
HAL Id: hal-01951682
https://imt-atlantique.hal.science/hal-01951682v1

Submitted on 11 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DABS-Storm: A Data-Aware Approach for Elastic
Stream Processing

Roland Kotto-Kombi, Nicolas Lumineau, Philippe Lamarre, Nicoló Rivetti,
Yann Busnel

To cite this version:
Roland Kotto-Kombi, Nicolas Lumineau, Philippe Lamarre, Nicoló Rivetti, Yann Busnel. DABS-
Storm: A Data-Aware Approach for Elastic Stream Processing. Transactions on Large-Scale Data-
and Knowledge-Centered Systems, 2019, 40, pp.58–93. �10.1007/978-3-662-58664-8_3�. �hal-01951682�

https://imt-atlantique.hal.science/hal-01951682v1
https://hal.archives-ouvertes.fr

DABS-Storm: A data-aware approach for elastic
stream processing ∗

Roland Kotto Kombi1, Nicolas Lumineau2, Philippe Lamarre1,
Nicolo Rivetti3, Yann Busnel4

1Univ Lyon, INSA de Lyon, LIRIS UMR5205, 2Univ Lyon, University Claude
Bernard Lyon 1, LIRIS UMR5205, 3Technion, Israel Institute of Technology, 4IMT

Atlantique

Abstract. In the last decade, stream processing has become a very ac-
tive research domain motivated by the growing number of stream-based
applications. These applications make use of continuous queries, which
are processed by a stream processing engine (SPE) to generate timely re-
sults given the ephemeral input data. Variations of input data streams, in
terms of both volume and distribution of values, have a large impact on
computational resource requirements. Dynamic and Automatic Bal-
anced Scaling for Storm (DABS-Storm) is an original solution for
handling dynamic adaptation of continuous queries processing according
to evolution of input stream properties, while controlling the system sta-
bility. Both fluctuations in data volume and distribution of values within
data streams are handled by DABS-Storm to adjust the resources us-
age that best meets processing needs. To achieve this goal, the DABS-
Storm holistic approach combines a proactive auto-parallelization algo-
rithm with a latency-aware load balancing strategy.

1 Introduction

With the proliferation of connected devices (smartphones, sensors, etc.), more
and more data stream sources emit real-time data with fluctuations in input
rate and value distribution over time [19]. Processing these Big Data streams
(volume and velocity) in soft-real time (i.e., low latency), satisfying end-user
performance requirements, still raises several research problems.

To process a stream set, a user can submit a query to the execution infras-
tructure. This query, called a continuous query [7, 19], computes new results as
new stream elements are generated by sources over time. Users define continuous
queries through declarative languages [2,6,7,12] or, more imperatively, through a
high-level language [28,41] (Java, Python, C, etc.). In any case, these continuous
queries are usually turned into direct acyclic graphs (DAG) of operators, called
workflows or topologies, corresponding to execution plans [1, 2, 28].

∗This work has been partially supported by the project SocioPLug (ANR-13-
INFR-0003) funded by the French National Research Agency, the Association Na-
tionale Recherche Technologie (ANRt) http://socioplug.univ-nantes.fr/index.

php/SocioPlug_Project

http: //socioplug.univ-nantes.fr/index.php/SocioPlug_Project
http: //socioplug.univ-nantes.fr/index.php/SocioPlug_Project

To generate timely results, a workflow requires some resources (CPU, RAM,
bandwidth).The problem is that any evolution of the input streams (in input
rate or value distribution) impacts the amount of ressources needed to process
it. Furthermore, end-users usually require a good end-to-end latency and no data
loss, regardless of any other consideration. Since, in general, evolutions of input
streams cannot be captured through a-priori knowledge, a dynamic method is
required that dynamically adapts the assigned resource according to evolution of
needs. Such a method has to be as precise as possible. Indeed, whatever its im-
precision, its consequences are negative. On the one hand, an under-provisioning
may lead to congestion, implying reduced throughput and increased latency, or
worse, data loss [1]. On the other hand, an over-provisioning induces resource
and financial wastes, while potentially generating massive network overheads [39]
and resource shortage.

Industrial [9, 20], open-source [4, 5] and academic [1, 2, 6, 8, 12, 13, 36] stream
processing engines (SPE) have been developed to simplify stream management.
Nevertheless, due to a lack of holistic and automatic strategies embracing all
aspects related to elasticity, most of these solutions rely on user expertise and
reactivity to face critical fluctuations in input rate. In particular, this is the case
for the Storm family solutions.

To adapt provisioning, three linked problems have to be considered for each
operator: parallelism degree, scheduling, and load balancing. Operator paral-
lelism defines how many threads work together to process the incoming load of
one operator. Note that, until an asymptote is reached, increasing the number of
threads improves system performance. The scheduling strategy assigns threads
to available processing units. Finally, the load balancing strategy distributes the
incoming data among the available threads.

In this work, we aim at identifying and solving the issues raised by the dy-
namic adaptation of an SPE resource allocation while facing critical fluctuations
in input rate and value distribution. Most existing SPEs integrate efficient au-
tomatic scheduling strategies designed to implement different objectives. For
example, the Storm family includes RStorm [28], TStorm [39], and Stela [40]
which respectively aim at finding the scheduling plan that reduces the number of
active processing units, thus minimizing network traffic between processing units
and avoiding processing bottlenecks due to input overload. To attain this goal,
each strategy affects the scheduling plan so that data are processed with short
latency. For example, in TStorm [39], authors highlight overheads generated
by network communications. This observation is reused in [28] and extended to
resource usage to define an optimal scheduling plan, i.e., a scheduling plan in-
volving minimal computation overheads. In this paper, we focus on parallelism
degree and load balancing management so as to propose a solution that is com-
patible with each of the scheduling strategies. Our goal is to obtain a preventive
solution which adapts the system to data stream evolutions before problems oc-
cur. Furthermore, we expect as general a solution as possible, which does not
depend on users whether for obtaining information from their experience or for
triggering system adaptations. To reach this goal, we propose to build over two

2

already published solutions, Autoscale [24] and OSG [29–31]. Autoscale
proposes a method to fix the parallelism degree of each operator of a workflow
with an original data-driven approach, which considers the complete graph of
operators and data streams in the workflow to avoid inconsistent local decisions
that lead to rapid revisions and therefore significant system instability. An exam-
ple of this is an operator starting a scale-in while it is apparent that its activity
will augment soon due to an increase of the output stream(s) of upstream(s) op-
erator(s). Unfortunately, Autoscale presents some instability problems which
had to be studied and fixed. OSG (Online Shuffle Grouping) deals with
load balancing. Even if tuple processing times are not similar from one value to
the other, OSG aims at reducing tuple completion times by carefully scheduling
each incoming tuple.

The original contributions presented in this paper are three-fold:

1. An auto-parallelization strategy improving the approach presented in [24].
Autoscale+, thanks to a better modeling of Storm effective resource
usage, enables quicker deployment of adequate resources, thus improving
system throughput and stability.

2. The integration of Autoscale+ and OSG into Dynamic and Automatic
Balanced Scaling for Storm (DABS-Storm), a holistic and automa-
tized approach to parallelism and load balancing in stream processing sys-
tems, has been enabled due to their compatibility.

3. A thorough experimental evaluation of DABS-Storm highlighting its abil-
ity to process streams with critical fluctuations in input rate and value dis-
tribution for complex continuous queries. In addition, we compare DABS-
Storm with well-known approaches from the literature.

In the remainder of this paper, section 2 presents the execution context
from logical and physical points of view. We describe how continuous queries
are processed over distributed infrastructures and the processing model. Sec-
tion 3 presents the related work, reviewing the background on dynamic and
elastic stream processing and the main elasticity mechanisms at infrastructure
and query levels for handling variance in input load. Approaches for parallelism
management and load balancing are described, respectively, in section 4 and
section 5. Our original approach, DABS-Storm, is detailed in Section 6 while
section 7 is devoted to its experimental evaluation.

2 System Model

2.1 Execution environment

To make things more concrete while introducing some notations, let us consider
three continuous queries Q1, Q2 and Q3 represented by workflows W1, W2 and
W3 with respective associated output streams S’1, S’2 and S’3 (see Figure 1). A
workflow W = (O,V) is a direct acyclic graph where O is the set of operators
and V the set of streams. Presented workflows are quite simple: W1 is linear,

3

Fig. 1: Distributed stream processing.

W2 is a diamond, while W3 is a star. Despite their simplicity, these workflows
are interesting to study. Indeed, they are general patterns used to build much
more complex workflows [28]. Each workflow processes a set of input stream(s)
which, in our example, is included in {S1, S2, S3}.

A stream is a potentially infinite sequence of tuples, i.e., key/value pairs,
arriving over time. An input stream may have fluctuations in input rate and
value distribution as shown on the left of Figure 1. It is worth noting the impact
these fluctuations can have, not only on the processing time, but also on the
selectivity of operators, i.e., the ratio between the number of output and input
tuples. This second point can be critical for operators such as joins [15, 37] as
well as having direct impact on downstream operators.

Each operator Oi ∈ O is processed in parallel. The parallelism degree d(Oi)
of operator Oi corresponds to the number of tasks assigned to the operator.
For instance, on Figure 1, operator O2, executed by tasks T1

2 and T2
2, has a

parallelism degree of d(O2) = 2.

A scheduling strategy assigns tasks to the processing units, in this case eight
available machines (M1 to M8). For instance, on Figure 1, the four tasks of the
workflow W1 are distributed on machines M1 to M4.

For a machine, three states are possible: active, configured and available. On
Figure 1, machines M1 to M4 are active, and run some assigned tasks. Machines
M5 and M6 are configured but inactive (no assigned tasks). Finally, M7 and M8

4

are available but not configured, which means the scheduler cannot assign tasks
to them.

While DABS-Storm could be extended to handle heterogeneous machines,
in this paper, for the simplicity’s sake, we restrict the execution context to ho-
mogeneous machines (H1), i.e., all machines have the same amount of CPU,
RAM and bandwidth. Furthermore, we also assume that there is never resource
starvation. In other words, there are always enough computational resources
available to process input streams, no matter their input rates (H2). Thus, a
loss of quality or performance cannot be ascribed to a lack of resources. To en-
force H2, if the scenario does not ensure it, load shedding techniques [22,30] can
be relied on, which drop some of the inputs in order to prevent buffer overflows
or trashing.

Stream elements are assumed to be heterogeneous with respect to process-
ing latency, depending on their values (H3). Consequently, DABS-Storm can
handle homogeneous data streams as well as heterogeneous ones.

Finally, as we aim at proposing a generic solution supporting user-defined
functions as well as common operators like filters and joins, we intend to deal
with stateless and stateful operators. However, in this paper, we focus on stateless
operators (H4). Indeed, it has been shown that solutions can also be useful for
other kinds of operators [31], and most SPEs supporting stateful operators, like
joins, provide a state management method while replicating these operators,
such that we can rely on them for this part.

2.2 Processing model

Each operator Oi has a logical input stream σi = 〈e1, . . . , eq, . . . , em〉. Since
operator Oi may be executed in parallel by k = d(Oi) tasks T 1

i , . . . , T
k
i , then each

task receives a physical input sub-stream σ1
i , . . . , σ

k
i . Notice that σi =

⋃
x∈[k] σ

x
i .

Tuples of σi are assigned to a sub-stream, and thus to a task, according to a
predefined load balancing strategy. We denote by f(e) the unknown frequency1

of tuple e, i.e., the number of occurrences of e in the stream of size m. Before
being processed, a tuple eq is buffered in a FIFO input queue consumed by a
task. The processing latency wxi (q) of tuple eq on the task T xi depends on the
time complexity of Oi, on the computational power available to task T xi , and
potentially, on the values of eq attributes. Without loss of generality, we assume
that tuples in a stream σ are identified by a single integer drawn from a large
universe [n] = {1, . . . , n}. In other words, tuples can be modeled as single values.
The processing latency is modeled as an unknown function2 of the value of eq.
The probability distribution of eq values may vary over time. In a stable system
the average processing latency of operator Oi can be defined as

W i =
1

|σi|
∑

x∈[k]

∑

eq∈σx
i

wxi (q) (1)

1This definition of frequency is compliant with the data streaming literature [7,35].
2The experimental evaluation relaxes the model by taking into account processing

latency variance.

5

Let `(q) be the completion time or end-to-end latency of eq, i.e., how much
time it took for tuple eq from the instant it was inserted into the assigned task’s
buffer to when it was processed by the tasks. Then we can define the average
completion time for operator Oi as

Li =
1

|σi|
∑

eq∈σi

`(q) (2)

Table 1 summarizes the notation.

Workflow/Topology W
Workflow input and output streams S, S′

Operator Oi ∈ O
Parallelism degree d(Oi)

Task of operator Oi T x
i , x ∈ [k]

Task T x
i and operator Oi input streams σx

i ⊆ σi

qth Tuple in the stream σi eq ∈ σi

Processing latency of eq on tasks T x
i wx

i (q)

Average processing latency of operator Oi W i

Completion time of eq `(q)

Average completion time of operator Oi Li

Tuple e frequency f(e)

Tuple e empirical probability of occurrence p(e)

Size of the stream m

Number of distinct tuples in the stream n

2-universal hash function h

Table 1: Notations.

3 Related Works

This section presents and discusses the most relevant strategies in the literature.
Adaptation mechanisms aiming at maintaining processing within some perfor-
mance goals are said to be elastic [32], i.e., they adapt to input stream variance.
Considering the huge difference between elastic mechanisms working at physi-
cal level (i.e. adapting resource consumption at infrastructure level) and those
working at logical level (elastic mechanisms adapting workflows to fit processing
load requirements), in this paper we only focus on the latter.

3.1 Elastic mechanisms at logical level

Workflows can be adapted to handle variations in input load. Logical level
approaches can be classified as parallelism management, scheduling, and load-
balancing.

6

Parallelism management — To process stream elements timely, operator
output throughput should be greater than input throughput (taking into account
also the selectivity factor). Nevertheless, with a fixed number of threads, two
critical cases can occur:

– If input throughput is greater than output throughput for a sizable time
period, then the number of elements in the buffering queue increases. This
scenario causes an unacceptable increase in end-to-end latency and may lead
to congestion [22, 33].

– If input throughput is smaller than output throughput for a sizable time
period, then buffering queues are mostly empty and tasks are often idle.
While in this scenario the system has low latencies, it also implies that
resource usage is not maximized.

To handle these critical scenarios, SPEs should integrate a more refined par-
allelism management strategy. When facing an overload, SPEs should increase
the parallelism degree (scale-out) of operators, thus decreasing the queuing time
of incoming elements. Conversely, when input throughput is low, SPEs should
decrease the parallelism degree (scale-in) to minimize resource waste.

Scheduling strategy — Given the operator parallelism degree, SPEs must
schedule the tasks to the available processing units (Figure 1). We identify three
classes of scheduling strategies:

– Strategies based on CPU load balancing between all processing units [1, 27,
41] assign threads on as many units as possible to divide processing load
evenly. Using all available resources is an appropriate solution to limit pro-
cessing bottlenecks due to CPU shortage. The problem is that it may imply
massive network overheads [39] and underused units.

– Strategies based on network traffic reduction [3, 39] tend to concentrate as
many threads as possible on the same processing units to minimize network
traffic. These approaches improve throughput of SPEs [39] and reduce the
number of active machines compared to the previous class. However, when
input rate increases significantly, active machines tend to be overloaded more
quickly and imply major reconfiguration compared to strategies spreading
load evenly among all available units.

– Resource-aware strategies [3, 28] aim at avoiding processing unit overload
and minimizing resource consumption. Through resource monitoring and
processing requirements, this class of scheduling strategies allows threads to
be grouped on processing units, thus minimizing resource waste. It offers
efficient scheduling while having resource requirements for each thread to
be assigned. The problem is that it requires accurate specifications about
resource requirements and thus relies on user expertise. If user specifica-
tions are oversized or undersized, this leads to a waste or lack of resources,
respectively.

7

Intra-operator load balancing — Operators can be classified as being either
stateful (e.g., standard deviation computation) or stateless (e.g., filtering).

When the target operator is stateful, its state must be kept continuously syn-
chronized among its instances, with potentially severe performance degradation
at runtime; a well-known workaround to this problem consists in partitioning the
operator state and letting each instance work on the subset of input stream con-
taining the tuples affecting its state partition [22]. In this case, key grouping is
the preferred choice as stream partitioning can be performed to correctly assign
all the tuples containing specific data values and only those to the same opera-
tor instance, thus greatly simplifying the development of parallelizable stateful
operators at the expense of performance.

In recent years there has been new interest in improving load balancing with
key grouping [17, 26, 31]. It is worth noting that all works cited assume that all
tuples of a stream have the same execution time.

Considering stateless operators, i.e., data operators whose output is only a
function of the current tuple in input, parallelization is straightforward. The
grouping function is free to assign the next tuple in input stream to any avail-
able instance of the receiving operator (contrary to stateful operators, where
tuple assignment is constrained). Such stream partitioning functions are often
called shuffle grouping and represent a fundamental element of a large number
of stream processing applications [22]. Notice that solutions for shuffle grouping
techniques can be applied to stateful operators as well, provided that the op-
erator implementation includes some mechanism to warranty state consistency
(e.g., a subsequent reduce phase). Given its generality, in this work we consider
only shuffle grouping stream partitioning.

Typical implementations of shuffle groupings are based on round-robin schedul-
ing [4, 5]. However, the processing latency of many operators are intrinsically
sensitive to values. For example, an operator applying a transformation on each
character of a text has a processing latency depending on the length of the
text. Thus, high fluctuations in such values most likely increase load imbalance
considerably, which lead to performance problems.

3.2 Triggering elastic stream processing

Solving operator congestion in a stream processing context is a complex prob-
lem. Out of the three major factors (parallelism management, scheduling, load
balancing), to our knowledge, most works [3, 18, 33, 39] address only one at any
time.

However, a clear distinction can be made between reactive approaches [21,
33, 40], which detect and remove potential problems from the current state of
the system, and proactive approaches which predict potential problems and an-
ticipate solutions [15, 34]. Among reactive solutions, we distinguish between on
user-demand [40] and automatic [21, 33] solutions.

In [40], authors suggest a solution triggering scale-in and scale-out on user
demand. This solution relies on the user adding enough resources when through-

8

put declines. Consequently, this solution is mainly limited by the need for user
expertise and presence.

Dynamic and automatic approaches [18,33] also aim at adapting parallelism
degrees to avoid congestion of operators. They are based on global and local
consumption thresholds (CPU, memory), which aim at separating a normal con-
sumption from a critical one. In addition, in [21], authors suggest an algorithm
integrating a knowledge base, built through a learning phase and updated at run-
time. This knowledge base associates parallelism degrees with expected through-
put for each operator. These solutions share the fact of using current resource
consumption to detect potential congestion, thus making anticipation almost
impossible. Furthermore, they pay no attention to data distribution within the
input data streams.

Finally, some model-based solutions [15,34] anticipate congestion, thanks to
a complete model of the execution support and operator features (processing
latencies, pending queues, etc.). Here, the parallelism degrees are adapted to
minimize overall latency. Unfortunately, these solutions require detailed charac-
teristics of the system and do not support any evolution of the execution support.
In [38], authors suggest the Chronostream system, which is able to scale opera-
tors transparently and to manage internal states for both stateless and stateful
operators. Even if this approach has demonstrated its efficiency in terms of scal-
ability, Chronostream relies on stream partitioning to balance the load between
operator instances. Thus, if there is a significant difference between the average
processing latency for distinct keys, Chronostream is unable to compensate that
imbalance accurately.

Summarizing SPE elasticity at logical level, the elasticity of a SPE mainly
depends on choices related to parallelism management, scheduling, and load-
balancing. Other aspects like workflow optimization [2, 6] and implementation
selection [22] are user-provided and cannot be modified at runtime. In this con-
text, we aim at suggesting a stream-based solution scaling treatments according
to stream evolution in terms of input rate and value distribution.

4 Parallelism management with AUTOSCALE+

In [24] we defined a proactive approach, named Autoscale, to manage dy-
namically and automatically the parallelism degree of operators using indicators
monitored on streams and operators. Our proposed algorithm decides which
operators have to be reconfigured (scale-out or scale-in) and what their new
parallelism degrees are. These decisions are based on estimations of data stream
evolution and resource consumption, which are computed from monitored indi-
cators. The main originality of Autoscale is that it considers the workflow as a
whole, and more precisely the dependencies between operators, when validating
a reconfiguration decision. It is worth noting that the algorithm we proposed
offers satisfying results in deciding when a reconfiguration is required, but that
the new parallelism degree computed was not always relevant, generating too fre-
quent reconfiguration, thus leading to system instability in some specific cases.

9

We have investigated the reasons for such behaviors and identified two main
causes. The first corresponds to variations in computation times from one item
to another depending on their values. Clearly, variations in distribution of these
values within the input streams also has an impact. The problem is that such
variations of computation times jeopardize the default Storm load balancing
method. To solve this problem, the only solution is to replace the load-balancing
method with a new method that has to pay attention to such variations (see
section 5). The second cause is related to the Autoscale method itself. It tran-
spired that the resource consumption analysis was not precise enough. In Au-
toscale+, it has to be improved to better fit the specificities of the Storm’s
architecture. In this section, we first recall the general principles of Autoscale
before describing new methods embedded in Autoscale+. This new proposal
improves Autoscale, taking CPU usage and user constraints into account.

4.1 AUTOSCALE+ Metrics

After presenting the general principles, we focus on the monitoring problem.
Finally, we detail the new metrics embedded in Autoscale+.

Principle
Just like its predecessor Autoscale [24], Autoscale+ anticipates potential
congestion of operators through stream and operator monitoring3. For each op-
erator, input volumes in the near future are estimated according to time series
analysis [10]. The two algorithms also share the analysis of many dynamic proper-
ties like processing latency, pending queues, and the selectivity of each operator.
Based on these, processing rates, or capacity can be estimated. The combination
of these estimations make it possible to recommend scale-in, scale-out or nothing
for each operator. Depending on available and configured resources dedicated to
the SPE, a reconfiguration of threads running on the cluster could be triggered.

In contrast to Autoscale, Autoscale+ considers precise resource usage
in terms of CPU, RAM and bandwidth. This allows improvement of decisions,
for example avoiding reconfigurations when parallelism degree is not the root
cause of problems, and more quickly reaching the adequate parallelism degree.

Monitoring management.
Monitoring management is based on sliding windows observing simultaneously
all threads assigned on the execution support.

Let F be a set of monitoring sliding windows Fi = {(F ij)}j∈N+ . Each window

Fi is associated with an operator Oi, and is composed of iterations F ij . Each

iteration F ij is defined by a duration ∆ and gathers measurements collected
during this interval. These measurements are collected according to a predefined

3At each scale-in or scale-out, system monitoring is disabled while the system sta-
bilizes. Indeed, the data acquired during this transition period do not provide any
information about the nominal behavior of the new configuration of the system.

10

set of timestamps Mi = {mi,1,mi,2, . . . , mi,n}n∈N+ . For each operator Oi, our
approach collects some measurements taking into account the stream elements
received and processed on the interval [mi,p−1,mi,p[with p ∈ [n] where [n] =
{1, . . . , n}. More information about monitoring management is available in [24].

LetRi be the set, potentially infinite, of stream elements received by operator
Oi. We considerRi,j as the subset of elements received by Oi during the iteration
F ij , and Ri,p the subset of elements received between [mi,p−1,mi,p[.

Let us now consider a parent operator Opar and a child operator Och consum-
ing stream elements produced by Opar. For both operators, we observe inputs
Ri,j . These inputs are inserted in pending queues where elements are consumed
by associated functions. We define as Inputi,j the sum of inputs processed cur-
rently by the function and stream elements pending in the queue during the
iteration F ij . At the same time, we monitor the processing latency of the func-
tion and its selectivity factor for filter-based operators as presented in [23].

Metrics on operator input and output.
From these monitored values, we compute some metrics to analyze the activity
of each operator. The aim is to identify operators which could have critical input
volumes according to their processing capacities in the near future.

To do this, incoming volumes during the next iteration of the monitoring
window are estimated, see Figure 2. This estimation, called EstimRi,j , is com-
puted using a regression function f ij−1 computed based on the previous iteration
as follows:

EstimRi,j =
∑

mi
p∈Mi

df ij−1(mi
p)e (3)

where each mi
k belongs to the next iteration of the window.

To estimate precisely f ij−1, Autoscale+ selects the best candidate, i.e.
the one best fitting to the previous iteration, among three competitors: linear,
logarithmic, and exponential regression models. Compared to Autoscale, the
computation overhead is very small, while stream fluctuations are improved.

Operator history is not the only information that can be considered. Indeed,
the near future of an operator is clearly influenced by antecedent operators.
Furthermore, for an (antecedent) operator, a simple combination of the already
computed EstimInputi,j with the average selectivity factor α(F ij−1) provides an

estimation of its output EstimOutputi,j :

EstimOutputi,j = EstimInputF i
j
× α(F ij−1) (4)

So, considering an operator who has ancestors, to estimate its inputs in a
near future, we have two pieces of information. On the one hand, we have
EstimInputi,j computed from its history, while, on the other hand, we have
EstimOutputi,j the estimated outputs of its antecedent operators. A combine
strategy is used to mix these elements. Last but not least, to approximate the
total volume of stream elements each operator will have to process during the
next iteration, attention must be paid to the pending queue. Stream elements

11

InputFj
p

pending

EstimInput

EstimProcessed

EstimOutput

processing time
SF

regression

input stream

T

T

T

.

.

.

.

output/input stream

combine

EstimR

1

2

K

Fj-1
p

F
p
j

F
p
j

F
p
j

F
j
p

T

T

T

.

.

.

.

1

2

K

InputF
c
j

pending

EstimInput

EstimProcessed

EstimOutput

regression

EstimR

F
c
j-1

F
c
j

F
c
j

F
c
j

processing time
SFF

c
j

j

j

j

output/input stream

Fig. 2: Illustrating metrics considering two operators.

pending in the operator queue, noted pendingi,j−1, just have to be added to the
estimation. Finally, EstimInputi,j is defined as:

EstimInputi,j =

combine

EstimRi,j ,

∑

p∈par(Oi)

EstimOutputp,j

+ pendingi,j−1 (5)

where par(Oi) returns all parent operators of Oi.
Many different combine functions can be proposed or obtained by learning

techniques. By default, Autoscale+ simply returns the max of the two values.
This corresponds to a cautious strategy with respect to scale-in operation. In-
deed, scale-in is analyzed with respect to the highest estimation. On the contrary,
the combine strategy can return the min estimation to avoid over-consumption
of resources due to an ephemeral increase in input rates. The strategy used will
depend on the user’s priorities.

Operator capacity estimation.
Intuitively, the capacity of an operator to treat items during a period ∆ can be
estimated considering the processing time of elements.

IdealCapacityi,j =
∆

Lati,j
(6)

where Lati,j is the processing latency.
This approximation would be quite good if computational resources used by

an operator were constant. Unfortunately, it is not so simple. For example, a
task can take advantage of free CPU to make use of more CPU than reserved.
To illustrate this point, let us consider an example of three operators OA, OB

12

and OC , executed, respectively, by threads TA, TB and TC , running on a single
CPU, C. As depicted on figure 3, some reservations have been made for each of
them [28], let’s say ResaCPUA, ResaCPUB and ResaCPUC . While the interest
of this constraint is to avoid assignments leading to resource starvation, it should
be kept in mind that a resource used by a task is not fully defined by the
reservations made for it.

Fig. 3: Usable CPU for threads on one core

Considering figure 3, threads TB and TC use less CPU than they reserved.
Clearly, there is no congestion since some CPU time is not used. Thread TA
takes advantage of the situation.

Here, the problem is to estimate usable CPU in a near future, and this has to
be done for each operator/thread. We estimate the usable CPU by a thread TX
according to formula 7, where a weighting factor λ ∈ [0;1[has been introduced
to underestimate slightly available CPU and thus avoid fast overload.

UtilCPU(TX , C) = λ×max(UsedCPU(TX , C), ResaCPUX)

+
1

n
(100−

∑

∀TY 6=TX

UsedCPU(TY , j)) (7)

Considering an operator Oi, to estimate the CPU it can use (UtilCPUi), all
its associated threads have to be considered (T 1

i , T 2
i ,..., Tmi). The global CPU

time UtilCPUi for Oi is estimated as follows:

UtilCPUi = min
x=1...x=m

(UtilCPU(T xi , CPU(T xi)) (8)

Here, we assume that the input rate increase is spread evenly across all
threads.

Capacity is then estimated:

Capacityi,j =
∆

Lati,j
× UtilCPUi (9)

13

4.2 Parallelism degree management in AUTOSCALE+

We now have enough information to detect imbalances between processing re-
quirements and resource usage. Analysis of divergences will lead to one of the
following three conclusions: need for scale-out, possibility of scale-in, or do noth-
ing. If scale-out is often a need, scale-in is only a possibility. Indeed, these two
operations are costly, and system stability is important to avoid wasting com-
puting resources and time.

An “ideal” parellism degree.
Considering the estimations of the incoming workload and of the capacity, the
ideal parallelism degree, leading the operator to efficient stream processing and
denoted idealK, can be estimated according to:

idealK =
EstimInputi,j

Capacityi,j
(10)

A working interval for stability issues.
Stability is a major issue for an automatic process and it is important to find a
good balance. As scale-outs are needed for the system to work correctly, the focus
is on scale-in operations. Intuitively, even if it is possible, the scale-in operation
will be retained until a large benefit is attained. To encode this intuition, we
introduce a “working interval”: this defines a zone where, even if the estimated
idealK is smaller than the actual parallelism degree, no reconfiguration will
be carried out due to a lack of benefits. Furthermore, we suggest a controllable
interval: its size should vary depending on the parallelism degree, and it should be
controllable with respect to different considerations (user preferences, evolution
-e.g. reducing- over time and so on). Trivially, to define an interval, two bounds
have to be defined. The upper bound will be the current parallelism degree, while
the lower bound mink will be a function of the current parallelism degree k :

mink = β × k (11)

where β ∈]0;1] is a controllable parameter. If β is close to 0, it means
that Autoscale+ performs scale-in only when input volumes are very small
compared to operator capacities. If β is close to 1, Autoscale+ performs scale-
in as soon as possible.

It is worth noting that the greater k, the greater the associated working
interval. We choose this property because the more tasks there are to merge, the
more time it takes to merge pending queues distributed over the cluster and to
re-route stream elements.

Decision of parallelism degree modification
A scale-out should be performed for an operator Oi when idealK exceeds the
working interval as represented on Figure 4.

14

Fig. 4: Modification of parallelism degree

On the other hand, if idealK is smaller than mink, a scale-in will be per-
formed.

Otherwise, if idealK remains within the interval, even if a scale-in is possible,
the operator is not modified and retains the current parallelism degree.

Computation of the appropriate parallelism degree
Thus, each time a change is decided, whether it is a scale-in or a scale-out,
Autoscale+ computes a new appropriate parallelism degree k ’ according to
estimated needs and computing resources possibilities:

argmink′(
EstimInputi,j

ResCapacityi,j
≤ k) (12)

where particular attention must be paid to denominator. Indeed,ResCapacityi,j

deals with resources, but compared to idealK there is a major difference: reserva-
tions ResCPUi are used instead of resource estimations. Indeed, such a change
may lead to reallocations of threads and the only guarantee we have is the
amount of resource required by the reservation. This leads to the formula:

ResCapacityi,j =
∆

Lati,j
×ResCPUi × λ (13)

where α ∈]0;1] is a parameter allowing Autoscale+ to consider a relative
margin between effective CPU usage and CPU reservation. This means that
Autoscale+ takes into account the fact that some threads may need more than
their reservation at runtime. Just like β, the parameter λ can be defined using
several methods like empirical study, reinforcement learning or user expertise.

5 Load balancing with OSG

While an adequate parallelism degree is important, alone it does not fully solve
the problem. Indeed, changing the parallelism degree is not enough to address
any variations in value distribution when facing a significant heterogeneity in

15

terms of computational resource needs. Failure to pay attention to load balanc-
ing, as round-robin scheduling would do, may lead to imbalance problems (see
Figure 5)

Fig. 5: Worst and optimal cases of load balancing

Furthermore, imbalance problems could jeopardize any method trying to
manage the parallelism degree, as Autoscale+. A careful load balancing strat-
egy, compatible with our philosophy and proposed solutions, is definitely needed.
First, it has to be proactive. Prevention is better than cure since it avoids mis-
leading the parallelism degree strategy. More generally, its behavior should not
interfere with Autoscale+ and both have to work together as smoothly as pos-
sible. Second, significant efforts have been made in Autoscale+ to limit any
dependence on the user. So as not to render these useless, the load balancing
strategy should not require any user intervention.

This section is devoted to OSG, a load balancing strategy which has been
specifically designed to deal with significant variations in computational resource
needs depending on stream item values. We present its principles and main
solutions. For more information, proofs and specific experimental evaluations,
readers should refer to [29–31]. Indeed, this paper is focussed on the evaluation
of DABS-Storm to study how Autoscale+ and OSG interact and react to
data stream fluctuations.

OSG is a shuffle grouping implementation based on a simple, yet effective
idea: if we assume to know of the execution time wxi (t) of each tuple t the parallel
tasks of a given operator Oi, we can schedule the execution of incoming elements
on such tasks with the aim of minimizing the average per tuple completion time
of the tasks. However, the value of wxi (t) is generally unknown. A common
solution to this problem is to build a cost model for the execution time and then
use it to pro-actively schedule the incoming load. However, building an accurate
cost model usually requires a large amount of a priori knowledge on the system.
Furthermore, once a model has been built, it can be hard to handle changes in
the system or input stream characteristics at runtime.

16

To overcome all these issues, OSG takes decisions based on the estimation
Ĉxi of the execution time assigned to task T xi of operator Oi, that is Cxi =∑
t∈σx

i
wxi (t). In order to do so, OSG computes an estimation ŵxi (t) of the ex-

ecution time wxi (t) of each tuple t on task T xi of operator Oi. Then, OSG can
also compute the sum of the estimated execution times of the tuples assigned
to task T xi , i.e., Ĉxi =

∑
t∈σx

i
ŵxi (t), which in turn is the estimation of Cxi . A

greedy scheduling algorithm (Section 5.1) is then fed with estimations for all the
available operator tasks.

To implement this approach, each operator task builds a sketch (i.e., a mem-
ory efficient data structure) that will track the execution time of the tuples it
processes. When a change in the stream or task(s) characteristics affects the tu-
ple execution times on some tasks, the concerned task(s) will forward an updated
sketch to the scheduler that will then be able to (again) correctly estimate the
tuples execution times. This solution does not require any a priori knowledge of
the stream composition or the system, and is designed to continuously adapt to
changes in the input distribution or the tasks load characteristics. Moreover, this
solution is proactive, namely its goal is to avoid imbalance through scheduling,
rather than detecting the unbalance and then attempting to correct it. A reac-
tive solution can hardly be applied to this problem, as it would schedule input
tuple on the basis of a previous, possibly stale, load state of the operator tasks.
Furthermore, reactive scheduling typically imposes a periodic overhead even if
the load distribution imposed by input tuples does not change over time.

For clarity’s sake, we consider a topology with two operators: a non paral-
lelized operator Osched (i.e., a scheduler), which schedules the tuples of a stream
σop, and an operator Oop, whose k instances consume the stream σop (see Fig-
ure 6). To encompass topologies where the operator generating the stream σop
is itself parallelized, we can easily extend the model by taking into account par-
allel tasks of the operator Osched. More precisely, there are s tasks/schedulers
T 1
sched, . . . , T

s
sched, where task/scheduler T xsched schedules only a subset of σop,

i.e., its own output. In [31] we also show that in this setting OSG performances
are better than the Round-Robin scheduling policy. In other words, OSG can be
deployed when the operator Osched is parallelized. Notice that our approach is
hop-by-hop, i.e., we consider a single shuffle grouped edge in the topology at a
time. However, OSG can be applied to any shuffle grouped stage of the topology.

5.1 Count Min sketch algorithm

In [14], Cormode and Muthukrishnan introduced the Count Min sketch that
provides, for each item e in the input stream, an (ε, δ)-additive-approximation

ˆf(e) of the frequency f(e).
An algorithm is said to be an (ε, δ)-additive-approximation of the function

φ on a stream σ if, for any prefix of size m of items of the input stream σ, the
algorithm output φ̂ is such that P{| φ̂ − φ |> εC} < δ, where ε, δ > 0 are
given as precision parameters and C is an arbitrary constant. The parameter ε
represents the precision of the approximation estimation. For instance ε = 0.1

17

means that the additive error is less than 10% and δ = 0.01 means that this
approximation will not be satisfied with a probability less than 1%.

The Count Min sketch consists of a two dimensional matrix Φ of size r × c,
where r = dlog(1/δ)e and c = d2.7/εe. Each row is associated with a different
2-universal hash function hi : [n]→ [c].

A collection H of hash functions h : [n] → [c] is said to be 2-universal if for
every two different items x, y ∈ [n], for all h ∈ H, P{h(x) = h(y)} ≤ 1/c, which
is the probability of collision obtained if the hash function assigned truly random
values in [c]. Carter and Wegman [11] provide an efficient method for building
large families of hash functions approximating the 2-universality property.

When the Count Min algorithm reads item e from the input stream, it up-
dates each row: ∀i ∈ [r], Φ[i, hi(e)] ← Φ[i, hi(e)] + 1. Thus, the cell value is
the sum of the frequencies of all the items mapped to that cell. Upon request
of fe estimation, the algorithm returns the smallest cell value among the cells
associated with t: f̂e = mini∈[r]{Φ[i, hi(e)]}.

Fed with a stream of m items, the space complexity of this algorithm is
O(log[(logm + log n)/δ]/ε) bits, while update and query time complexities are
O(log(1/δ)). The Count Min algorithm guarantees that the following bound
holds on the estimation accuracy for each item read from the input stream:
P{| f̂(e)− f(e) |≥ ε(m− fe)} ≤ δ, while f(e) ≤ f̂(e) is always true.

This algorithm can be easily generalized to provide (ε, δ)-additive-approxi-
mation of point queries Qe on a stream of udpates, i.e., a stream where each item
e carries a positive integer update value ve. When the Count Min algorithm reads
the pair 〈e, ve〉 from the input stream, the update routine changes as follows:
∀i ∈ [r], Ω[i, hi(e)]← Ω[i, hi(e)] + ve.

Greedy Online Scheduler A classical problem in the load balancing lit-
erature is to schedule independent tasks on identical machines minimizing the
makespan, i.e., the Multiprocessor Scheduling problem. In this paper, we adapt
this problem to our setting, i.e., to schedule online independent tuples on non-
uniform operator instances in order to minimize the average per tuple completion
time L. Online scheduling means that the scheduler does not know in advance
the sequence of tasks it has to schedule. The Greedy Online Scheduler algorithm
assigns the currently submitted tuples to the less loaded available operator in-
stance. In [31] we show that this algorithm is a (2 − 1

k)-approximation of an
optimal omniscient scheduling algorithm, namely an algorithm that knows in
advance all the tuples it will receive. Notice that this is a variant of the join-
shortest-queue (JSQ) policy [25], where we measure queue length as the time
needed to execute all the buffered tuples, instead of the number of buffered
tuples.

5.2 Online Shuffle Grouping design

Each operator Oop task instance T xop maintains two Count Min sketch matrices
(Figure 6.A): the first, denoted by Φxop, tracks the tuple frequencies ft,op; the

18

c
1 2 3 4

r
2

1

FO2

c
1 2 3 4

WO2

〈FO2
,WO2

〉

O2

〈FO1 ,WO1〉

O1

POSG

Ĉ = [ĈO1
, ĈO2

]

〈FO1
,WO1

〉

〈FO2
,WO2

〉

S

〈tuple〉
| 〈tupl

e, Ĉ[O1]〉

〈FO2
,WO2

〉

〈∆O2 〉

A

B

C

D

E

Fig. 6: OSG design where r = 2 (δ = 0.25), c = 4 (ε = 0.70) and k = 2.

second, denoted by Ωxop, tracks tuples cumulated execution times Ωxop = wxop(t)×
fxop(t). Both Count Min matrices have the same sizes and hash functions. The
latter is the generalized version of the Count Min presented in Section 5.1, where
the update value is the tuple execution time when processed by the instance (i.e.,
vt = wxop(t)). The operator instance will update both matrices after each tuple
execution.

The operator tasks are modeled as a finite state machine (Figure 7b) with
two states: START and STABILIZING. The START state lasts until the task
has executed N tuples, where N is a user-defined window size parameter. The
transition to the STABILIZING state (Figure 7b. A©) triggers the creation of a
new snapshot Ψxop. A snapshot is a matrix of size r × c where ∀i ∈ [r], j ∈ [c] :
Ψxop[i, j] = Ωxop[i, j]/Φxop[i, j]. We say that the Φxop and Ωxop matrices are stable
when the relative error ηxop between the previous snapshot and the current one
is smaller than µ, that is if

ηxop =

∑r
i=1

∑c
j=1

∣∣∣Ψxop[i, j]− Ωx
op[i,j]

Φx
op[i,j]

∣∣∣
∑r
i=1

∑c
j=1 Ψ

x
op[i, j]

≤ µ (14)

is satisfied. Then, each time task T xop has executed N tuples, it checks whether
Equation 14 is satisfied. (i) If not, then Ψxop is updated (Figure 7b B©). (ii)
Otherwise the task sends the Φxop andΩxop matrices to the scheduler (Figure 6 B©),
resets them and moves back to the START state (Figure 7b C©).

There is a delay between any change in the stream or operator task char-
acteristics and when the time the scheduler receives the updated Φxop and Ωxop
matrices from the affected operator tasks(s). This introduces a skew in the cumu-
lated execution times estimated by the scheduler. To compensate for this skew,
we introduce a synchronization mechanism that springs whenever the scheduler
receives a new pair of matrices from any task. Notice also that there is an initial
transient phase in which the scheduler has not yet received any information from

19

Round
Robin

Wait
All

Send
All

Run

receive new Fop and Wop

add to {〈Fop,Wop〉} set

received Fop and Wop

from each
operator instance

synhcronization requests
sent to each operator instance

received reply

received all replies

resynchronize Ĉ

receive udpated
Fop and Wop

update local Fop and Wop

A
B

C

D

E

F

(a) Scheduler.

start stabilizing

execute N tuples
create snapshot Sop

execute N tuples ∧ relative error ηop ≤ µ
send Fop and Wop to scheduler and reset them

execute N tuples ∧
relative error ηop > µ
update snapshot SopA

B

C

(b) Operator task.

Fig. 7: OSG finite state machines.

operator instances. This means that, in this first phase, it has no information
on the tuple execution times and is forced to use the Round-Robin policy. This
mechanism is thus also needed to initialize the estimated cumulated execution
times when the Round-Robin phase ends.

The scheduler maintains the estimated cumulated execution time for each
task, in a vector Ĉ of size k, and the set of pairs of matrices: {〈Φxop, Ωxop〉},
initially empty.

The scheduler is modeled as a finite state machine with four states: Round-
Robin, Send All, Wait All, and Run.

The Round-Robin state is the initial state in which scheduling is performed
with the Round-Robin policy. In this state, the scheduler collects the Φxop and
Ωxop matrices sent by the operator tasks (Figure 7a A©). After receiving the two
matrices from each instance (Figure 7a B©), the scheduler is able to estimate the
execution time for each submitted tuple and moves to the Send All state. When
in the Send All state, the scheduler sends the synchronization requests towards
to the k tasks. To reduce overhead, requests are piggy backed (Figure 6 D©) with
outgoing tuples applying the Round-Robin policy for the next k tuples: the i-th
tuple is assigned to operator instance i mod k. On the other hand, the estimated

20

cumulated execution time vector Ĉ is updated with the tuple estimated execution
time.When all the requests have been sent (Figure 7a C©), the scheduler moves
to the Wait All state. This state collects the synchronization replies from the
operator tasks (Figure 7a D©). Operator task T xop reply (Figure 6 E©) contains
the difference ∆x

op between the instance cumulated execution time Cxop and the

scheduler estimation Ĉ[op].
In the Wait All state, scheduling is performed as in the Run state. When

all the replies for the current epoch have been collected, synchronization is per-
formed and the scheduler moves to the Run state (Figure 7a E©). In the Run
state, the scheduler assigns the input tuple applying the Greedy Online Scheduler
algorithm, i.e., assigns the tuple to the task with the least estimated cumulated
execution time. Then it increments the target instance estimated cumulated exe-
cution time with the estimated tuple execution time. Finally, in any state except
Round Robin, receiving an updated pair of matrices Φxop and Ωxop moves the
scheduler to the Send All state (Figure 7a F©).

Readers can refer to [29] for the complete theoretical analysis of OSG, in
terms of correctness, accuracy and complexities.

6 DABS-Storm

We now have two methods, Autoscale+, which adapts the parallelism degree
of each operator, and OSG, which carefully balance streams’ items between tasks
of an operator. Integration seems quite easy. Nevertheless, mixing methods can
always raise compatibility issues.

An auto-parallelization approach like Autoscale+ assumes that congestion
is due to an input overload of all tasks associated with an operator. In this case,
adding more tasks is indeed the recommended solution. The better the load
balance, the greater the scale-out effects will be. Furthermore, considering the
definition of UtilCPU (see equation 8), the assumption of a good load balancing
is present. Consequently, with a careful proactive load balancing preventing load
imbalance, OSG is expected to improve both the decision process and the effects
of Autoscale+. OSG is not a random choice. Indeed, the proactive aspect is
here of major importance. Although one might think that a reactive solution
could work as well, sometimes (too often) a non-prevented load balancing prob-
lem could lead to unnecessary scale-outs of an unpredictable magnitude.

On the other hand, to guarantee good performance, OSG needs a non-
congested environment. This means that scale-outs have to be performed before
any congestion occurs. It also means that scale-in has to be performed cautiously,
not too soon, to avoid any risk of congestion due to a reversal of the trend within
data streams. Autoscale is also a proactive method, and is designed to perform
a scale-out before congestion occurs. For scale-in, things are less evident. First,
as explained in Section 4.1, page 12, users can choose between two strategies
(related to the choice of the combine function): a cautious one, or a resource-
oriented one aimed at avoiding over-consumption of resources. Second, the size
of the working interval, and more particularly the parameter β (see section4.2,

21

page 14), is of major importance here. Indeed, it controls the margin of security
thickness before performing a scale-in. To expect Autoscale and OSG to work
well together, the combine function must be a cautious one (i.e. a max function,
which is the default choice), and the parameter β should be chosen close to
zero to perform scale-in only when input volumes are very small compared to
operator capacities.

To summarize, to take advantage of the benefits of both methods, it is not
enough to use both of them. We must also ensure they are compatible. This seems
to be the case here, provided that two Autoscale+ parameters are correctly
selected. However, an experimental study is essential to confirm this hypothesis.

7 Experiments

The implementations of Autoscale+ and OSG which we use in experimen-
tal evaluations, have been developed to be integrated with Apache Storm [5].
The principles presented in Autoscale+ and OSG could be integrated with
many other DSMS, like for example Apache Spark Streaming [41], Flink [4],
etc. However, for evident reasons of time and resources, at the beginning of the
project we had to make a choice. We settled on Storm mainly for three rea-
sons. First, in the Storm paradigm, stream elements must not be represented
as key/value pairs, necessary for MapReduce-based approaches [16]. Second, it
offers great flexibility for operator definition. Third, Storm serves as a guar-
antee that every item will be tracked and processed until an operator discards
it (e.g. a filter or a final operator). Finally, it allows manual reconfiguration of
parallelism degrees at runtime.

Thus, this section starts with some general reminders about this DSMS.
Then we detail the experimental setups. Finally, we present and comment on
the obtained results.

7.1 Overview of Apache Storm

Apache Storm [5] is an open source DSMS allowing users to express their contin-
uous queries through a declarative language or to directly build their topologies
using a high-level language (Java, Python, Clojure, etc.).

Fig. 8: Storm architecture

22

Whatever the language used, an operator, named a component in Storm’s
terminology, belongs to one of the two categories: spouts or bolts. A spout is a
connector to a stream source, and thus can be used as an entry of a topology.
It distributes stream elements to components to which it is connected and can
process filtering operations if required. A bolt consumes items from any compo-
nent and computes a result for each element received (stateless bolt) or for a set
of elements (stateful bolt). Each component is executed in parallel by executors.
Each executor is assigned to a processing unit by the scheduler (see Figure 8).

7.2 Experimental protocol

Experimental setup We experiment with the version 1.0.2 of Apache Storm.
Our test cluster is composed of 10 VMs each with a dual-core CPU Intel(R)
Xeon(R) E5-2620 running at 2.00GHz, 4GB of RAM and 40GB of hard disk
space. A master VM, called Nimbus, is responsible for coordinating the 9 others
dedicated to task execution. Each of these VMs, called a Supervisor, manage 4
processing units, called workers. Our module, managing the operator parallelism
degree, implements the IScheduler interface of the Storm API. The module,
managing distribution of stream elements between executors, implements the
CustomStreamGrouping interface of the Storm API. We also deploy a MySQL
database on Nimbus to store collected measurements. We summarize the main
experimental parameters in Table 2:

Table 2: Main parameters

Component Description Symbol Value

Storm
monitoring frequency 10s
processing timeout 30s

Autoscale+
weighting factor λ 0.3
scale-in control β 0.8
combine strategy max

OSG
precision ε 0.05
maximal probability of error δ 0.05

Test topologies To validate our approach, we demonstrate its effectiveness on
three topologies.

The simple insensitive topology (see figure 9a) composed of a spout (Source)
emitting stream elements without filtering them. These stream elements are
processed by a bolt (InsensitiveBolt) applying a function with a time complexity
independent from the value read in input. Finally, a bolt (FinalizeBolt) ends the
computation of each stream element by sending a termination signal to the
Storm monitor.

23

(a) Simple insensitive topology. (b) Simple sensitive topology.

Fig. 9: Simple topologies.

The simple sensitive topology (see figure 9b) has the same structure as the
simple insensitive topology. However, the function applied by the intermediate
bolt (SensitiveBolt) has a time complexity that depends directly on the value
read in the input.

Fig. 10: Complex sensitive topology

The complex sensitive topology is inspired from real benchmark applications
for Storm 4. It is composed of several operators with various selectivity fac-
tors and average processing latencies. The spout (OpinionSource) emits stream
elements concerning opinions submitted by users about a topic. Each opinion
is described by information on the user, like her age and code representing her
location, the topic and the user opinion. Stream elements are sent to a bolt (Cat-
egoryDispatcher) filtering unnecessary attributes and depending on the branch
downstream. Moreover, it filters stream elements concerning a predefined list of
irrelevant topics. A branch starts with a bolt (SensitiveBolt) retrieving informa-
tion on user location from the code. This bolt has exactly the same properties
as the sensitive bolt of the simple sensitive topology. Indeed, the time required
to retrieve information on the city varies according to the code. It allows us to
compare the impact of workflow structure and complexity on bolt behavior and
dynamic adaptation of its parallelism degree. Then, a bolt (CityAnalyzer) ex-
tracts relevant subgroups according to opinion and location. The other branch,
starting from the bolt CategoryDispatcher, performs similar treatments in order
to define subgroups based on user opinion and age. Finally, the Persister takes
as its input descriptions of subgroups and persists them in a storage file system.

It is important to bear in mind a major difference between this experimental
setup and previous one and the consequences. The critical operator is not di-

4https://github.com/yahoo/streaming-benchmarks

24

https://github.com/yahoo/streaming-benchmarks

rectly connected to the source. Stream elements are filtered and transformed by
upstream operators. Consequently, its input rate may significantly differ from the
source one, and strategies considering the workflow at a global scope will have a
way to differentiate from those working only on local considerations. As a conse-
quence, auto-parallelization strategies considering exclusively local observations
cannot take advantage of fluctuations of input rate happening upstream. At the
opposite, auto-parallelization strategies adapting parallelism degree of operators
according to the global state of the workflow will have a natural advantage.
So, this experimental setup highlights the fundamental difference between au-
toscale+ and other parallelization strategies considered in these experiments.

(a) Progressive stream. (b) Erratic stream.

Fig. 11: Input streams.

Test data streams As illustrated in Figure 11, we build two synthetic streams
with the following common features: 1) at least one critical increase in input rate
leading the system to congestion with a minimal (one executor per operator) and
static configuration 2) decrease in input rate to evaluate system elasticity. For
each stream, we can set the distribution law, which may be be uniform over all
possible values or biased according to a zipf law with a predefined skew. These
streams allow us to determine which impact of DABS-Storm when facing crit-
ical fluctuations in both input rate and value distribution. The first corresponds
to a large increase with a plateau before a decrease. The second is much more
sudden, with far severer variations, highlighting system elasticity.

Baseline methods First, we have to deplore a lack of open source imple-
mentation of auto-parallelization strategies. We compare DABS-Storm to two
methods.

The first is simply the native static behavior of Apache Storm an incremen-
tal strategy (noted incremental hereafter) considering only thresholds on CPU
usage.

The second [18], is a reinforcement learning-based strategy mapping input
rates to appropriate parallelism degrees at runtime (noted Rlearning hereafter).

25

For the experiments, the methods take advantage of a knowledge base base
acquired through a training phase carried out using the test data streams. Then
the knowledge base covers all the fluctuations encountered (which is not always
the case in practice). More generally, this can be considered to be a favorable
conditions.

7.3 Experiments and results

Not all the experiments conducted are presented here. More information can be
found on our companion website 5. In addition, this website includes a compar-
ison between Autoscale and Autoscale+. It gives an overview of the gap
between the performance of the auto-parallelization strategy presented in [24]
and results presented below. In the remainder of this section, the results de-
scribed correspond to average values over 5 iterations for each configuration,
thus lessening the the impact of punctual anomalies during tests.

Variations in the input stream rate over an insensitive topology In this
experiment, we confront the simple insensitive topology 9a with a stream with
large, but not too erratic, variations in input rate, see Figure 11a.

In this configuration, the volume of stream elements to process is the only
impact factor and OSG is of little use. For the sake of equity, we choose to
conduct an experiment where all compared solutions sharing the default group-
ing solution of Storm were denoted shuffle grouping. This means that here we
only test the Autoscale+ component of DABS-Storm. Note that other ex-
perimental evaluations show that, in this case, OSG behaves quite similarly to
Storm’s shuffle grouping

As expected, the reinforcement learning strategy increases the parallelism de-
gree of the observed operator InsensitiveBolt (Figure 12a), before decreasing it
just following the input rate. Nevertheless, these modifications have a major im-
pact on average processing latency (Figure12b) and result quality (Figure 12c).
Indeed, the system has been reconfigured (scale-in) with respect to the input
rate and without considering the pending queues (which were far from empty).

In comparison, the incremental strategy continuously increases the paral-
lelism degree of the operator as long as the workload exceeds the processing
rate (see figure 12). Even if the parallelism degree is increased, it cannot reach a
suitable value as quickly as it needs to. This results in a large increase in average
processing latency, causing a 29% loss of stream elements (dephased tuples) over
the complete execution (Figure12c)). Moreover, in terms of resource usage, due
to frequent system reconfigurations, the incremental strategy requires 64% more
active processing units than the reinforcement learning strategy and 18% more
than Autoscale.

With Autoscale+, Storm is able to anticipate suitable parallelism degrees
over the complete execution. Even if Autoscale+ tends to overestimate the

5https://dabs.liris.cnrs.fr

26

https://dabs.liris.cnrs.fr

(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 12: Simple insensitive topology with progressive stream.

required parallelism degree due to regression, processing latency is much better
(Figure 12b). It should also be noted that average processing latency remains
remarkably stable, reducing losses to 7%.

We can conclude that Autoscale+, thus DABS-Storm, outperform the
baseline methods when confronted with data streams with large input rate vari-
ations, even if workflow is unresponsive to data values.

Erratic variations in the input stream rate over an insensitive topology
Compared to the previous experiment, the variations in the input stream rate
will be more erratic, confronting the same insensitive topology 9a with the second
data stream, see Figure 11b.

As illustrated in Figure 13a, the reinforcement learning strategy increases
and decreases the parallelism degree of the observed operator InsensitiveBolt
according to the two main peaks. However, the magnitude of the scale-out is not
very high. Indeed, brief increases in input rate do not increase significantly the
average input rate in recent history. Nevertheless, the, the sudden accumulation
of a huge number of stream elements on pending queues increases the average
processing latency. Luckily, the impact on result quality remains negligible with

27

(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 13: Simple insensitive topology with erratic stream

only 13% of stream elements lost over the complete execution as shown on fig-
ure 13c.

As the incremental strategy over-provisions the operator, available resources
can hopefully handle brief increases in input rate. Consequently, the average
processing latency (see Figure 13b) increases significantly only when the input
rate remains high over a long period of time such as for the last increase in the
erratic stream. While stream element losses (Figure 13c) are reduced to 19%
over the complete execution, the usage of processing units remains higher than
for the reinforcement learning strategy.

Considering Figure 13a, autoscale+ reacts faster to sudden input rates
increasing the parallelism degree. However, the increase is too high with respect
to the ephemeral nature of the phenomenon. In other words, autoscale+ over-
estimates processing requirements. This overestimation induces excessive recon-
figuration overheads, affecting punctually the average processing latency (Fig-
ure 13b). Although results are delivered, 18% of the entire stream cannot be
processed under the maximal threshold. As critical increase and decrease in in-
put rate are sudden and brief, they cannot be anticipated and affect processing
latency before autoscale+ reconfigures the system.

28

This experimental setup points out the limit of the predictive approach when
input streams vary suddenly in volume. Indeed, while a progressive evolution of
the input rate can be easily anticipated, sudden peaks in input rate induce inap-
propriate behavior of the system behavior. Several solutions can be considered
such as reinforcement learning that can help reduce this effect.

(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 14: Simple sensitive topology with progressive stream

Variations in input stream rate and data distribution over a sensitive
topology We now include variations in data distribution in the picture. The
workflow and the data stream are of the same form as in experimentation 7.3
but with two major differences: first, in the input stream (Figure 11a) the value
distribution is biased, following a zipf distribution with a skew of 1.56; and
second, the workflow (Figure 9b)) is sensitive to data values.

For the sake of equity, in this experiment, each parallelism degree strategy is
combined with OSG to benefit from a better load balancing.

6This choice is motivated by previous results on OSG detailed in [31].

29

Here, Autoscale+ anticipates processing requirements (Figure 14a) and is
able to maintain a smaller processing latency (Figure 14b), while the stream is
at its maximal rate.

The reinforcement learning strategy is able to reduce processing latency sig-
nificantly (Figure 14b) when the input rate decreases.

With a parallelism degree evolution (Figure 14a) very closely approaching
that observed in experiment7.3, the throughput of the incremental strategy is
clearly less good. Having looked into this matter, this phenomenon is due to some
kind of incompatibility between the incremental strategy and OSG. Indeed, step-
by-step strategy trivially imposes frequent modifications of parallelism degree.
At each step, OSG has to reevaluate its routing policy to keep a balance between
executors.

In terms of tuple loss, all solutions deliver a similar performance even if the
reinforcement learning strategy is able to keep losses under the incremental strat-
egy and autoscale+. This is due to an overestimation of parallelism performed
by autoscale+, affecting overall quality.

Concerning throughput, all solutions deliver a similar performance even if
autoscale+ remains the auto-parallelization strategy keeping the smallest time
shift between fluctuation in input rate and throughput.

Erratic variations in input stream rate and data distribution over a
sensitive topology Considering DABS-Storm, the average processing latency
(Figure 15b) remains low except for two punctual increases during the first two
peaks in input rate and before the last increase in input rate which lasts longer.
The loss of stream elements (Figure 15c) is limited to 4.8%.

The reinforcement learning strategy provides only the suitable number of
executors (Figure 15a) to avoid congestion.

While the incremental strategy maintains a low processing latency (Fig-
ure 15b) and delivers a throughput close to the input rate, it uses considerably
more resources to complete the treatment of the entire stream (Figure 15a).
Moreover, tuple loss (Figure 15c) has the worst score of all three approaches.

It is also interesting to notice that DABS-Storm is quite reactive, main-
taining a smaller time shift between fluctuations in input rate and throughput
than the reinforcement learning solution. So, even if stream elements arrive at
high rates, the proactive reconfiguration performed by DABS-Storm does not
delay their treatment.

We observe with this configuration that DABS-Storm offers the best com-
promise between performance with moderate increases, in average, processing
latency and acceptable losses.

Real sensitive topology confronted with a progressive stream with
data distribution fluctuations The topology used here, see Figure 10, is
representative of real-world continuous queries. It includes common operators
such as filters on values and attributes, joins with static databases and also
user-defined functions from expert domains such as data mining.

30

(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 15: Simple sensitive topology with erratic stream

In such realistic conditions, DABS-Storm can take advantage of its global
workflow approach. While a greater consumption of resources compared with
other methods, see Figure 16a, can be observed, it all other solutions in terms
of processing latency, see Figure 16b, and it also minimizes the loss of tuples,
see Figure 16c, while the parallelism degree clearly adapts to the input rate, see
Figure 16a.

Real sensitive topology confronted with an erratic stream The rein-
forcement learning strategy keeps reacting to local average input rate to adjust
the parallelism degree. It results in an inconsistent scale-in at workflow scope,
which is contradicted afterwards with a major impact on processing latency and
result quality as illustrated on Figure 17b and Figure 17c.

Even when confronted with erratic stream variations again, considering both
processing latency (Figure 17b) and loss of tuples (Figure 17c), we can conclude
that DABS-Storm copes better than other solutions. This confirms the interest
of not limiting the analysis to local considerations for each operator, but rather
of having a data-driven approach to analyze the behavior on the entire work-

31

(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 16: Complex sensitive topology with progressive stream.

flow, as well as the complementarity and the compatibility of our two proposals,
Autoscale+ and OSG, making up DABS-Storm.

8 Conclusion

Proliferation and diversification of stream sources lead to new techniques in order
to process large amounts of data with high velocity and quality. These techniques
have to solve simultaneously three problems relating to management of the op-
erators composing the workflow: parallelization, scheduling, and load balancing.
In this paper, which focuses mainly on state-less operators, we have presented
Autoscale+, a proactive and coherent auto-parallelization strategy improving
on Autoscale [24]. It has been integrated into Storm with OSG, a cautious
aware load balancing strategy, introducing a new member to the Storm family
named DABS-Storm. Indeed, Autoscale+ and OSG can be made perfectly
compatible, complementing each other very well as two sides of the same coin. On
the one side, OSG does not work well if the parallelism degree is underestimated,
while Autoscale anticipates to avoid such situation. On the other side, OSG

32

(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 17: Complex sensitive topology with erratic stream

improves load balancing, thus having a positive effect on the accuracy of estima-
tions conducted by AUTOSCALE + and reducing unnecessary reconfigurations.
Such an agreement between two strategies is not systematic. For example, the
experiments conducted highlight some incompatibility problems between OSG
and the progressive strategy, which changes the parallelism degree one step at
a time. Furthermore, DABS-Storm can be used in combination with different
existing scheduling strategies.

Experimental evaluations have shown that DABS-Storm improves the sys-
tem stability and performances. For example, even when facing brief and unpre-
dictable fluctuations in input data streams, Autoscale+ keeps loss of tuples
under 18%. On complex real workflows, thanks to a global workflow analysis,
DABS-Storm does even better, cutting losses to 10%. As long as the necessary
resources are available, faced with large or very large fluctuations in input data
streams, whether in terms of volume or data distribution (as can be observed, for
example, in microblogging analysis), DABS-Storm is able to adapt. This au-
tomatic adaptation has many advantages. First, human supervision is no longer
required to trigger and manage system reconfigurations. Note that a scarcity of
resource remains a problem. Indeed, in the event of lack of resources blocking

33

scale-out, DABS-Storm does not change its strategies as one would expect.
One of our future research goals is thus to study the problem of resources star-
vation and to search for a solution that maximizes system throughput. Second,
thanks to careful load balancing, dynamic parallelism degree adaptation with a
global workflow analysis, and a data-driven approach, DABS-Storm manages
computing resources better, reaching an interesting equilibrium between system
stability and limited resource consumption.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang,
J., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik,
S.B.: The design of the borealis stream processing engine. In: CIDR 2005, Second
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 4-7, 2005, Online Proceedings. pp. 277–289. www.cidrdb.org (2005), http:
//cidrdb.org/cidr2005/papers/P23.pdf

2. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee,
S., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Aurora: a new model
and architecture for data stream management. VLDB J. 12(2), 120–139
(2003). https://doi.org/10.1007/s00778-003-0095-z, https://doi.org/10.1007/

s00778-003-0095-z

3. Aniello, L., Baldoni, R., Querzoni, L.: Adaptive online scheduling in storm.
In: Chakravarthy, S., Urban, S.D., Pietzuch, P.R., Rundensteiner, E.A. (eds.)
The 7th ACM International Conference on Distributed Event-Based Systems,
DEBS ’13, Arlington, TX, USA - June 29 - July 03, 2013. pp. 207–218. ACM
(2013). https://doi.org/10.1145/2488222.2488267, http://doi.acm.org/10.1145/
2488222.2488267

4. Apache Flink: https://flink.apache.org/

5. Apache Storm: https://storm.apache.org/

6. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani,
R., Srivastava, U., Widom, J.: STREAM: the stanford data stream management
system. In: Garofalakis, M.N., Gehrke, J., Rastogi, R. (eds.) Data Stream Manage-
ment - Processing High-Speed Data Streams, pp. 317–336. Data-Centric Systems
and Applications, Springer (2016). https://doi.org/10.1007/978-3-540-28608-0 16,
https://doi.org/10.1007/978-3-540-28608-0_16

7. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: se-
mantic foundations and query execution. VLDB J. 15(2), 121–142 (2006).
https://doi.org/10.1007/s00778-004-0147-z, https://doi.org/10.1007/

s00778-004-0147-z

8. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Load management and high
availability in the medusa distributed stream processing system. In: Proceedings
of the 2004 ACM SIGMOD international conference on Management of data. pp.
929–930. ACM (2004)

9. Biem, A., Bouillet, E., Feng, H., Ranganathan, A., Riabov, A., Verscheure, O.,
Koutsopoulos, H.N., Moran, C.: IBM infosphere streams for scalable, real-time,
intelligent transportation services. In: Elmagarmid, A.K., Agrawal, D. (eds.) Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010. pp. 1093–1104. ACM

34

http://cidrdb.org/cidr2005/papers/P23.pdf
http://cidrdb.org/cidr2005/papers/P23.pdf
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1145/2488222.2488267
http://doi.acm.org/10.1145/2488222.2488267
http://doi.acm.org/10.1145/2488222.2488267
https://flink.apache.org/
https://storm.apache.org/
https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1007/s00778-004-0147-z

(2010). https://doi.org/10.1145/1807167.1807291, http://doi.acm.org/10.1145/
1807167.1807291

10. Box, G.: Box and Jenkins: Time Series Analysis, Forecasting and
Control, pp. 161–215. Palgrave Macmillan UK, London (2013).
https://doi.org/10.1057/9781137291264 6, http://dx.doi.org/10.1057/

9781137291264_6

11. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979). https://doi.org/10.1016/0022-0000(79)90044-8, https:
//doi.org/10.1016/0022-0000(79)90044-8

12. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein,
J.M., Hong, W., Krishnamurthy, S., Madden, S., Reiss, F., Shah, M.A.: Tele-
graphcq: Continuous dataflow processing. In: Halevy, A.Y., Ives, Z.G., Doan,
A. (eds.) Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, San Diego, California, USA, June 9-12, 2003. p. 668.
ACM (2003). https://doi.org/10.1145/872757.872857, http://doi.acm.org/10.

1145/872757.872857

13. Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Xing,
Y., Zdonik, S.B.: Scalable distributed stream processing. In: CIDR 2003, First
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 5-8, 2003, Online Proceedings. www.cidrdb.org (2003), http://www-db.
cs.wisc.edu/cidr/cidr2003/program/p23.pdf

14. Cormode, G., Muthukrishnan, S.: An improved data stream summary:
the count-min sketch and its applications. J. Algorithms 55(1), 58–75
(2005). https://doi.org/10.1016/j.jalgor.2003.12.001, https://doi.org/10.1016/

j.jalgor.2003.12.001

15. Das, R., Tesauro, G., Walsh, W.E.: Model-based and model-free approaches
to autonomic resource allocation. Tech. Rep. RC23802, IBM Research Re-
port (Nov 2005), http://domino.watson.ibm.com/library/cyberdig.nsf/

1e4115aea78b6e7c85256b360066f0d4/f5e3b7f574b24bad852570c1005e35a9!

OpenDocument&Highlight=0,tesauro

16. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: Brewer, E.A., Chen, P. (eds.) 6th Symposium on Operating System Design
and Implementation (OSDI 2004), San Francisco, California, USA, December 6-8,
2004. pp. 137–150. USENIX Association (2004), http://www.usenix.org/events/
osdi04/tech/dean.html

17. Gedik, B.: Partitioning functions for stateful data parallelism in stream process-
ing. VLDB J. 23(4), 517–539 (2014). https://doi.org/10.1007/s00778-013-0335-9,
https://doi.org/10.1007/s00778-013-0335-9

18. Gedik, B., Schneider, S., Hirzel, M., Wu, K.: Elastic scaling for data stream
processing. IEEE Trans. Parallel Distrib. Syst. 25(6), 1447–1463 (2014).
https://doi.org/10.1109/TPDS.2013.295, https://doi.org/10.1109/TPDS.2013.

295

19. Golab, L., Garg, S., Özsu, M.T.: On indexing sliding windows over online data
streams. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V.,
Koubarakis, M., Böhm, K., Ferrari, E. (eds.) Advances in Database Technology -
EDBT 2004, 9th International Conference on Extending Database Technology, Her-
aklion, Crete, Greece, March 14-18, 2004, Proceedings. Lecture Notes in Computer
Science, vol. 2992, pp. 712–729. Springer (2004). https://doi.org/10.1007/978-3-
540-24741-8 41, https://doi.org/10.1007/978-3-540-24741-8_41

20. Google Cloud Dataflow: https://cloud.google.com/dataflow/

35

https://doi.org/10.1145/1807167.1807291
http://doi.acm.org/10.1145/1807167.1807291
http://doi.acm.org/10.1145/1807167.1807291
https://doi.org/10.1057/9781137291264_6
http://dx.doi.org/10.1057/9781137291264_6
http://dx.doi.org/10.1057/9781137291264_6
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1145/872757.872857
http://doi.acm.org/10.1145/872757.872857
http://doi.acm.org/10.1145/872757.872857
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p23.pdf
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p23.pdf
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
http://domino.watson.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/f5e3b7f574b24bad852570c1005e35a9!OpenDocument&Highlight=0,tesauro
http://domino.watson.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/f5e3b7f574b24bad852570c1005e35a9!OpenDocument&Highlight=0,tesauro
http://domino.watson.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/f5e3b7f574b24bad852570c1005e35a9!OpenDocument&Highlight=0,tesauro
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
https://doi.org/10.1007/s00778-013-0335-9
https://doi.org/10.1007/s00778-013-0335-9
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1007/978-3-540-24741-8_41
https://doi.org/10.1007/978-3-540-24741-8_41
https://doi.org/10.1007/978-3-540-24741-8_41
https://cloud.google.com/dataflow/

21. Heinze, T., Pappalardo, V., Jerzak, Z., Fetzer, C.: Auto-scaling tech-
niques for elastic data stream processing. In: Bellur, U., Kothari, R. (eds.)
The 8th ACM International Conference on Distributed Event-Based Sys-
tems, DEBS ’14, Mumbai, India, May 26-29, 2014. pp. 318–321. ACM
(2014). https://doi.org/10.1145/2611286.2611314, http://doi.acm.org/10.1145/
2611286.2611314

22. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of
stream processing optimizations. ACM Comput. Surv. 46(4), 46:1–46:34 (2013).
https://doi.org/10.1145/2528412, http://doi.acm.org/10.1145/2528412

23. Kang, J., Naughton, J.F., Viglas, S.: Evaluating window joins over un-
bounded streams. In: Dayal, U., Ramamritham, K., Vijayaraman, T.M.
(eds.) Proceedings of the 19th International Conference on Data Engineer-
ing, March 5-8, 2003, Bangalore, India. pp. 341–352. IEEE Computer Society
(2003). https://doi.org/10.1109/ICDE.2003.1260804, https://doi.org/10.1109/
ICDE.2003.1260804

24. Kombi, R.K., Lumineau, N., Lamarre, P.: A preventive auto-parallelization ap-
proach for elastic stream processing. In: Lee, K., Liu, L. (eds.) 37th IEEE
International Conference on Distributed Computing Systems, ICDCS 2017,
Atlanta, GA, USA, June 5-8, 2017. pp. 1532–1542. IEEE Computer Soci-
ety (2017). https://doi.org/10.1109/ICDCS.2017.253, https://doi.org/10.1109/
ICDCS.2017.253

25. Mukhopadhyay, A., Mazumdar, R.R.: Analysis of randomized join-the-
shortest-queue (JSQ) schemes in large heterogeneous processor-sharing sys-
tems. IEEE Trans. Control of Network Systems 3(2), 116–126 (2016).
https://doi.org/10.1109/TCNS.2015.2428331, https://doi.org/10.1109/TCNS.

2015.2428331

26. Nasir, M.A.U., Morales, G.D.F., Garćıa-Soriano, D., Kourtellis, N., Serafini, M.:
The power of both choices: Practical load balancing for distributed stream pro-
cessing engines. In: Gehrke, J., Lehner, W., Shim, K., Cha, S.K., Lohman, G.M.
(eds.) 31st IEEE International Conference on Data Engineering, ICDE 2015,
Seoul, South Korea, April 13-17, 2015. pp. 137–148. IEEE Computer Society
(2015). https://doi.org/10.1109/ICDE.2015.7113279, https://doi.org/10.1109/
ICDE.2015.7113279

27. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing
platform. In: Fan, W., Hsu, W., Webb, G.I., Liu, B., Zhang, C., Gunopulos, D., Wu,
X. (eds.) ICDMW 2010, The 10th IEEE International Conference on Data Mining
Workshops, Sydney, Australia, 13 December 2010. pp. 170–177. IEEE Computer
Society (2010). https://doi.org/10.1109/ICDMW.2010.172, https://doi.org/10.
1109/ICDMW.2010.172

28. Peng, B., Hosseini, M., Hong, Z., Farivar, R., Campbell, R.H.: R-storm: Resource-
aware scheduling in storm. In: Lea, R., Gopalakrishnan, S., Tilevich, E., Murphy,
A.L., Blackstock, M. (eds.) Proceedings of the 16th Annual Middleware Con-
ference, Vancouver, BC, Canada, December 07 - 11, 2015. pp. 149–161. ACM
(2015). https://doi.org/10.1145/2814576.2814808, http://doi.acm.org/10.1145/
2814576.2814808

29. Rivetti, N., Anceaume, E., Busnel, Y., Querzoni, L., Sericola, B.: Proactive Online
Scheduling for Shuffle Grouping in Distributed Stream Processing Systems. In: Pro-
ceedings of the 17th ACM/IFIP/USENIX International Middleware Conference.
Middleware (2016)

36

https://doi.org/10.1145/2611286.2611314
http://doi.acm.org/10.1145/2611286.2611314
http://doi.acm.org/10.1145/2611286.2611314
https://doi.org/10.1145/2528412
http://doi.acm.org/10.1145/2528412
https://doi.org/10.1109/ICDE.2003.1260804
https://doi.org/10.1109/ICDE.2003.1260804
https://doi.org/10.1109/ICDE.2003.1260804
https://doi.org/10.1109/ICDCS.2017.253
https://doi.org/10.1109/ICDCS.2017.253
https://doi.org/10.1109/ICDCS.2017.253
https://doi.org/10.1109/TCNS.2015.2428331
https://doi.org/10.1109/TCNS.2015.2428331
https://doi.org/10.1109/TCNS.2015.2428331
https://doi.org/10.1109/ICDE.2015.7113279
https://doi.org/10.1109/ICDE.2015.7113279
https://doi.org/10.1109/ICDE.2015.7113279
https://doi.org/10.1109/ICDMW.2010.172
https://doi.org/10.1109/ICDMW.2010.172
https://doi.org/10.1109/ICDMW.2010.172
https://doi.org/10.1145/2814576.2814808
http://doi.acm.org/10.1145/2814576.2814808
http://doi.acm.org/10.1145/2814576.2814808

30. Rivetti, N., Busnel, Y., Querzoni, L.: Load-aware shedding in stream processing
systems. In: Gal, A., Weidlich, M., Kalogeraki, V., Venkasubramanian, N. (eds.)
Proceedings of the 10th ACM International Conference on Distributed and Event-
based Systems, DEBS ’16, Irvine, CA, USA, June 20 - 24, 2016. pp. 61–68. ACM
(2016). https://doi.org/10.1145/2933267.2933311, http://doi.acm.org/10.1145/
2933267.2933311

31. Rivetti, N., Querzoni, L., Anceaume, E., Busnel, Y., Sericola, B.: Efficient
key grouping for near-optimal load balancing in stream processing systems. In:
Eliassen, F., Vitenberg, R. (eds.) Proceedings of the 9th ACM International Con-
ference on Distributed Event-Based Systems, DEBS ’15, Oslo, Norway, June 29 -
July 3, 2015. pp. 80–91. ACM (2015). https://doi.org/10.1145/2675743.2771827,
http://doi.acm.org/10.1145/2675743.2771827

32. Sattler, K., Beier, F.: Towards elastic stream processing: Patterns and infrastruc-
ture. In: Cormode, G., Yi, K., Deligiannakis, A., Garofalakis, M.N. (eds.) Proceed-
ings of the First International Workshop on Big Dynamic Distributed Data, Riva
del Garda, Italy, August 30, 2013. CEUR Workshop Proceedings, vol. 1018, pp.
49–54. CEUR-WS.org (2013), http://ceur-ws.org/Vol-1018/paper9.pdf

33. Schneider, S., Andrade, H., Gedik, B., Biem, A., Wu, K.: Elastic scaling of data
parallel operators in stream processing. In: 23rd IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009.
pp. 1–12. IEEE (2009). https://doi.org/10.1109/IPDPS.2009.5161036, https://

doi.org/10.1109/IPDPS.2009.5161036

34. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining - pre-
dicting delays in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rol-
land, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) Advanced Informa-
tion Systems Engineering - 26th International Conference, CAiSE 2014, Thessa-
loniki, Greece, June 16-20, 2014. Proceedings. Lecture Notes in Computer Science,
vol. 8484, pp. 42–57. Springer (2014). https://doi.org/10.1007/978-3-319-07881-
6 4, https://doi.org/10.1007/978-3-319-07881-6_4

35. Stonebraker, M., Çetintemel, U., Zdonik, S.B.: The 8 requirements
of real-time stream processing. SIGMOD Record 34(4), 42–47 (2005).
https://doi.org/10.1145/1107499.1107504, http://doi.acm.org/10.1145/

1107499.1107504

36. Sullivan, M., Heybey, A.: Tribeca: A system for managing large databases of net-
work traffic. In: Douglis, F. (ed.) 1998 USENIX Annual Technical Conference, New
Orleans, Louisiana, USA, June 15-19, 1998. USENIX Association (1998), https:
//www.usenix.org/conference/1998-usenix-annual-technical-conference/

tribeca-system-managing-large-databases-network

37. Vengerov, D., Menck, A.C., Zäıt, M., Chakkappen, S.: Join size es-
timation subject to filter conditions. PVLDB 8(12), 1530–1541 (2015).
https://doi.org/10.14778/2824032.2824051, http://www.vldb.org/pvldb/vol8/

p1530-vengerov.pdf

38. Wu, Y., Tan, K.: Chronostream: Elastic stateful stream computation in the cloud.
In: 2015 IEEE 31st International Conference on Data Engineering. pp. 723–734
(April 2015). https://doi.org/10.1109/ICDE.2015.7113328

39. Xu, J., Chen, Z., Tang, J., Su, S.: T-storm: Traffic-aware online scheduling in
storm. In: IEEE 34th International Conference on Distributed Computing Sys-
tems, ICDCS 2014, Madrid, Spain, June 30 - July 3, 2014. pp. 535–544. IEEE
Computer Society (2014). https://doi.org/10.1109/ICDCS.2014.61, https://doi.
org/10.1109/ICDCS.2014.61

37

https://doi.org/10.1145/2933267.2933311
http://doi.acm.org/10.1145/2933267.2933311
http://doi.acm.org/10.1145/2933267.2933311
https://doi.org/10.1145/2675743.2771827
http://doi.acm.org/10.1145/2675743.2771827
http://ceur-ws.org/Vol-1018/paper9.pdf
https://doi.org/10.1109/IPDPS.2009.5161036
https://doi.org/10.1109/IPDPS.2009.5161036
https://doi.org/10.1109/IPDPS.2009.5161036
https://doi.org/10.1007/978-3-319-07881-6_4
https://doi.org/10.1007/978-3-319-07881-6_4
https://doi.org/10.1007/978-3-319-07881-6_4
https://doi.org/10.1145/1107499.1107504
http://doi.acm.org/10.1145/1107499.1107504
http://doi.acm.org/10.1145/1107499.1107504
https://www.usenix.org/conference/1998-usenix-annual-technical-conference/tribeca-system-managing-large-databases-network
https://www.usenix.org/conference/1998-usenix-annual-technical-conference/tribeca-system-managing-large-databases-network
https://www.usenix.org/conference/1998-usenix-annual-technical-conference/tribeca-system-managing-large-databases-network
https://doi.org/10.14778/2824032.2824051
http://www.vldb.org/pvldb/vol8/p1530-vengerov.pdf
http://www.vldb.org/pvldb/vol8/p1530-vengerov.pdf
https://doi.org/10.1109/ICDE.2015.7113328
https://doi.org/10.1109/ICDCS.2014.61
https://doi.org/10.1109/ICDCS.2014.61
https://doi.org/10.1109/ICDCS.2014.61

40. Xu, L., Peng, B., Gupta, I.: Stela: Enabling stream processing systems to scale-in
and scale-out on-demand. In: 2016 IEEE International Conference on Cloud En-
gineering, IC2E 2016, Berlin, Germany, April 4-8, 2016. pp. 22–31. IEEE Com-
puter Society (2016). https://doi.org/10.1109/IC2E.2016.38, https://doi.org/

10.1109/IC2E.2016.38

41. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
A fault-tolerant model for scalable stream processing. Tech. Rep. UCB/EECS-
2012-259, CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGI-
NEERING AND COMPUTER SCIENCE (2012), http://www.eecs.berkeley.

edu/Pubs/TechRpts/2012/EECS-2012-259.html

38

https://doi.org/10.1109/IC2E.2016.38
https://doi.org/10.1109/IC2E.2016.38
https://doi.org/10.1109/IC2E.2016.38
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.html

	DABS-Storm: A data-aware approach for elastic stream processing

