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Abstract—Energy consumption is one of the major challenges
of modern datacenters and supercomputers. By applying Green
Programming techniques, developers have to iteratively imple-
ment and test new versions of their software, thus evaluating
the impact of each code version on their energy, power and per-
formance objectives. This approach is manual and can be long,
challenging and complicated, especially for High Performance
Computing applications. In this paper, we formally introduces
the definition of the Code Version Variability (CVV) leverage
and present a first approach to automate Green Programming
(i.e., CVV usage) by studying the specific use-case of an HPC
stencil-based numerical code, used in production. This approach
is based on the automatic generation of code versions thanks to a
Domain Specific Language (DSL), and on the automatic choice of
code version through a set of actors. Moreover, a real case study
is introduced and evaluated though a set of benchmarks to show
that several trade-offs are introduced by CVV1. Finally, different
kinds of production scenarios are evaluated through simulation
to illustrate possible benefits of applying various actors on top
of the CVV automation.

Keywords-Code version variability leverage, green program-
ming automation, energy efficiency, power capping, high perfor-
mance computing, DSL, shallow-water equations;

I. INTRODUCTION

Energy consumption is a major growing concern in our
day to day life. It is also widely recognized as one of the
major problems of our generation. In a world where energy
usage is a global concern, computing facilities consumption
are not negligible. Datacenters are today responsible of 2%
of global carbon emissions and use 80 million megawatt-
hours of energy annually. For this reason it is necessary to
apply every available techniques on computing facilities to
reduce or regulate their energy and power consumption. Those
techniques are often called leverages, while smart entities
which makes use of them are called actors. To face this
growing concern many leverages have been developed at
multiple level of computing facilities: hardware, middleware,
and application.

Taking into account energy issues while programming a
software is often called Green Programming (GP). However,
on one hand, by using such a technique, a developer has to
write and handle multiple versions of a code, and s/he has to

1Experiments were carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER and
several Universities as well as other organisations (https://www.grid5000.fr).
Some experiments were done on the GENCI CURIE platform.

compare them manually to finally choose the one which suits
the best his/her constraints and objectives (e.g., energy, power,
performance etc.). On the other hand, the growth of super-
computing capabilities increases both the energy consumption
and the complexity of supercomputer usage, which makes
difficult and very technical the development of applications
on such machines. In such a complex context, it is even
harder for a green programmer to deal with the generation,
the comparison and the choice of the version of code while
taking into account modular constraints. Moreover, some of
those constraints concern HPC systems administrators more
than application developpers such as, for example, constraints
related to contracts with electrical providers.

In this paper we propose four main contributions :
• a formal definition of a leverage, an actor and the CVV

leverage;
• a complete process toward automated Green Program-

ming for production numerical simulations;
• a real case-study of our automated process to show its

applicability;
• and a set of evaluations of our case-study to show both the

interest of the CVV leverage for better trade-offs between
metrics, and the pourcentage gain by using our Green
Programming automation.

The remaining of this paper is structured as follows. Sec-
tion II introduces the formalism of a leverage, applies it to
the CVV leverage and presents our automated process toward
Green Programming (i.e., CVV usage). A complete case-study
is then detailed in Section III. Sections IV and V respectively
details the experimental setup and our set of evaluations
onto our case-study. Finally, related works are discussed in
Section VI, and Section VII concludes this work.

II. TOWARD CVV LEVERAGE AUTOMATION

In this section are presented the first two contributions of
the paper which are, first, the introduction of the Code Version
Variability Leverage, and second, a complete process for its
usage automation onto production runs of a HPC application.

A. Code Version Variability Leverage
Before the presentation of the CVV leverage we clarify our

contribution by giving a formal definition of a leverage.

Definition 1. A leverage L is a triplet L = (S, sc, fs), where
S = {s0, s1, . . . , sn} is the set of available valid states of L,



sc is the current state of L, and fs is a function to update the
current state to a new state s′c ∈ S.

In other words, a leverage is a way to offer a choice to a
user (or any automated process), as well as a way to modify
this choice through the function fs.

Considering that a given application could be implemented
in various ways, we consider that having the choice between
code versions is also a leverage. We call this leverage the Code
Version Variability Leverage (CVV).

Definition 2. Considering a given application A, the
Code Version Variability (CVV) leverage LA is defined as
LA(SA, sc, fA), where SA = {v0, . . . , vn} is the set of
available code versions of A, sc = vc is the current selected
code version, and fA is a way to change the current code
version (e.g., executing a different binary).

In this paper, the CVV leverage is used in the specific case
of HPC applications where the different code versions are in
fact representing different parallel implementations.

Finally, in this paper we do not address the case where fA
is called during the execution of A. This is left for future
work. Instead, we consider that fA can be called between two
production runs of A.

B. Green Programming automation : from generation to usage
Green programming (GP) consists in changing the way an

application is implemented to improve its energy efficiency
(energy consumption, but also power-related metrics etc.)
Thus, automatic generation of several code versions (CVV)
is the first necessary step to simplify GP.

However, in practice, particularly in the context of HPC
applications, GP can be very difficult to apply. Actually,
implementing a single version of a large scale parallelized
HPC application is a long and difficult task, thus implementing
multiple versions become almost infeasible. Moreover, when
considering GP, the entire development process is left to the
application developer. For this reason, we propose in this paper
a complete automated process to take advantage of the CVV
leverage. This process is depicted in Figure 1.

The CVV automation process is composed of three differ-
ent phases. The first phase is responsible for the automatic
generation of code versions. To do so, we propose to use
Domain Specific Languages (DSLs). Among existing solutions
to ease HPC programming, Domain Specific Languages target
a specific domain, in opposition to general purpose (paral-
lel) languages. By explicitly knowing the targeted domain,
DSLs are able to automatically generates very efficient HPC
codes [1]–[4]. Most of the time, DSLs are used to generate
the code that reaches the smallest execution time for a given
application and a given hardware architecture. In this paper
we use DSLs as a mechanism to generate multiple versions of
a code instead of a single one, thus creating the set of states
for the CVV leverage, represented by different squared colors
in Figure 1.

The second phase of the CVV automation process is to
use a given subset of production runs of an application
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Fig. 1: Automation process of the CVV leverage

to combine leverages, thus building a knowledge, which is
complete at tk. The number of runs needed to reach a complete
knowledge tk depends on the prediction degree handled in the
knowledge building process: from “Null”, where all leverages
combinations has to be performed, to “High” where all of
the knowledge is present from start (without the use of any
previous run). One can note that the knowledge is built upon
a given set of metrics.

The knowledge built in the second phase is then used within
the third phase, for any new production run that happens after
tk, to take decision regarding the code version to use for this
new production run according to the current constraints. The
element which is responsible for this decision is called an
actor. An example of actor is the OnDemand linux governor
which chooses the DVFS current state depending on the
current system load2

More formally, let L be the set of possible leverages, and
C a set of constraints to fulfill (of any type). We also denote
states(L) the function that returns the set of states S of a
leverage L.

Definition 3. An actor a is a function that for a subset of
leverages Lsub ⊂ L and a set of constraints C ∈ Cn returns
a set of new choosen states Sres, one for each leverage of
L ∈ Lsub.Each new state s′c returned by an actor a is called
a choice.

An actor aims at fulfilling constraints by choosing new
states s′c ∈ states(L). When considering multiple optimiza-
tion objectives, possibly not compatible, a trade-off has to be
found between all constraints and objectives of C.

2https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt



III. CASE STUDY DESCRIPTION

In this section is described the case-study addressed within
the paper. Regarding the automation process depicted in
Figure 1, this section presents first the application use-case,
second, the DSL used to generate CVV states, third, how
the knowledge is built and used by actors, and finally, which
constraints are handled.

A. FullSWOF2D application

As already explained, the automation process presented
in the previous section targets regular production numerical
simulations. A numerical simulation simulates a physical
phenomenon by approximating the exact solution of partial
differential equations through a set of numerical schemes
(computations). A numerical simulation discretizes the time
through a time loop. At each time iteration, a set of numer-
ical computations are applied onto the entire (or a subset)
discretized space domain (namely a mesh). A numerical sim-
ulation is typically composed of (i) a number of iteration, (ii) a
mesh size, (iii) a set of numerical parameters (single numerical
values) and (iv) a set of input data sets representing physical
quantities (e.g., speed, pressure etc.). Those physical quantities
are mapped onto the mesh.

For a given domain size (i.e., mesh size), a production
numerical simulation is used many times by physicists, modi-
fying input data sets and numerical parameters, to be as close
as needed to the real phenomenon to understand it.

A numerical simulation can be regular or irregular. In
this paper regular simulations are handled. More particularly,
stencil-based numerical simulations are considered. Thus, the
same set of computations are performed whatever numerical
values of input data sets and parameters are. As a result,
by considering the same set of machines (i.e., same cluster)
and the same input size, performance behavior of stencil-
based codes stay the same3. This makes possible to reuse
the knowledge built within the automation process for many
production runs.

As an example of production numerical simulation, we
consider FullSWOF2D4 [5] (denoted FS2D), developed at
the MAPMO laboratory, University of Orléans, France. FS2D
consists in solving the Shallow Water equations (two dimen-
sional Navier-Stokes equations) using finite volumes methods
especially chosen for hydrodynamic purposes (transitions be-
tween wet and dry areas, small water heights, etc.). FS2D is a
complex numerical simulation composed of 32 stencil kernels
and 66 local kernels [6].

As an illustration, in production, FS2D will be run many
times with the same input size. Actually inputs of FS2D
are 8 numerical parameters (e.g., hydrolic conductivity, water
viscosity, pressure etc.), and 6 input data sets (e.g., rain,
speed in each dimension etc.). Each parameter and data set
can be initialized in very different manners to study different
physical cases (already flooded grounds, dry grounds etc.)

3http://www.agner.org/optimize/instruction tables.pdf
4http://www.univ-orleans.fr/mapmo/soft/FullSWOF/

When considering simply 2 possible values for each parameter
and 2 possible input data sets, the number of possible runs is
the cartesian product 28×26 = 214 = 16, 384. This illustrates
that a production numerical simulation can be used many
times using the same input size. FS2D will be the considered
application for the rest of this paper.

B. The Multi-Stencil Language

The domain specific Multi-Stencil Language (MSL) [6]
enables to automatically generate multiple HPC code versions
of a multi-stencil numerical simulation from a lightweight
data-oriented description of a numerical application and a set
of sequential kernel codes. The semantic and performances of
MSL has been shown in [6]. In this paper, MSL is used to
generate four HPC code versions of FS2D, thus producing the
set of states SA of the CVV leverage.

These four versions are based on two different paral-
lelization techniques. The first technique, namely data par-
allelization, divides the studied domain (data) into equally
balanced sub-domains. Each sub-domain is computed by one
computational resource (typically a core) and communications
between resources are added to perform correct computations.
The second technique, namely task parallelization, divides
a program into sub-tasks. Each task is computed by one
computational resource, and task dependencies are introduced
to respect computation order. The scheduling of task de-
pendencies can be statically computed before the execution,
or can be dynamically decided at runtime. In MSL these
techniques are implemented by using the Message Passing
Interface (MPI) and the OpenMP Application Programming
Interface. The four code versions produced by MSL are: (1)
MpiBase, where data parallelization is applied by domain
decomposition and by using MPI; (2) MpiOmpFor, where
data parallelization is introduced at two different levels, first,
by domain decomposition with MPI, and second, by using
parallel loops of OpenMP; (3) MpiOmpForkJoin, where both
data and task parallelization techniques are combined, and
where the adopted task parallelization technique is a static
fork/join scheduling implemented using OpenMP; and finally
(4) MpiOmpDyn, where both data and task parallelization
techniques are also combined, but where the adopted task
parallelization technique is the dynamic scheduling of tasks
introduced in OpenMP 4.55.

One can note that these four code versions represent dif-
ferent approaches to parallelize the code. Many other code
versions could be studied such as versions using various cache
optimizations, different types of data, etc. These four versions,
though, are difficult to write by hand, thus being an interesting
case-study for GP automation.

C. Knowledge, actors and constraints

To entirely understand the case-study adressed within this
paper, it is needed to describe how the knowledge is built and
used by the automation process.

5http://www.openmp.org/mp-documents/openmp-4.5.pdf

http://www.agner.org/optimize/instruction_tables.pdf
http://www.univ-orleans.fr/mapmo/soft/FullSWOF/
http://www.openmp.org/mp-documents/openmp-4.5.pdf


First, as depicted in Figure 1 the knowledge is built by
using a certain number of production runs until tk is reached,
which means that the knowledge is complete. The number of
runs to perform before reaching tk depends on the number of
possible combinations when exploring a set of leverages. In
this paper are considered two different leverages. The first one
is the CVV leverage described in Section II, the second one
is the leverage that modifies the number of MPI processes
and OpenMP threads for a given parallel application on a
given subset of nodes. This last leverage has already been used
in [7]–[9]. As an example, our complete knowledge (combina-
tions of code versions and MPI/OpenMP configurations) when
12 cores are available per machine (Table I of Section IV-A)
contains 55 production runs. As illustrated before, a very light
use of FS2D in production already leads to 16,384 runs. This
shows that our technique is realistic and feasible in our case-
study.

Of course, when increasing the number of leverages (i.e.,
the number of choices), the size of the knowledge to build
also increases. For this reason, actors could be more or less
intelligent and could need a smaller knowledge to take a
good decision (e.g., machine learning techniques). This type of
actors will be simulated during our evaluations in Section V.

For each of the production runs used to build the knowledge
(before tk), four metrics are collected. The first metric is
the Execution Time, denoted time. It measures the entire
execution time of one job, including initialization time. The
three remaining metrics are energy-related metrics. To define
these metrics, we first need to introduce some notations:

• N is the number of computing nodes used by a job;
• T = {t0, . . . , tn−1} is the set of n time stamps of energy

consumption measurements of a job; t0 and tn represent
the starting and ending timestamps, respectively;

• pij , where i ∈ [0, N − 1], and j ∈ [0, n − 1], represents
the power consumption (in Watt), of a node i for the
timestamp tj ;

• Pj =
∑

i∈[0,N−1] p
i
j represents the cumulated power

measurements of all nodes i ∈ [0, N − 1] for a given
timestamp tj ∈ [0, n− 1].

The second metric is the Maximum Cumulated Watt and is
denoted maxCWatt. It represents the cumulated maximum
power witnessed during the run of the application A for
the set of current selected states sc of considered leverages.
It reflects how much the application, when considering the
current combination of leverage states, stresses the computing
nodes on which it is executed. It is defined as:

maxCWatt = max
j∈[0,n−1]

Pj (1)

The third metric is the Average Cumulated Watt and is
denoted avrgCWatt. It represents the cumulated average
power consumption of the application A for the set of current
states. It is defined as follows:

avrgCWatt =

∑
j∈[0,n−1] Pj

n
(2)

TABLE I: Hardware configuration of Grid’5000 Taurus nodes
and TGCC Curie thin nodes

Taurus Grid’5000 Curie Thin Nodes
CPU model Intel Xeon E5-2630 SandyBridge
Number of CPU 2 2
Cores per CPU 6 8
Total Memory (GB) 32 64
Compiler [-O3] gcc 4.9.1 gcc 4.9.1
MPI OpenMPI Bullxmpi
Network 10 Gigabit Ethernet fat-tree Infiniband

Finally, the fourth metric is the Cumulated Joules and is
denoted CJoules. It represents the cumulated energy con-
sumption of the run for the current leverages combination.
It is the energy consumption of all nodes used between t0 and
tn for the execution of A. It is defined as follows:

CJoules =
∑

j∈[0,n−1]

(tj+1 − tj) ∗ Pj (3)

In the rest of this paper we consider a single constraint,
the power capping. A power capping constraint indicates a
maximum power consumption value to not overpass during
a certain period of time. This is the type of constraints
imposed by electrical providers within their contracts or
through a scheduler imposing various power capping to every
user [10].One can note that this constraint can evolve through
time. In addition to this constraint, two functions have to be
minimizes: the execution time of each run; and the energy
consumption of each run.

In this section has been presented our complete considered
case-study. This case-study illustrates that our automation
process of Green Programming is feasible. In the rest of this
paper are detailed the experiments conducted on this case-
study.

IV. EXPERIMENTAL SETUP

In this section is detailed the experimental setup used for
evaluations. First, the hardware is described, then the chosen
configurations to build knowledges are given.

A. Hardware and energy monitoring

To conduct our evaluation, we use the Grid’5000 experi-
mental platform and the Curie supercomputer. Grid’50006 is a
French large-scale and versatile testbed for experiment-driven
research in all areas of distributed computing. Experiments
presented in this paper have been conducted on the cluster
named Taurus of the site of Lyon. The hardware configuration
of this cluster is given in Table I. Each node is monitored by a
wattmetter with a precision of 0.125 Watt (W) and that reports
the average of 3600 measurements each second.

The TGCC Curie7 is a French petascale supercomputer
ranked as the 93th supercomputer of the Top500 list of
November 20178. It is composed of three different types of

6http://www.grid5000.fr
7http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm
8http://www.top500.org/lists/2017/11/

http://www.grid5000.fr
http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm
http://www.top500.org/lists/2017/11/


TABLE II: Knowledge configurations on FS2D.

Knowledge Cluster #nodes Domain size #Iteration
A Taurus G5k 4 4000× 4000 100
B Thin Curie 128 20000× 20000 10000

nodes, each with a specific hardware configuration. Experi-
ments of this paper have been performed on the Thin Nodes
(Table I) of the TGCC Curie supercomputer. Measurements
on Curie thin nodes are done at the electrical cabinet with
dedicated wattmeters and are updated approximately every 5
minutes.

B. Knowledge configurations and representation

By using code versions (CVV) generated by MSL on FS2D
for Phase 1 of Figure 1, we run a set of benchmarks to build
Knowledges. A Knowledge is built upon application produc-
tion runs that combine leverages for a given configuration
(domain size and number of iterations). Moreover, each run
collects a set of metrics, as detailed in Sections II-B and III-C.
Two Knowledges have been built in our evaluations and are
summarized in Table II for Grid’5000 and Curie experiments.

To analyze multiple metrics at the same time, we have
chosen to use a pareto representation and its associated pareto
frontier (or pareto-front) formally defined for energy concerns
in [9]. Figure 2 gives an example of a 2D pareto frontier,
where each axis is a metric and each point represents measures
registered for a given job of a benchmark campaign.
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Fig. 2: Pareto frontier example

Points on the pareto frontier represent the set of best
solutions (relative to the remaining points), for a trade off
between the two chosen metrics. Thus, they represent choices
where no improvement for a metric can be made without
deteriorating the second one. Points on the pareto-front are
called dominant points while others are called dominated
points. For example, in Figure 2, where both metrics have to
be minimized, choosing B over A decreases the first metric but
increases the second one. Points C, D, and E are dominated
by A, which means that both metrics increase compared to A.

There is a wide panel of possible trade-offs between two
chosen metrics. The trade-off could be between two energy

metrics or between an energy metric and the execution time.
Our benchmark framework executes a set of jobs which

are the combination of two application leverages. First, the
set of available code versions of FS2D (CVV), and second,
the MPI/OpenMP configuration chosen to run FS2D. From
the results produced by one campaign, a pareto can be built,
where each point represents one job. To build a pareto, two
metrics among the described ones in Section III-C have to be
chosen.

V. CASE STUDY EVALUATION

This section presents the evaluations of, first, the CVV
leverage alone, second, the CVV leverage combined to the
MPI/OpenMP leverage. Finally, we present through simulation
two complete production scenario evaluations.

A. Evaluation of the CVV leverage

First, we would like to show in our evaluations that choosing
one code version or another while mesuring time, maxCWatt,
avrgCWatt and CJoules, leads to a non trivial tradeoff. Table III
reports measurements of the four metrics when executing the
same knowledge configuration A, with the four code versions
generated by MSL, on a single Taurus node. The Taurus node
is used with its full capacity, thus using its 12 cores.

From Table III, we can obserse that “MpiOmpFor” and
“MpiOmpForkJoin” are minimizing time and CJoules, respec-
tively. However, these code versions also have the highest
values for maxCWatt and avrgCWatt. As a result, and as
expected, a correlation exists between the execution time
and the energy consumption (CJoules). However, minimizing
these metrics leads to high power consumption that could be
problematic in the case of power capping constraints either
for a cluster administrators or a green scheduler translating
energy budget to a power capping. Moreover, Table III shows
that for every state of the CVV leverage (code version), non
negligible variability can be observed in the four metrics.

B. Combination of CVV and MPI/OpenMP leverages

When combining the CVV leverage with the leverage that
configures the number of MPI processes and the number of
OpenMP threads, the number of possible choices to get the
best trade-off between metrics increases, thus the choice can
be improved. Both Figures 3a and 3b illustrate this claim.

In Figure 3a, Knowledge A is built with four nodes of
the Taurus cluster of Grid’5000. Each symbol (or color)
refered to one code version among the four code versions
generated by MSL on FS2D. For each code version, many

TABLE III: Time, maxCWatt, avrgCWatt and CJoules for
the four different code versions generated by MSL on FS2D
(CVV).

time (s) maxCWatt avrgCWatt CJoules
MpiOmpDyn 133.37 253.25 237.97 31916.5
MpiOmpFor 128.25 257.87 239.80 30854.12

MpiOmpForkJoin 130.75 257.0 239.29 31515.25
MpiBase 142.5 254.87 235.22 33733.87



different configurations of MPI/OpenMP are possible, each
point for one symbol (or color) represents one configuration.
For example, the code version MpiOmpForkJoin can be run
be using 4 MPI processes and 12 OpenMP threads per MPI
process, or can be run by using 8 MPI processes and 6
OpenMP threads per MPI process. In this case cores of the four
nodes are fully used (12 per node), but the same benchmark
can be executed by using only 4 MPI processes and 2 OpenMP
threads, etc.

Figure 3a presents a pareto on the metrics time and
avrgCWatt, where all runs of the knowledge A are represented
(55 different runs). Each run has been performed 8 times and
a median is computed. The pareto frontier is represented in
blue. One can note a variability of code versions on the pareto
frontier. This means that among the set of best choices for a
trade-off between time and avrgCWatt, multiple code versions
are represented. As a result, the CVV leverage improves the
trade-off that MPI/OpenMP leverage alone could reach.

For example, in Figure 3a, if we consider a power capping
constraint set to 600W , the chosen state for the CVV leverage
would be “MpiOmpDyn” (associated to a given MPI/OpenMP
configuration). In fact, it is the first point on the pareto-front to
answer the fixed constraint. Thus by definition, it is the point
that minimizes execution time while satisfying this power
capping constraint.

One can note that the same result can be observed on Curie
regarding the knowledge B in Figure 3b. Because of our
limited access to thin nodes of TGCC Curie, one can note that
less jobs have been performed than on Grid’5000 resulting in
less points onto the pareto, thus an incomplete knowledge.
However, the same conclusions can be taken as the results
show that different code versions are represented on the pareto
frontier. As a conclusion, the CVV leverage is also interesting
at large scale.

C. Simulation of Production Scenarios

To have a complete control over the applied scenarios,
we have chosen to simulate different production and power
constraints scenarios.

The knowledge presented in Figure 3a is used within our
simulation. Three different elements are simulated within a
given scenario: (1) the production scenario; (2) the energy and
power constraints considered during the production scenario;
and (3) the set of actors considered.

1) Production scenarios: The first production scenario is
called soft. A total number of 210 = 1, 024 runs are performed
within this entire production scenario which is much less than
the example given throughout this paper (16, 384 production
runs). Thus, this scenario is not in favor of our process. This
production scenario has a low frequency usage with four runs a
day (two of them during the night, and two of them during the
daytime). This scenario represents a soft arrival of production
runs during 256 days.

In the second production scenario, namely hard, the same
total number of runs are performed. However a high arrival
frequency is simulated. Actually, twenty runs are performed

per day which leads to a hard use of production resources for
52 days (51 full days, plus 4 extra runs during 52th day). To
make these scenarios more realistic we also introduce vacan-
cies or maintenance periods where runs are not performed.

2) Constraints: For the power constraints, we have chosen
to simulate two types of power capping constraints. On one
hand, the first constraint, namely Fixed, represents a power
capping value (i.e., maximum value to not overpass) constant
through time. To choose a real case power capping for knowl-
edge A, we refer to results displayed in Figure 3a, where we
have chosen the rounded value equidistant to the minimum
and maximum reached avrgCWatt on the pareto-front. Thus,
650W has been chosen as Fixed constraint.

The second power constraint is denoted day-night. In this
constraint, the maximum power value is low during daytime
and high during night. For knowledge A, 600W and 800W
have been chosen for day and night power constraint, respec-
tively.

3) Actors: The two first actors considered in our simulation
do not base their choice on any knowledge. The first actor of
this family is called Usual. This actor illustrates what usually
happens in production, i.e., a single code version and a single
MPI/OpenMP configuration are used for all runs. The second
one is denoted Random. This actor randomly chooses one
code version and one MPI/OpenMP configuration for each
production run. One can note that both Usual and Random can
perform choices that do not respect input constraints. However,
the power capping constraints has been chosen such that Usual
never violate it. One can note that this choice is not in favor
of our process once again.

The third actor is the one we advocate in this paper. It
is called BuildKlg. This actor makes choices by using a full
knowledge (i.e., complete paretos).

The last considered actor is called Ideal. This actor uses
advanced machine learning strategies to be able to make
choices with a partial knowledge of previous runs. Thus, this
actor reduces the number of runs needed to reach tk. As this
paper does not focus on the proposal of new actors, we have
made the hypothesis that this Ideal actor is able to accurately
discover the complete knowledge without any previous run,
which would be the perfect actor, even if not feasible. Thus
this actor represents the theoretical best case of our simulation.

Both BuildKlg and Ideal aims at first respecting power
capping constraints and second minimizing execution time and
energy consumption.

4) Simulation results: This section analyses the results of
simulation for every proposed actor on any production scenario
and for any considered power constraint.

Two metrics are considered in results. First, the Violation
metric represents the amount of joules consumed over the
fixed power limit (the bigger the value, the worst the actor is).
We could imagine that every joules consumed over the limit
represent an extra cost. This metric is relevant to a user that
estimates that power capping must not be exceeded, during all
run. However, as the input cost per joule highly depends on
the infrastructure or electrical provider policies, we represents
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Fig. 3: Paretos with metrics time and avrgCWatt, for knowledges A and B of Table II.

TABLE IV: Simulation results based on knowledge A in terms
of energy consumption, violation of constraints, and associated
percentages compared to the Usual actor.

Actor Energy (J) Violation(J) % gain % Violation
Soft, Fixed

Usual 54192768,00 0,00 0,00 0,00
Ideal 31659648,00 0,00 41,58 0,00
Random 55849891,19 7465509,76 -3,06 13,37
BuildKlg 32619458,62 133449,82 39,81 0,41

Soft, Day-night
Usual 54192768,00 0,00 0,00 0,00
Ideal 43075597,13 1440879,81 20,51 3,35
Random 55867662,19 7074282,00 -3,09 12,66
BuildKlg 43567042,87 1686303,71 19,61 3,87

Hard, Fixed
Usual 54192768,00 0,00 0,00 0,00
Ideal 31659648,00 0,00 41,58 0,00
Random 55179811,31 3242795,56 -1,82 5,88
BuildKlg 32619458,62 133449,81 39,81 0,41

Hard, Day-night
Usual 54192768,00 0,00 0,00 0,00
Ideal 47837186,63 288175,96 11,73 0,60
Random 55849891,19 7465509,76 -3,06 13,37
BuildKlg 48165244,49 573153,42 11,12 1,19

the percentage of violation metric rather than the cost. Second,
the total energy consumption is represented.

Table IV displays the results of these simulations. The
total energy consumed and the violation of constraints are
represented for every scenario. Percentage of saved energy, and
constraint violation are given using the Usual actor as a refer-
ence. Actually, for the Usual actor, the CVV leverage position
is set to mpiOmpDyn. While the MPI/OpenMP leverage is set
to 4/10 (4 MPI processes and 10 threads per MPI process).
Moreover, we have chosen this configuration because it always
answers power capping constraints. Thus the simulated overall
consumption of Usual actor will always be the same, given that
the chosen run is always the same.

Regarding the violation rate, Random is the worst actor. One
can note that BuildKlg has very low percentage of violation

(3.88% in the worst case, 0.41% in the best case). Moreover,
BuildKlg is very close to Ideal which is the best possible
actor for this metric. The differences between these two is
the discovery part. In fact, during the pareto construction (dis-
covering all the CVV and MPI/OpenMP states combinations)
the BuildKlg actor violates the constraints. Even Ideal has
penalties on Day-Night senario. This is due to the fact that we
only consider knowledge of constraints at the start of a run.
Thus, such penalties are due to a change of the constraint value
during the run (e.g., for job starting the night and finishing
during the day).

If we only focus on the percentage of gain compared to
Usual, the tendencies are the same for every scenario. Random
is always worst than Usual (negative percentage of gain),
showing that the state of both the CVV and the MPI/OpenMP
leverages is not something to choose randomly. For BuildKlg,
we can see that for each case, energy savings are not negligible
(around 11% in the worst case, and up to 39% in the best
case). Ideal reaches the best energy savings but is very close
to BuildKlg (a difference of 1.77% in the worst case), implying
that such a clever actor may not be needed, in our case study.

In our evaluations we have shown that our automated
process of Green Programming is applicable on a real case-
study, and can almost reach ideal results for both the total
energy consumption and the rate of power capping violations.
Thus, this work leads to energy and money savings.

VI. RELATED WORK ON APPLICATION LEVERAGES

Many works have dealt with the configuration variation of a
given application to get an energy-aware usage of computing
nodes. In [9], authors provide a mathematical formulation of
the multi-objective performance tuning problem. The work
shows that energy-aware configurations of application are
possible. The number of MPI processes and the number of
OpenMP threads are again both used as leverages.

In [11], authors present a predictive model to estimate power
consumption and computation performances (i.e., execution



time). The prediction is made for a given device. A single
version of code is given for each device from CPU to GPU.
Thus, in this work, the selected version of code is actually
used to choose the best type of hardware to save energy.
In [9], authors explore the variability of the energy consump-
tion of multiple CPU while using DVFS. Code versions are
provided as different binaries of the same application. Thus,
the work points out the possibility of obtaining multiple energy
consumption behaviours by selecting a version of code while
varying the frequency of the processor.

In [12] authors use an auto-tuning framework to study
different code versions under energy concerns. Thus, this work
is close to our contribution. Actually, our automation process
could be compared to an auto-tuning solution. However, a
first difference is that the above work is limited to the first
phase of our automation process, not considering production
scenarios and knowledge construction time. Second, the auto-
tuning framework used in the work generates different loop
transformation strategies while we study different parallel
code versions of a production numerical simulation. Finally,
our contribution also combines two different application level
leverages to enhance possible choices.

As a sum-up, previous related works have shown that the
configuration of the number of OpenMP threads and (or)
the number of MPI processes help controling the energy
consumption of nodes. Several other recent works have studied
code variability as a possible leverage. However, none of the
previous papers have contributed to an automation process of
the CVV usage, and none of them have defined and used
the CVV leverage as presented in this paper. Moreover, none
of these works have studied the feasability of such Green
Programming (GP) concept for production HPC numerical
simulations. Finally, none of the previous papers have explored
an evaluation of two application level leverages (configuration
and version of code leverages) in the same experiment, which
enhance energy choices.

VII. CONCLUSION

In this paper, four contributions have been presented toward
automated Green Programming in HPC context. First, we have
introduced a formal definition of the Code Version Variability
(CVV) leverage. During evaluation, we have underlined that
the usage of the CVV leverage alone, as well as combined
with another leverage, offers more variability of choices, thus
better trade-offs between execution time, energy consumption
and power metrics.

Second, we have presented and detailed a first approach
toward Green Programming (GP) automation in the specific
case of production applications that are regulars.

Third, our automation process of GP has been applied to
a real case-study where a real-case numerical simulation has
been selected, where a real-case DSL [6] has been used to
produce different code versions, and where r constraints have
been considered. This case-study have shown the feasibility of
our automation.

Finally, we have shown in our evaluations that our auto-
mated GP, applied onto our case-study, gets significant energy
savings as well as very low constraints violations. compared to
a usual production case (no leverages considered), compared
to a random case (by

Future work includes the integration of such an automation
within middleware level leverages such as a schedulers. We
also plan to combine our approach with hardware leverages
like DVFS or Shutdown techniques. Finally, we would like to
consider reconfiguration of code versions at runtime.
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