is measured by the absolute value of the dif-

ference between the predicted and the actual throughput, divided by the

actual throughput:

Ē = median1≤i≤n

(∣∣∣∣yi − ŷi
yi

∣∣∣∣) (2)

We also present the results in a graphical way by depicting the Empirical

Cumulative Distribution Function (ECDF) of the prediction error in Figure 8

and the generated heatmap comparing actual measured and predicted through-

put values in Figure 9. For both, we restrict to the three main predictors:

radio-only, RAN-only, and radio and RAN.

5.3. Machine Learning Algorithms

We give now a brief overview of the four algorithms that we use to predict

the throughput from the different predictors.

5.3.1. Random Forest Regression

RF regression algorithm is an extension of Regression Trees. The principle is

as follows: first a set of regression trees is built using a randomly chosen number

of predictor variables. Every tree is built using a bootstrap sampling [44]. The

set of random regression trees is called the random forest. A prediction is
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performed using the mean value of the output from all the trees in the forest.

In this case, we use for each model a forest of 500 trees, and each tree is built

using a randomly selected half of the predictor variables.

RF presents some appealing features. This method is known to be smoother

than many other regression algorithms, in particular the Regression Tree. RF is

sensitive to complex relationships between predictor variables and target data.

Neither the outliers nor overfitting of the training set impact its prediction per-

formance. Another advantage is that RF can be easily tuned since the number

of learning parameters is low. Finally, the learning algorithm supports parallel

execution.

5.3.2. Linear Model

The LM approach fits a linear equation Y + ε = βX to the data, where Y

is the prediction, X the predictor variables matrix, β the coefficients to esti-

mate, and ε the error. Given the assumption that the errors ε follow a Gaussian

distribution and are homoscedastic, the approach is to use an optimization al-

gorithm to estimate the coefficients β from a series of statistical tests. Then,

the algorithm can compute a predicted value Ŷ from any new predictor values.

The main advantage of LM approaches is the simplicity, which results in a

small number of parameter settings and fast computation. However, LM can

fail to detect some correlations between the target variable and the predictors.

Moreover, the presence of outliers can affect the accuracy of the prediction.

5.3.3. Partial Least Square Generalized Linear Model (PLS-GLM)

The PLS-GLM technique [40] is a variation based on GLM, which aims

in particular at fixing the inaccuracy of LM to detect correlations such as

log(Y + ε) = βX. It also detects when some variables of the predictor are

highly correlated; it is then possible to reduce the dimension of the predictor by

applying a Multiple Correspondence Analysis (MCA) process to the input.

PLS-GLM is expected to improve LM while keeping its main advantages

(including simple tuning and low execution time). Moreover, it takes into ac-
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Table 4: Prediction results according to input data. B is the baseline predictor where the
input variables are the UE category and the cell band.

training test RF LM PLS-GLM NN

Predictors # metrics # entries # entries R2 Ē R2 Ē R2 Ē R2 Ē

B 2 13,851 9,233 0.49 0.26 0.50 0.26 0,49 0,26 0.50 0.26
B + Radio 5 8,210 5,472 0.75 0.19 0.72 0.19 0,74 0,18 0.73 0.19
B + RAN 6 9,340 6,201 0.72 0.17 0.59 0.23 0,60 0,21 0.62 0.21
B + Context 5 10,710 7,140 0.59 0.24 0.57 0.25 0,60 0,24 0.58 0.25
B + Radio + RAN 9 5,872 3,903 0.87 0.11 0.79 0.16 0,81 0,15 0.79 0.16
B + Radio + Context 8 7,870 5,246 0.82 0.15 0.74 0.19 0,77 0,17 0.75 0.19
B + RAN + Context 9 7,320 4,863 0.86 0.13 0.67 0.21 0,72 0,19 0.73 0.19
B + Radio + RAN + Context 12 5,682 3,777 0.89 0.10 0.79 0.17 0,82 0,14 0.81 0.17

count more interactions between predictor variables. However, it also suffers

from weaknesses inherited of the GLM method, especially the need to remove

outliers from the predictors before fitting the model.

5.3.4. Artificial Neural Networks (NN)

We use a Feed-Forward Neural Network [41], which contains a single hidden

layer with ten neurons. We uses at most 400 iterations and always performed a

quick preliminary weight decay optimization. For each model, all feature vectors

were fed to the neural network like for the other machine learning algorithms.

The principal advantage of this learning technique is its ability to fit with

complex correlations between predictor variables. Moreover, the design based

on a single layer of this NN approach results in algorithms that are easy to code

and fast to execute. However, NNs are more sensitive to overfitting than the

otheralgorithms considered in this study.

5.4. Results

We present in Table 4 the performance of the ML techniques for increasingly

rich predictors. The baseline predictor, noted B, corresponds to the UE category

and the cell band, because both metrics are always available in smartphone.

Then, we increase the amount of available information. We show in Figure 8 the

Cumulative Density Function (CDF) of the error ratio for all the predictions of

the RF algorithm. Figure 9 provide an illustration by a heatmap of the predicted

throughput against the actual measured throughput for the RF algorithm.

We first analyze the performance of the ML algorithms. Every approach
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Figure 8: Cumulative distribution function of error rate

Figure 9: Actual versus predicted average throughput

succeeds in exploiting the increasing number of available metrics, which results

in a growing accuracy. The RF peaks the performance with an R2 value of 0.89

and a median error ratio at 0.10. The other approaches provides equivalent

results. In particular, the PLS-GLM approaches improves the GLM algorithm

by a low margin, which is insufficient to provide as accurate predictions as the

RF algorithm. Our recommendation is therefore to use the RF algorithm due to

its better performance. In comparison with other machine learning approaches,

RF does not restrict to linear relationships, which enables the algorithm to

efficiently capture the structural link between the predictor variables and the

target variables. Of course, other machine learning algorithms, such as deeper

neural network, may perform even better than RF in the future; however the
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performance gains should not be significant since the choice of the used predictor

variables is the most critical step of the prediction process in such a problem

with structured data in input.

We then analyze the accuracy of the prediction. The results (especially a

test validated coefficient of determination at 0.89 and a median error ratio at

0.10 for the most efficient prediction algorithms) are in the same performance

range as much more sophisticated non-instantaneous techniques [19]. Our study

thus reveals that instantaneous prediction based on data that can be available

at the device and at the operator enables an accurate prediction. The heatmap

presented in Figure 9 provides a graphical view of this accuracy for the RF

algorithm. In Figure 8, two thirds of the predictions have an error ratio lower

than 0.2, which means that the predicted throughput is between 0.8 and 1.2

times the actual throughput. This result validates our approach, which is to get

an estimate of the average throughput of a download that is accurate enough

to allow content providers to select a class of service for each end-user.

We finally analyze the quality of the various predictors. We have to find the

balance between the prediction accuracy (the higher number of available metrics

the better) and the system complexity (the lower number of metrics the easier

to implement). First we show that the cell frequency band and the UE category

do not enable an accurate prediction with our supervised learning technique.

The context information improves performance, but the two main families of

collected data that lead to a more accurate prediction are RAN and radio link

(the coefficient of determination is 0.75 and 0.72 respectively). These results

validate the correlation that we computed in Section 4. Second, RAN and radio

input data are complementary since the combination of both increases the R2

to 0.87 and limits the median error ratio to 0.11. These results are close to

the best prediction we obtain with the best algorithm, when the predictor also

includes the context information. In other words, the combination of the radio

link information and the RAN information enables an accurate prediction. As

we will discuss next, this result opens wide perspectives for the implementation

of prediction-based adaptive services by content providers in mobile networks.
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6. Discussion: Opportunities and Limitations

We discuss now the opportunities and limitations of our proposal. The

achievable throughput of a connection over a cellular network depends on the

performance of all the components that are involved in the transmission: the

mobile device, the radio link, the cell capacity, the core network, and even the

server of the content provider. At any given time, one of these components is

the bottleneck that limits the data rate. A commonly accepted claim is that

the network operator and the content provider provision the core network and

Content Delivery Network (CDN) respectively so that the bottleneck is located

in the so-called last-mile. If this is indeed the case, predicting the data rate in

the last-mile is equivalent to predicting the end-to-end data rate.

At the same time, some researchers have also studied the case where the

core network [45] or the CDN [46] are under-provisioned, in which case the

bottleneck could not be in the last-mile. In this case, predicting the data rate

on the wireless link is not enough to predict the end-to-end rate but such a

prediction can still be exploited by combining it with information related to

the status of the core network and the CDN. Typically, since content providers

now use several CDNs [47] to deliver content, specific CDN monitoring solutions

are emerging. It would therefore be possible to integrate the results of these

monitoring solutions as inputs of our throughput prediction algorithm.

Another source of improvement for our algorithm is to use other types of

information related to the mobile phone of the user. At the physical layer,

the receiver’s sensitivity and the transmission power are two variables that can

impact the QoS. At the application layer, the buffer and even the performance

of the OS are also critical elements. In our model, we take into account the

category of the device, but we could go further into this analysis and evaluate

if the prediction performance gap can be explained by other parameters related

to the mobile phones. Typically, throughput optimization mechanisms such as

Carrier Aggregation (CA) may be detected and integrated in our prediction

process. The dataset that we used here does not collect such information; new
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Figure 10: Implementation strategies. a: client-based pull delivery, b: server-based push
delivery

studies should be conducted to get datasets that capture novel network and

device technologies in the ever-evolving context of mobile networking.

Finally, a limitation of our study is the relatively poor availability of radio

link information. Indeed, the measurements about radio link are accessed by

the mobile device OS through specific APIs. Unfortunately, OS developers

are increasingly restricting these OS APIs. Moreover, the documentation about

these radio data from APIs is poor and their accuracy is sometimes controversial.

Such uncertainty may come from the relatively low usage of these APIs by

current mobile apps. In our proposal, we assume a full availability of the radio

link information but this could require some more implementation efforts at the

OS level. The Minimization of Drive Test (MDT) standard [48] is an opportunity

to consider for solving this problem as It allows the network operator to access

the radio link information for each subscriber.

7. Toward an Implementation

We address now a more general setting by considering our solution as one of

the elements of a delivery chain involving content providers, network operators

and mobile users. We claim that such a solution is a net positive for all the

parties involved, justifying the corresponding costs.

27



We have shown that instantaneous, yet accurate enough, throughput pre-

diction is possible but we have not yet explained how such a prediction could

be shared and exploited. We provide here some details about the process we

envision, shown in Figure 10. Given that a complete implementation is outside

of the scope of this paper. We also discuss some possible future work in various

areas.

We distinguish three main actors:

• The mobile user, who leverages the OS API to get radio link information.

The mobile user can then grant access to this data to other actors. We

have shown that context information is not a necessary input, so the risk

of facing privacy issues due to sensible data is lower. Still, we do not hide

the fact that sharing of information related to the immediate status of the

mobile phone could lead to privacy issues.

• The content provider, who provides its service at different qualities. In sys-

tems like Dynamic Adaptive Streaming over HTTP (DASH), the provider

describes these qualities in a manifest file, so that other actors are aware

of the different options for the delivery.

• The network operator, who has to share information about the cell net-

work status. Such information sharing does not exist today and one of

the main contributions of our work is to highlight the benefits of shar-

ing this information. In recent years, several proposals have already been

discussed with similar goals. In particular, the MPEG DASH group has

open an ad-hoc group to deal with Server and Network Assisted DASH

(SAND) [49]. This proposal defines a DASH-Aware Network Element

(DANE) [50], which is typically a set of APIs to let network operators offer

updated information about the network status. Extending such proposal

to cellular networks and to any mobile application should be considered.

Jiang et al. [51] have proposed a more general framework for sharing in-

formation among content providers, network operators and users. These three
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actors should collaborate to improve the overall Quality of Experience (QoE)

for the end-users. There are two main ways to implement adaptive delivery:

client-based pull delivery, and server-based push delivery.

In client-based pull delivery (see Figure 10-a), the client should first get the

manifest file from the content provider and the cell network status from the

network operator. Then, the client combines its own information about the

radio link and the cell network status to select the best option in the manifest

file. The advantages include that the mobile does not reveal private information

and that the processing is on the client side, alleviating the burden on the server.

However, the information about the cellular network should be made available

to any client and it could generate a non negligible amount of extra traffic since

every new connection would mean a new request.

In server-based push delivery (see Figure 10-b), the content provider has

access to the radio link from the mobile phone or from the network operator if

MDT is implemented, and it retrieves cell network status information from the

network operator. Then, based on the different service qualities, the content

provider selects the best quality for the client. The advantages include that a

given content provider can use one access to network operator to get information

that can be used for many concurrent connections. However, it means that

content providers can have access to radio link information of mobile phones.

MDT supports the server-based push delivery concept as the content provider

would have only one interlocutor that is the network operator that would provide

both radio link and cell network status information.

8. Conclusion

In cellular networks, the last mile is generally the main bottleneck. To ensure

an acceptable QoS level in such networks, service and content providers adopt

adaptive delivery strategies, like in adaptive video streaming. Relying on a reli-

able throughput prediction is a key success factor in this context. Throughput

prediction algorithms have been studied in the past but most of them are based
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on a series of prior measurements. We argue that the prediction must not be

dependent of any time consuming probing or data history storage. Applications

or services require an instantaneous prediction of the throughput to ensure a

satisfactory QoE, such as at the beginning of a streaming session. In addition,

the prediction must be accurate for a sufficiently long time, which corresponds

to the typical downloading time of a webpage or a video segment. Previous

instantaneous history-less prediction algorithms address only short term predic-

tions.

In this paper we present a throughput prediction solution that fulfills these

aforementioned requirements. We investigate the inherent relation between the

throughput and a collection of statistics that are already available before the

beginning of a connection, at the client side and the network side. Leveraging

different machine learning techniques, we show that an accurate prediction is

possible by combining cellular link quality of the user and performance data

of the access network. We thus raise the potential of assistance for content

providers to handle adaptive techniques from the very beginning of their deliv-

ery. Nevertheless, sharing information between the parties represents the core

condition of success. We finally propose some feasible implementation strate-

gies to achieve this goal. The results presented in this paper represent a first

step in the design of such operator-assisted strategies. We discuss some limita-

tions of both our dataset and our prediction algorithms in Section 6. Further

studies are needed to refine this proposal and analyze its effect on application

performance. To complete this study, we are also interested in studying how

the content providers could leverage an accurate historyless throughput predic-

tion in their services, and how these service improvement could translate into a

better QoE for the end-users.
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