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Abstract—Kidney failure is a critical chronic disease, defined
as the irreversible loss of kidney functions. It has been shown
that this pathology is associated with an increase of ammonia
concentration in breath. Measuring it with a handheld system is
a simple way for a noninvasive and early diagnostic. The idea
of this paper is to measure the concentration of ammonia in a
concentration range of human breath (500 ppb-2100 ppb) with
humidity using a network of 11 different nanocomposite sensors.
To overcome sensor weaknesses (sensor drift and sensitivity to
humidity), the electronic nose principles are applied. Polyaniline-
based nanocomposites with titanium dioxide, chitosan and carbon
nanotubes are used to provide different sensitivities and response
times and thus associate a single pattern to a concentration
range. Several classifiers are then investigated and recursive
feature elimination algorithm are used to select the most relevant
features and sensors while improving the measurement accuracy.
Measurerement accuracy reaches 91 % with the combination of
feature selection and Support Vector Machine algorithm.

I. INTRODUCTION

Human breath is composed of several hundred compounds
with a high relative humidity, above 90 % [1]. In recent years,
the correlation between diseases and gas compounds present
in the breath has been studied [2]. For instance, ammonia is
one of the most relevant markers for hepatic or kidney diseases
[3]. This compound is a protein breakdown product which is
normally converted into urea by the liver and excreted by the
kidneys. In the case of failure of one of these two organs,
the ammonia concentration increases in exhaled breath from a
few hundred ppb when healthy up to several ppm [4]. In this
study, up to 1.1 ppm of ammonia is classified as healthy, and
above 1.6 ppm as unhealthy [5]. Because the healthy/unhealthy
boundary is blurred, an intermediate concentration range is
specified.

To achieve an economically sustainable system to be pro-
vided to general practitioners, autonomous, handheld and user
friendly, measurement systems based on a single gas sensor or
gas sensor array are a promising solution. However, limitations
related to detection limit, non-specificity, response time and
humidity sensitivity must be taken into account.

Using the electronic nose principle is the proposed solution
to solve sensors issues and meet the specifications of the
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application : this means associating a single print of sensor
responses with a concentration range by using classification
algorithms [6]. It therefore requires sensors with differentiated
responses. It becomes possible to reduce drift, aberrant values
while maintaining the diagnostic accuracy. Polyaniline is cho-
sen to form the sensitive base material for the sensor array
because it gives many advantages: sensitive to ammonia, low
cost, and it is possible to make different formulations to have
differentiated responses.

The aim is to determine the optimal combination of surface
compositions to use, the best characteristics of the curve
responses and the best classification algorithm. The rest of
this paper is organized as follows: the first part tackles
the fabrication of the sensors, the sensing system and the
extraction of the features and algorithms that are used. The
last part deals with the results and the conclusion.

II. EXPERIMENTAL

A. Sensor fabrication

A polyaniline-based formulation is deposited on interdig-
itated chrome/gold electrodes on each sensor. A total of 11
sensors are fabricated. The synthesis of different polyaniline
nanocomposites are explained below. The first type is based
on chitosan, a biopolymer derived from crustacean shell.
It is a non-toxic and stable material. Co-dissolution is the
method used to synthesize this first nanocomposite. Previous
studies showed responses down to 200 ppb of ammonia but
with hydrophilic properties [7]. All polyaniline sensors are
both sensitive to ammonia and humidity. The latter parameter
affects much more the response of the sensors than ammonia
because water is at a higher concentration in the breath. It
is then important to have sensors with different sensitivities
to humidity in order to separate the contribution of moisture
from ammonia by classification. The second nanocomposite
is based on titanium dioxide, TiO2, a semi-conducting metal
oxide nanoparticle. Polyaniline coats the TiO2 particle, giving
a high surface/volume ratio giving a very low detection
limits of about 50 ppt. The complete synthesis process and
characterization are described in [8]. Finally, a synthesis
of polyaniline with carbon nanotubes (CNTs) is used. The
electrical resistance of this synthesis is thus function of the
polyaniline and the electrical paths made by the CNTs. Sensors
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Fig. 1. Picture of the sensor array test bench. Mass Flow Controller (MFC)
controls the individual mixing channels to the exposure chamber.
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Fig. 2. Exemple of Recursive Feature Elimination algorithm with a starting set
of 4 features. The best subset is the one with the best classification accuracy.

1, 2, 6 and 7 are based on chitosan, sensors 3,4,8,9,10 and 11
are based on TiO2 and sensor 5 is based on CNTs.

B. Sensing system

The sensor array is then placed in an exposure chamber.
Moisted air and ammonia are mixed and injected for 1
minute into the exposure chamber, Figure 1. The amount of
ammonia added in the mixture varies from 500 ppb to 2 ppm.
Three classes are defined: Healthy, Uncertain, and Unhealthy.
They correspond to three concentration ranges of ammonia :
respectively 500 ppb - 1.1 ppm, 1.1 ppm - 1.7 ppm, 1.7 ppm -
2.8 ppm. The exposure chamber is in a climatic room, with a
controlled temperature of 37◦C. The flow rate is at 8 L.min−1.
After an exposure, a purified and dry air is injected during 1
minute. A total of 250 cycles are then realised with no specific
order in the concentration of ammonia added in the mixture.

C. Feature extraction and selection

Typically, only the maximum variation is extracted from the
curve. However, it has been shown that transient features such
as integrals and/or derivative could also help increasing the
classification performance [9]. The set of features extracted is
thus:

Sensor 2 (Chitosan-PANI)

-22.5

-22

-23.5

-23

-24

-25

-24.5

Fig. 3. Resistance variation versus ammonia concentration for sensor 2 based
on chitosan.

• the maximum derivative of the signal: δR,
• the integral value:

∫
R,

• the maximum variation: ∆R.
For each sensor, features are extracted during both the absorp-
tion and desorption phases, yielding a total of 66 features (six
extracted features for the eleven sensors). After extracting the
features, it is useful to select the best subset of features as it
provides a more accurate classification result.

If n is the feature number, 2n − 1 training calculations are
needed to find the best subset with an exhaustive search. In
this study, n is 66, it is unrealistic to find an optimal subset of
features. Figure 2 shows how the features are then selected
with the Recursive Feature Elimination algorithm. Several
classification algorithms are investigated: Discriminant Anal-
ysis (LDA), Random Forest (RF), Support Vector Machine
(SVM) and Multi-Layer Perceptron (MLP) [10].

III. RESULTS

A. Sensing properties

Figure 3 shows the maximum variation of the resistance
with ammonia concentration for sensor 2, based on chitosan.
As expected, chitosan sensors have a much higher relative
resistance variation, around 23% compared to TiO2 sensors,
around 3%. Humidity affects sensor 2 more because of the hy-
drophilic properties of chitosan. However, resistance decreases
for sensor 2 and increases for sensor 4, based on TiO2. The
explanation of these different responses is that humidity and
ammonia interact in different ways with these nanocomposites.
The ammonia deprotonates the polyaniline. As a consequence,
the resistance increases while humidity inflates the matrix
of the sensors. This inflation increases the number of paths
for the electrons, so the resistance decreases. As chitosan is
hydrophilic, the inflation effect dominates.

Within the measured concentration range, chitosan and TiO2
sensors both have linear responses. However, the R2 coefficient
is better for TiO2 sensors, 0.94 compared to 0.87 for chitosan.
As sensor 5, based on CNT does not show linear response



Fig. 4. Accuracy versus number of features selected by RFE for MLP
algorithm.

in the low concentration range its coefficient R2 is lower,
0.76. Finally, repeatability of the sensors, characterized by
standard deviation, varies from one sensor to another. Standard
deviation is higher for chitosan sensors than for TiO2 or CNT.
The high sensitivity to humidity makes chitosan based sensors
less reliable. Standard deviation of TiO2 sensors are still high
because the time of exposure is low, only 60 s. A longer time
of exposure improves the repeatability. For a classifier based
on a regression model of one of these sensors, diagnostic errors
are important. In these cases, the diagnostic accuracy is 41 %
for sensor 1, 44 % for sensor 2 based on chitosan and 44 %
for sensor 4, based on TiO2. The following work consists in
crossing sensor responses and selecting the best features to
see if the accuracy of diagnostic increases.

B. Accuracy improvement by feature selection

Figure 4 shows that the maximum accuracy is not obtained
with the all available features. In fact, only a small part of
them bring the best result: 13 features for LDA, 24 for MLP,
19 for RF and 39 for SVM.

TABLE I
DIAGNOSTIC ACCURACY (IN %) OBTAINED BY DIFFERENT

CLASSIFICATION ALGORITHMS AND DIFFERENT SET OF FEATURES AND
WITH RFE.

Features of the resistive curve
used to test the algorithm

Tested Algorithm ∆R δR
∫

R ∆R+δR RFE selected
+
∫

R+∆R
LDA 64 64 67 80 84
RF 77 77 50 80 83

SVM 72 77 75 85 91
MLP 75 78 63 85 88

Figure 5 shows that the most important features are ex-
tracted from sensors 4 and 5 for MLP. However, these sensors
do not bring enough information to accurately discriminate
the samples (classification accuracy is 75 % with these two
sensors). According to the classifier, the best features are not
the same. It is noteworthy that sensor 5 provides the least
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Fig. 5. Illustration of the RFE results for MLP algorithm.The best features
are lighter.

information for LDA and the most information for MLP. This
is in the sense that MLP can handle non-linear data in the
contrast to LDA. Sensor 5, based on CNT, is the one with the
worst linearity (R2 coefficient is 0.74). However, no significant
differences between the features extracted during absorption or
desorption are evident from these results. Only the integral
features during the absorption phase are useless for MLP
and LDA, but not RF. This points out that testing several
algorithms is an important step to select the right sensor array.
Crossing the information of Figures 4 and 5 yields the best
subset. The classification accuracy improvements brought in
by the RFE algorithm are presented in Table I. With RFE,
accuracy increases up to 91 % for SVM, 87 % for MLP and 84
% for LDA while reducing the set of necessary sensors down
to 8, 6 and 4 respectively. These values become interesting for
a medical application.

IV. CONCLUSIONS

This paper showed the advantages of the use of an electronic
nose to detect ammonia in a breath simulation. Reliability
of a single sensor system is impaired by problems with
drift, sensor failure or repeatability. The use of a network of
polyaniline sensors was made possible by the combination of
the good sensitivity of polyaniline with ammonia while having
differentiated responses thanks to different formulations. Thus,
classification accuracy of 91 % was achieved using SVM
algorithm and feature selection algorithm compared to the 44
% obtained by basing the classification model on the linear
regression of a sensor. As electronic noses can be embedded
in a handheld device, these results pave the way for a portable
diagnostic system for kidney diseases.



REFERENCES

[1] M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, and R. N.
Cataneo, “Variation in volatile organic compounds in the breath of nor-
mal humans,” Journal of Chromatography B: Biomedical Sciences and
Applications, vol. 729, no. 12, pp. 75–88, Jun. 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0378434799001279

[2] H. Haick, Y. Y. Broza, P. Mochalski, V. Ruzsanyi, and A. Amann,
“Assessment, origin, and implementation of breath volatile cancer
markers,” Chem. Soc. Rev., vol. 43, no. 5, pp. 1423–1449, 2014.
[Online]. Available: http://xlink.rsc.org/?DOI=C3CS60329F

[3] B. Grabowska-Polanowska, J. Faber, M. Skowron, P. Miarka, A. Pietrzy-
cka, I. Sliwka, and A. Amann, “Detection of potential chronic kidney
disease markers in breath using gas chromatography with mass-spectral
detection coupled with thermal desorption method,” Journal of Chro-
matography. A, vol. 1301, pp. 179–189, Aug. 2013.

[4] S. Davies, P. Spanel, and D. Smith, “Quantitative analysis of ammonia
on the breath of patients in end-stage renal failure,” Kidney International,
vol. 52, no. 1, pp. 223–228, Jul. 1997.

[5] C. Turner, P. panl, and D. Smith, “A longitudinal study of ammonia,
acetone and propanol in the exhaled breath of 30 subjects using
selected ion flow tube mass spectrometry, SIFT-MS,” Physiological
Measurement, vol. 27, no. 4, p. 321, 2006. [Online]. Available:
http://stacks.iop.org/0967-3334/27/i=4/a=001

[6] H. Haick, “Chemical sensors based on molecularly modified metallic
nanoparticles,” ResearchGate, vol. 40, no. 23, pp. 7173–7186, Dec.
2007.

[7] J.-l. L. Wojkiewicz, N. Redon, A. Pud, S. Mikhaylov, N. Ogurtsov,
Y. Noskov, C. Collard, and W. Li, “Hybrid and Bio Nanocomposites
for Ultrasensitive Ammonia Sensors,” Proceedings, vol. 1, no. 4,
p. 407, Aug. 2017. [Online]. Available: http://www.mdpi.com/2504-
3900/1/4/407

[8] S. Mikhaylov, N. A. Ogurtsov, N. Redon, P. Coddeville, J.-L. Wo-
jkiewicz, and A. A. Pud, “The pani-dbsa content and dispersing sol-
vent as influencing parameters in sensing performances of tio2 hybrid
nanocomposites to ammonia,” RSC Adv., vol. 6, no. 86, pp. 82 625–
82 634, 2016.

[9] K. Yan and D. Zhang, “Feature selection and analysis on correlated gas
sensor data with recursive feature elimination,” Sensors and Actuators
B: Chemical, vol. 212, pp. 353–363, Jun. 2015.

[10] J. H. Leopold, L. D. J. Bos, P. J. Sterk, M. J. Schultz, N. Fens, I. Horvath,
A. Bikov, P. Montuschi, C. Di Natale, D. H. Yates, and A. Abu-Hanna,
“Comparison of classification methods in breath analysis by electronic
nose,” Journal of Breath Research, vol. 9, no. 4, p. 046002, Dec. 2015.

[11] T. Hibbard, K. Crowley, and A. J. Killard, “Direct measurement
of ammonia in simulated human breath using an inkjet-
printed polyaniline nanoparticle sensor,” Analytica Chimica
Acta, vol. 779, pp. 56–63, May 2013. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S000326701300425X


