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Abstract—This paper presents a cost effective electronic nose
prototype for the detection of 1.6 ppm of dimethyl methylphos-
phonate (DMMP) in a complex background. The device com-
prises of seven cross-sensitive carbon nanotube mat (CNT-mat)
type sensors, an impedance measurement circuit and a micro-
computer for data pre-treatment and classification stages. This
study focused on the detection of DMMP in a gas mixture,
using the responses of the sensors before they reach a stable and
repeatable behavior. Even with this major constraint, the support
vector machine used for classification reached 98% precision for
the recognition of the samples.

I. INTRODUCTION

The detection of toxic vapors at low concentration is a major
challenge to detect an industrial leakage or a chemical attack.
Nerve gas like sarin are very potent toxins which have very
low immediately dangerous to life and health (IDLH) values
in the tens of parts per billion (ppb).

The currently available technologies to detect these coum-
pounds are bulky and expensive. As such, the need for a low-
cost, light-weight portable solution for the real time detection
of nerve agents has driven research in the two last decades.
Several transduction techniques have been investigated to
transform the chemical information into electronic signals such
as ion mobility spectrometry [1], metal oxyde frameworks
(MOS) [2], MEMS such as surface accoustic wave sensors
[3] or capacitive ultrasonic transducers [4], metal-insulator-
metal ensembles [5], liquid cristals [6], or carbon nanotubes
(CNT-mat) [7]. Most of these sensors have major drawbacks
such as the lack of repeatability of the responses whithout a
calibration phase or a broad chemical selectivity.

A solution to deal with these issues is to use several
sensors in an electronic nose (E-nose) system. Such a system
includes an array of chemical sensors which react selectively
to different molecules, a pre-treatment stage which extracts
relevent features from the sensor signals and a classification
stage which links non-specific responses from the sensors to
a specific response of the system.

This work focuses on showing the first results of our
portable e-nose system for the detection of DMMP, a sarin
simulant, in a mixture without previously calibrating the
sensors.
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In this work, CNT-mat type sensors have been used as
they have high sensitivity at ambient temperature and are cost
effective. Furthermore, their selectivity is tunable by adding
polymers in the CNT-mat [8]–[10]

The choice of the features which are extracted from the
raw responses of the sensors is crucial for E-nose systems.
Transient features such as integrals and maximum derivatives
have been showned to be reliable features [11].

Many algorithms have been investigated for the classifica-
tion stage of E-nose systems such as Principal Component
Analysis (PCA) [12], Artificial Neural Networks (ANN),
Suport Vector Machines (SVM) [13]. In this study, SVM is
successfully employed for the correct recognition of samples
containing DMMP.

Figure 1: Schematic of the proposed electronic nose system

II. PROPOSED E-NOSE SYSTEM

The developped electronic nose systems is described in
Figure 1. It comprises of:



1) seven CNT-mat sensors
2) an impedance measurement circuit including a multi-

plexer to sample the signals from the seven sensors
3) a micro computer to preprocess and classify the data

from the measurement circuit.

A. CNT-mat sensors

A CNT-mat sensor is a nanocomposite structure of conduc-
tive CNTs and non-conductive polymers to add selectivity. The
nanocomposite is sprayed on interdigitated electrodes layer
by layer as described in [14]. CNT intrinsec conductivity
varries when molecules get adsorbed on the tubes surface.
Molecules reacting with the embedded polymers change the
tunnel conductivity between CNTs of the network. These
phenomena cause a measureable capacitance change between
the interdigitated electrodes. Seven different sensors were
proposed and manufactured by our partners from the IRDL
in order to have cross sensitivity:

1) Polyvinylpyrrolidone (PVP) + phosphate (PO4)
2) PVP
3) Polystyrene (PS) + PO4
4) PS + anthracene (ANT)
5) Poly(methyl methacrylate) (PMMA) + PO4
6) PMMA
7) Polycaprolactone (PCL)

B. Measurement front end

The capacitances from the sensor array are measured in
a cyclic fashion thanks to an analog multiplexer (ADG708)
and using an impedance converter chip (AD5933). The base
resistances of the sensors are comprised between 5 and 36
kΩ. As such, a calibration resistance of 10 kΩ is used to
compensate for the internal impedance of the system. The
micro-computer (Raspberry Pi 3) retrieves the capacitances
from the array through an I2C interface and controls the
multiplexer though four digital IOs. This systems allows to
sample the sensors at a rate of 2Hz. The datasheet of the
AD5933 claims a 0.5% accuracy. An accuracy of 0.3% was
observed during the experimentations.

C. Data pre-processing

The capacitance signals are filtered (low-pass) and the
relative response is calculated before feature extraction stage.
The relative capacitance responses of the sensors to 12 ppm of
DMMP is presented in Figure 2, with the relative capacitance
of a sensor given by equation 1:

∆C(t) =
C(t)− C0

C0
(1)

Selecting good features from the curves is of utmost im-
portance to improve the accuracy and decrease the complexity
of the classification stage. Seven features have been extracted
from the capacitance responses and are presented on Figure 3:

• the magnitude of the relative signal
• the magnitude of the adsorption phase: Cmax - C0
• the magnitude of the desorption phase: Cmax - Cmin

Figure 2: Relative capacitance responses of the sensors to 12
ppm of DMMP

• the integral value of the adsorption phase:
∫
C abs

• the integral value of the desorption phase:
∫
C des

• the maximum slope of the signal: δC max
• the minimum slope of the signal: δC min

D. Classification stage

The seven features from the sensor array are then forwarded
to the classification stage. SVM is a supervised learning
method which requires to be trained with a fraction of the
database. The training dataset is used to define a hyperplan in
a N-1 dimensional space (where N is the number of features).
This hyperplan is calculated to segregate at best the vectors
from different classes. The vectors which are the closest to the
interclass frontiers are called the Support Vectors and define
the hyperplan. Once the SVM has been trained, test vectors can
be feeded to the algorithm which will predict its corresponding
class. In this study, there are two classes: samples containing
DMMP and samples which do not contain DMMP. Seven
features are extracted from the responses of the seven sensors,
N is then equal to 49.

Stratified cross validation (8 folds) was used to randomly
separate the training and testing datasets.

Figure 3: Description of the six features extracted from the
capacitive responses of the sensors



Table I: Chemical composition of the background mixture

Coumpound Ethanol Water Propanol Toluene Xylene Octane Tetramethylbenzidine
Concentrations (ppm) 1500 1200 400 300 80 40 4

III. EXPERIMENTAL SETUP

A. Samples preparation

Two tedlar bags were filled with the vapor mixture presented
on Table I. A concentration of 1.6 ppm of DMMP has been
added to one of the two bags.

B. Mixture expostion protocol

An exposition cycle consists of emptying the bag at a flow
rate of 100 mL per minute on the sensor array for five minutes,
this constitutes the absorption phase. The sensors are then
cleaned with dry air at 500 mL per minute to let the sensors
desorb and return to their original state.

For each bag, the three first consecutive cycles are chained.
This has been repeated eight times in a randomized order and
on a whole week to avoid cognitive biais for the SVM.

A database of 48 was gathered, 24 samples for each bag.

IV. RESULTS AND DISCUSSION

A. Classication results

The 48 samples were used to train and test our algorithms
using a stratified 8-fold cross validation method. The SVM
reached an accuracy of 98%, averaged for the 8 folds (Table
II).

Other studies have shown transducing methods selective
enough to recognize pure vapors of DMMP from pure vapors
of potential interferants. In this study, the ability to reliably
detect the presence of DMMP in a known mixture of in-
terferants has been demonstrated. However, the experimental
limit of detection (LOD) of 1.6 ppm is too high compared
to the IDLH of nerve agents. Furthermore, the ability of
the developped system to specifically recognize DMMP from
other coumpounds has yet to be proven. Testing the system
against more diverse blends of potential interferants is required
to assess if the proposed system is field-ready.

B. E-nose prototype features

The proposed E-nose prototype is small enough to be
embedded into an handheld device. The electrical consumption
of the system is 1.35 W at rest, 1.5 W during measurement and
2.1 W during classification. This prototype works for 14 hours
with a battery of 5000 mAh. The impedance measurement
circuit consumption is only 0,1 W. As such, autonomy could
be easily increased by scalling down the complexity of our
control and data-treatment hardware.

Table II: Confusion matrix of the SVM algorithm, averaged
on the 8 folds

Prediction: no DMMP prediction: DMMP
Background bag 98% 2%

DMMP bag 2% 98%

Table III: Result discussion

Transduction method MOS CNT-mat CNT-mat
Experimental LOD 500 ppb 50 ppb 1.6 ppm

DMMP yes, vs. yes, vs. not assessed
identification 6 competitors 6 competitors yet

In mixture detection no no yes
Reference [2] [7] this study

V. CONCLUSION AND FUTURE WORK

The electronic nose system presented in this paper allows
to indentify the presence of DMMP in a complex mixture
with a accuracy of 98%. The development of a cost-effective,
portable E-nose system is described. Future work will focus
on implementing the proposed feature extraction methods and
SVM algorithm on a dedicated circuit. This downsizing will
be an other step toward a military uniform embedded E-nose
system and will drastically reduce its power requirements.
Tuning the set of transducers in the sensor array will also
be investigated. In order to even lower the risk of false
alarms, tailoring the prototype for the specific identification
of the DMMP compared to a broader range of interferants is
required.
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