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Node-based optimization of LoRa transmissions with Multi-Armed
Bandit algorithms

Raouf Kerkouche‹, Reda Alami˛, Raphaël Féraud˛, Nadège Varsier˛, Patrick Maillé‚

Abstract— The use of Low Power Wide Area Networks
(LPWANs) is growing due to their advantages in terms of
low cost, energy efficiency and range. Although LPWANs
attract the interest of industry and network operators, it faces
certain constraints related to energy consumption, network
coverage and quality of service. In this paper we demonstrate
the possibility to optimize the performance of the LoRaWAN
(Long Range Wide Area Network) technology, one of the
most widely used LPWAN technology. We suggest that nodes
use light-weight learning methods, namely, multi-armed bandit
algorithms, to select the communication parameters (spreading
factor and emission power). Extensive simulations show that
such learning methods allow to manage the trade-off between
energy consumption and packet loss much better than an Adap-
tive Data Rate (ADR) algorithm adapting spreading factors and
transmission powers on the basis of Signal to Interference and
Noise Ratio (SINR) values.

I. INTRODUCTION

The interest of the industry towards the Low Power
Wide Area Networks (LPWANs) is gradually increasing [1].
Several technologies operating on license-free industrial,
scientific and medical radio bands (868 MHz for Europe, 915
MHz for North America and 433 MHz band for Asia) are
used by industrials; among those, the LoRaWAN technology
is one of the most widely used.

The LoRaWAN network architecture is based on a star-of-
stars topology with gateways forming a transparent bridge.
These gateways relay messages between end-devices and a
central network server in the backend. Nodes use a single-
hop wireless connection to one or more gateways whereas
gateways are connected to the network server using standard
IP connections. Communications with end-point nodes are
generally bi-directional, but it is also possible to support
multicast operations [2]. Communications between end-
devices and gateways are spread out over different frequency
channels, using so-called spreading factors (SF) defined as
the logarithmic ratio between the symbol rate (Rs) and the
chip rate (Rc): SF “ log2

`

Rc{Rs

˘

. Accordingly, selecting
the data rate (or equivalently, the SF) can be seen as a trade-
off between communication range and message duration [3].
This possibility to manage data rates and power outputs for
each end-device allows to maximize network capacity [2].

The LoRa spread spectrum modulation scheme defines six
different spreading factors, SF7 (data rate of 50 kbps) to SF12
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(data rate of 0.3 kbps). SF7 allows to send messages with a
higher data rate and a reduced time on air but at a shorter
distance than the others SFs and vice versa. Before sending a
packet, each node also selects a transmission power between
2 dBm and 14 dBm in addition to selecting a spreading factor.

As any IoT technology, LoRa faces several constraints.
One strict constraint is the optimization of energy consump-
tion as the end-devices have generally limited energy re-
sources. Another constraint is a limited duty cycle, preventing
nodes from sending data too often in order to leave space
for the other nodes.

LoRa can operate successfully at ranges exceeding 15 km
in suburban settings, and more than 2 km in dense urban
environments [4]. However, it is necessary to choose an
appropriate spreading factor, to have a compromise between
data rate and network coverage in order to avoid high battery
consumption or frequent packet loss. That is the possibility
offered by the so-called Adaptive Data Rate (ADR) scheme
[2], which is currently implemented in LoRa nodes.

Research to optimize time-on-air, receiver sensitivity,
packet loss and energy has been conducted by combining
game theory and auction-based algorithms [5]. The goal
there is to choose the best transmission power without
changing the allocated spreading factor; the global results are
satisfactory, but in case of a change in transmission power
requirements all estimations need to be performed again,
implying a huge overhead. In [5], the authors design a multi-
radio testing instrument, called LoRabox, for sending and
receiving data packets via LoRaWAN, Bluetooth Low Energy
(BLE) and Wi-Fi, but this instrument does not have any
mechanism to evaluate the cost associated with this overhead.
Recently, an approach based on multi-armed bandits has been
proposed to optimize the channel choice of end-devices in
IoT networks [6]. The authors consider an hypothetical pro-
tocol where in each time slot the devices try to send packets
to a unique Base Station. In the considered environment,
half of the devices are static and the other half learns. Due
to the learning of an half of devices, the environment is non-
stationary. The reported performance of the stochastic multi-
armed bandit algorithms are close to the ones of the optimal
policy, which suggests that the environment evolves slowly
and sparsely and that learning methods are good candidates
to improve performance in those settings.

In this article, we aim to minimize the energy consumption
and the packet losses of end-devices in a LoRa network.
These objectives are conflicting, hence a trade-off between
them has to be found by selecting the transmission power
and the spreading factor. We propose to use multi-armed



bandit algorithms, instead of the standard ADR algorithm,
to handle that trade-off. In contrast to the ADR algorithm–
managed by the gateway–, the SF and power choices are left
to each node, that learns and adapts to its environment with
limited memory and computational costs. Our work departs
from the recent study of [6], since instead of considering an
hypothetical protocol, we test multi-armed bandit approaches
on the actual LoRa protocols. The tested algorithms compete
with the standard ADR algorithm: in our simulation setting,
we consider that all devices select their transmission parame-
ters using the ADR algorithm, except one that learns using a
multi-armed bandit algorithm. This implies an a priori non-
stationary environment (due to ADR having nodes change
their parameters), which is likely to favor the non-stationary
bandit algorithms over stationary ones.

The remainder of this paper is organized as follows. Sec-
tion II analyzes the standard ADR algorithm and describes its
functioning, while Section III provides an overview on multi-
armed bandit problem and algorithms. In Section IV, we
demonstrate how decision-making on LoRa parameters can
be done by using multi-armed bandit algorithms. Section V
describes our Lora network simulator; the experimental setup
and simulation results are presented and discussed in Sec-
tion VI. And finally, Section VII concludes by suggesting
directions for future research.

II. THE ADR (ADAPTIVE DATA RATE) ALGORITHM

In order to limit the energy consumption while ensuring
successful transmissions, the ADR algorithm, currently rec-
ommended by the LoRa Alliance, and implemented by the
network, assigns the transmission power and the spreading
factor to the nodes based on the packets received from
them. Note that only the network may increase the data
rate (i.e., decrease the SF) through ADR, while only nodes
may decrease their data rate (i.e., increase their SF) during
transmissions.

The algorithm is based on the Signal to Interference and
Noise Ratio (SINR) of the last 20 transmissions. For each
node, the last 20 Signal to Interference and Noise Ratio
(SINR) values at the gateway are taken into account to
calculate a so-called margin SINR, denoted by SINRmargin.
Formally, we have

SINRmargin :“ SINRmax ´ SINRRequired ´Margin,

where:
‚ SINRmax is the maximum SINR of the last 20 (suc-

cessfully) received packets from the node,
‚ Margin is a constant set to 10 dB,
‚ and SINRRequired depends on the spreading factor, as

reported in Table I.

At each iteration of the ADR algorithm, the transmis-
sion power and the spreading factor are modified accord-
ing to a value denoted by Nstep, which is defined as:
Nstep :“ roundpSINRmargin{3q. Nstep corresponds to the
number of steps to perform. If Nstep is negative (i.e.,
measured SINRs are low) then the transmission power is

TABLE I
SPREADING FACTORS, AND CORRESPONDING RX WINDOWS [7],

ANTENNA SENSITIVITIES [8], AND SINRRequired [9]

SF RX windows (ms) Antenna Required SINR
sensitivity (in dBm) for ADR (in dB)

SF7 5.1 -124 -7.5
SF8 10.2 -127 -10
SF9 20.5 -130 -12.5

SF10 41.0 -133 -15
SF11 81.9 -135 -17.5
SF12 163.8 -137 -20

incremented by 3 dB until it reaches the maximum trans-
mission power (14 dB), otherwise the spreading factor (SF)
is decreased at each step. If the limit (SF7) is reached and
there are still steps remaining, then the transmission power
is decreased by 3 dB until the minimum transmission power
(2 dB) is reached.

Note that while the ADR algorithm rules seem intuitive
(increase power or decrease data rate in case of low SINRs,
and the opposite in case of large SINRs), they are heuristics,
and not based on any explicit objective optimization. By con-
trast, this paper, we intend to optimize specific performance
metrics by playing on the SF and power choice. We analyze
the performance of ADR, but also of methods specifically
designed to optimize metrics in an unknown environment,
namely, the multi-armed bandit algorithms described in the
next section.

III. MULTI-ARMED BANDITS: AN OVERVIEW

A. The Multi-Armed Bandit problem

The Multi-Armed Bandit problem handles the fundamental
exploration-exploitation dilemma that appears in decision
making problems facing partial information, where decisions
have to be taken over time (discrete turns) and impact both
the rewards and the information withdrawn. Specifically, a
set of K arms is available to the decision maker (player). At
each turn, he has to choose one arm and receives a reward
corresponding to the played arm, ignoring what the received
reward would have been, if he had played another arm. The
player faces the dilemma of exploring, that is playing an arm
whose mean reward is loosely estimated in order to build a
better estimate, or exploiting, that is playing a seemingly
best arm based on current estimates in order to maximize its
cumulative reward. The accuracy of the player policy at a
given time horizon is typically measured in terms of regret,
that is the difference between the cumulative rewards of the
player and the one that could have been acquired by a policy
assumed to be optimal. The notion of optimality and hence
the algorithms depend on the environment.

B. Stationary stochastic environment

The stationary multi-armed bandit problem assumes the
rewards to be generated independently from constant and
unknown distributions associated with each arm. For those
contexts, the most commonly used algorithms are called



UCB and Thompson Sampling (TS).UCB [10] builds an Up-
per Confidence Bound for each arm, and chooses at each turn
the one which achieves the highest current bound, thereby
refining the bound for that arm. Thompson Sampling (TS)
[11] uses Bayesian tools, assuming a prior distribution of
each arm. The posterior distribution is updated using at each
time step the observed reward of the sampled arm. Under the
assumption of stationarity (of the reward distributions), UCB
and TS achieve respectively rate optimal and asymptotically
optimal upper-bounds on the cumulative regret [10], [12].

C. Switching stochastic environment

The switching bandit problem introduces non-stationarity
within the stochastic bandit problem by allowing reward
distributions to change at some turns. As expected rewards
stay stationary between those changes, this setting is also
qualified as piecewise-stationary. Discounted UCB [13] and
sliding-window UCB [14] are adaptations of UCB to the
switching bandit problem and achieve a near optimal regret
bound. Recently, the Thompson Sampling algorithm has been
combined with a Bayesian online change point detector
for handling switching environments [15]. The Switching
Thompson Sampling (STS) is based on the notion of expert.
An expert is a Thompson Sampling procedure starting at
time t. At each time t, a new expert is introduced. To make
a decision, the most likely expert is sampled according to
the weight attributed to each expert. Then, the Thompson
Sampling related to the chosen expert is launched to choose
an arm. Finally, based on the reward observed, the weight
of each expert is updated. One should notice that the update
procedure takes as input a switching rate γ. In this paper,
we also use a new algorithm called Switching Thompson
Sampling with Bayesian Aggregation (STSBA) [16], which
is an updated version of STS where Bayesian aggregation of
experts is used in place of sampling the best expert in order
to avoid the sampling noise.

D. Adversarial environment

In the adversarial multi-armed bandit problem, rewards
are chosen by an adversary. This formulation can model
any form of non-stationarity. The EXP3 algorithm [17] uses
a follow-the-perturbed-leader approach [18] for computing
the probability of each action. It achieves an optimal regret
against an oblivious opponent that chooses rewards before
the beginning of the game, with respect to the best policy
that pulls the same arm over the totality of the game. This
weakness is overcome by EXP3.S [17], that forgets the
past adding at each turn a proportion of the mean gain
and achieves controlled regret with respect to policies that
allow arm switches during the run. To compete against an
optimal policy that changes over time, EXP3.R [19] uses
a statistical test to reset the EXP3 algorithm. REXP3 [20]
simply resets the EXP3 algorithm after a time period. A
similar approach is used in [21] to reset a randomized version
of the SUCCESSIVE ELIMINATION algorithm [22].

IV. DECISION MAKING USING MULTI-ARMED BANDIT
ALGORITHMS

The LoRa network currently uses ADR, a partially decen-
tralized heuristic to tune the SF and transmission power of
nodes. The values of these two parameters induce a trade-
off between energy consumption and packet losses. In this
section we propose a cost function, which handles the trade-
off between energy consumption and packet losses. The
objective of the multi-armed bandit algorithms is then to
maximize the cumulated reward or equivalently to minimize
the cumulated cost over time. This explicit minimization of
the cost function is the main motivation for the use of multi-
armed bandits, while ADR does not clearly state any objec-
tive function. Moreover, multi-armed bandit algorithms come
with theoretical guarantees, which apply to the proposed cost
function, and can be used for instance to provide guarantees
on the lifetime of devices.

The arms correspond to a discretization of the param-
eter space, namely of the pair (transmission power,SF).
We consider a limited number of possible pairs, each one
corresponding to an arm (See Table II). This means that
each time an arm is selected, the transmission power and
the spreading factor are also selected. We are aware the
choice of a limited number of arms can bias the results. Our
selection is consistent with the spirit of ADR, that goes in
the favor of transmission reliability: all SFs are associated to
the maximum transmission power (arms 4 to 9), and when
the highest data rate (SF7) can be applied, we reduce the
energy consumption by reducing the power. Note however
that we could select a larger set of arms, which could only
improve performance in the long run (increasing the set of
usable pairs) but would increase the learning time. Hence
the choice of 9 arms, which offers a good trade-off between
the variety of (transmission power,SF) options and the time
needed to find the best one(s).

TABLE II

Arm 1 2 3 4 5 6 7 8 9
SF 7 7 7 7 8 9 10 11 12

TX power (dB) 2 6 10 14 14 14 14 14 14

The trade-off between energy consumption and packet
losses is expressed through a cost metric, that is a weighted
sum of the energy cost and a loss cost. Mathematically we
define the cost perceived at each turn (i.e., each time the
node wants to send a new packet) as:

Cost :“ Energy ¨Nb_transmission` penalty ¨ 1pfailureq
(1)

where:

‚ Energy is the energy cost for one packet emission,
and equals the product of the emission duration (which
depends on the SF) and the transmission power;

‚ Nb_transmission represents the number of transmis-
sions to send the packet: it is an integer between 1



(the first emission is a success) and 8 (since there are a
maximum of 7 retransmissions);

‚ 1pfailureq equals 1 if the 8 transmissions of the same
packet fail, i.e., the packet is lost. It equals 0 otherwise.

‚ penalty corresponds to the conversion of a packet loss
into the same cost unit as the energy cost. Its choice
is specific to the application and to user preferences: a
large penalty value means that a high quality of service
is needed–for instance for healthcare applications–even
if the energy cost is significant; by contrast a small value
for the penalty corresponds to applications where the
lifetime of the connected device is favored over having
highly reliable transmissions.

Since bandit algorithms function with rewards instead of
costs, we first normalize cost values with respect to the
largest possible cost (highest power and lowest data rate, and
transmission failure after 8 emissions), to obtain normalized
values CostN in the interval p0, 1s, then we

define the reward of each decision step as:

reward :“ 1´ CostN. (2)

V. LORA TRANSMISSION MODEL AND SIMULATOR

We describe here the MATLAB realistic LoRa network
simulator we use to perform capacity studies of the Lo-
RaWAN technology [8].

A. Collision rules

In telecommunications, the Received Signal Strength In-
dicator (RSSI) is a measurement of the power level of a
received radio signal [23]. The Signal-to-Interference-plus-
Noise Ratio (SINR) is also an important metric of the
wireless link quality [24], since it directly affects the bit
error rate in the transmissions.

A collision occurs when two LoRa frames are received
simultaneously. There are two types of collisions: Inter-
SF collisions and Intra-SF collisions, which are modeled
according to the two following rules [8]:

‚ Intra-SF collisions: if a collision occurs between two
LoRa frames with the same SF on the same frequency,
then only the LoRa frame with the highest power can be
decoded, and provided that the power difference exceeds
6 dB (otherwise it is lost).

‚ Inter-SF collisions: if a collision occurs on the same
frequency between two LoRa frames "a" and "b" with
different SFs, then packet "a" is demodulated only if:
RSSIa ´ RSSIb ą SINRa.

B. Propagation Model

We use the Okumura-Hata model [25], [26] because it
is one of the most popular and accurate models, especially
used for urban and suburban areas. It is generally applied
for frequencies in the range of 150 MHz-1920 MHz, for a
distance separation ranging from 1 km to 100 km, and for
antenna heights from 30 m to 1000 m [27]. We consider
typical indoor penetration losses, with an additional 6 dB loss
for deep indoor environments [8], [28], [29].

C. Shadowing and Fast Fading modeling

Fading is the term used to describe the fluctuations in
a received signal as a result of multipath components. We
model it using a Rayleigh distribution for the amplitude,
hence an exponential distribution on power.

Shadowing represents the fact that the received signal
power fluctuates due to objects obstructing the propagation
path between transmitter and receiver when fast fading is
characterized by rapid fluctuations over very short distances.
In our LoRa network simulator the shadowing effect is
modeled through a log-normal distribution with a 12 dB
standard deviation outdoor and 6 dB standard deviation for
indoor applications [8], [30].

D. Data rate vs spreading factor

The data rate DR equals [31]: DR “ SF ¨ BW
2SF ¨ CR, with:

‚ SF the spreading factor (an integer between 7 and 12),
‚ BW the bandwidth,
‚ and CR the coding rate.

E. Transmission and Retransmission

Following each uplink transmission the end-device opens
two short receive windows in order to receive a downlink
message from the server as acknowledgment of its uplink
message. The receive window start times are defined using
the end of the transmission as a reference [7]. A node can
receive a message only when one of these two windows is
open. If no acknowledgment is received after closing the
second window, then the message is retransmitted under
certain conditions. Indeed, the number of retransmissions is
limited, generally to a maximum of 7 retransmissions (what
we consider in our simulator), but this number may differ
depending on the end-devices. The duration of the reception
window depends on the spreading factor (see Table I).

During retransmissions 3, 5, 7 (if any) the node increases
its spreading factor (decreases the data rate) before sending
the packet again. The rule used to increase the spreading
factor is defined as: min

`

SFnode ` 1,SF12
˘

.
Both transmission and retransmission must respect the

duty cycle, defined as the maximum percentage of time
during which an end-device can occupy a channel and is
a key constraint for networks operating in unlicensed bands.
For instance, the duty-cycle is 1% in EU 868 for end-
devices [3].

In addition to the cases of collisions seen above, a retrans-
mission can occur if the gateway receives the frame with an
RSSI strictly below the antenna sensitivity.

In all other cases, the transmission is assumed to succeed.
Mathematically, the RSSI is computed as:

RSSI “ txpower ¨ Rayleighpower{PL (3)

with Rayleighpower a random variable following an expo-
nential law (with mean 1). PL represents the path loss
predicted by the Okumura-Hata model and txpower is the
transmission power. The sensitivity of the antenna depends
on the spreading factor (see Table I).



VI. EXPERIMENTS

A. Simulation setup

For our MATLAB simulations, we consider that the net-
work works in the LoRa European band 863-870 MHz, and
we use the 868 MHz frequency channel. The frame size is 11
bytes (4 bytes of payload for the consumption index + 7 bytes
Zigbee Cluster Library application protocol overhead [8],
[32]), corresponding to a smart metering application. Times
on air for each SF are calculated using Semtech LoRaWAN
specifications [7] and are summarized below:

SF 7 8 9 10 11 12
Time on air (s) 0.04 0.07 0.14 0.25 0.49 0.99

Our simulations are for a network consisting of one
gateway and 100 end-devices. In order to consider the worst
case, devices are supposed to be located deep indoor.

The experiment runs over 1000 time slots of 30 minutes
each. Each node sends one packet per time slot to the
gateway. While respecting the duty cycle constraint, it can
send it up to 8 times (i.e., 7 retransmissions) until receiving
an acknowledgment from the gateway. We select a penalty
of 1 for handling the trade-off between energy consumption
and packet losses, and 9 arms corresponding to the 9 couples
[spreading factor, transmission power] given in Table II.

We consider devices with a -5 dBi antenna gain, which
corresponds to the reality of LoRa devices on the market [8].

The first experiment considers a static setting, with a single
node to be optimized at different distances from the gateway:
592 m, 1000 m and 1975 m, the 99 remaining nodes following
the ADR algorithm. As the transmission between a node
and the gateway may interfere with the transmissions of
other nodes, the nodes are not independent. The changes
of transmission parameters (due to ADR) of the other nodes
can affect the distribution of rewards for the node of interest,
hence an a priori non-stationary environment. In the second
experiment, at time step 500 the node moves from 592
meters to 1975 meters from the gateway (immediate position
switch, all other nodes remaining static). This moving node
introduces a switch of the best arm (see Figure 1).
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Fig. 1. Average costs for the 9 arms, for three different distances from
the gateway: depending on the distance of the node to the gateway, the best
arm to play is not always the same.

We compare the simulated standard ADR algorithm with

7 different multi-armed bandit algorithms: UCB [10] and
Thompson Sampling (TS) [11] designed for stationary envi-
ronments, Sliding Window UCB (SWUCB) [14], Switching
Thompson Sampling (STS) [15], and Switching Thomp-
son Sampling with Bayesian Aggregation (STSBA) [16]
designed for switching environments, and EXP3 [17],
REXP3 [20] for adversarial environments.

B. Simulation Results

Figure 2 shows the energy consumption, the number of
lost packets, and the cumulative cost (averaged over 20 sim-
ulations) for a node at distance of 592 m, 1000 m, and 1975
m from the gateway, respectively, for different SF, txpower

selection algorithms (ADR and various bandit algorithms).
The total cost value is defined as:

řt
i“1 CostNpiq ,where t

represents the current time slot, and CostNpiq the normalized
cost at time slot i (See Section IV).

First, note that for all distances, the MAB algorithms
have a total cost below that of the ADR algorithm (see
Figure 2). Second, the ADR algorithm is dominated, both
in terms of energy consumption and packet loss, by the
multi-armed bandit algorithms whatever the distance of the
node: hence for any penalty value (i.e., any application an
user preferences) applying a MAB algorithm instead of ADR
guarantees a cost reduction.
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Fig. 2. Simulation results: performance for the node of interest, at three
distances from the gateway

Figure 2 shows that multi-armed bandits based on a
switching environment clearly outperform adversarial ban-
dits, and slightly outperform stationary bandits, which is an
indication of the slow evolution of the environment.

When the node moves at step 500, a clear switch is
introduced (see Figure 3). ADR, which does not handle mo-
bile nodes is clearly dominated by multi-armed bandit algo-
rithms. The best-performing multi-armed bandit algorithm is
Switching Thompson Sampling with Bayesian Aggregation.
Surprisingly, the Thompson Sampling algorithm performs
as well as Sliding Window UCB and Switching Thompson
Sampling, which are specifically designed for switching
environments while TS is not. Adversarial algorithms explore
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Fig. 3. Total cost versus time averaged over 20 trials, when at time step
500 the node moves from 592 m to 1975 m from the gateway.

too much to be competitive in this stochastic environment,
and the UCB algorithm is the worst bandit algorithm in this
non-stationary environment.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, we suggest to optimize the performance of
uplink LoRaWAN communications by replacing the standard
ADR algorithm with multi-armed bandit algorithms to select
both the spreading factor and the transmission power. The
experiments are carried out with a simulator that meets the
standards of the LoRaWAN technology and are performed
on nodes located at different distances from the gateway and
located in a deep indoor environment.

Simulation results show that the ADR algorithm has a ten-
dency to perform quite well in terms of energy consumption,
but incurs large packet losses. All our experiments suggest
that the multi-armed bandit algorithms outperform the ADR
algorithm, and can be tuned to reach a compromise between
energy consumption and packet loss.

As directions for future research, we plan to investigate the
case of several gateways, that correlate their received signals
to improve reception, as well as the interactions among
multiple node selfishly optimizing their communications.
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