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1. INTRODUCTION

Abstract: Random distortion testing (RDT) [1] addresses the problem of testing whether or not a random
signal, Ξ, deviates by more than a specified tolerance, τ, from a fixed value, ξ0. The test is non-parametric
in the sense that the distribution of the signal under each hypothesis is assumed to be unknown. The
signal is observed in independent and identically distributed (i.i.d) additive noise. The need to control the
probabilities of false alarm and missed detection while reducing the number of samples required to make
a decision leads to the SeqRDT approach, which generalizes [2, 3]. We show that under mild assumptions
on the signal, SeqRDT follows the properties desired by a sequential test for practical applications. We
introduce the concept of buffer size for sequential testing and derive bounds on the probabilities of false
alarm and missed detection, from which we choose the buffer size. Simulations show that SeqRDT leads
to faster decision making compared to its fixed sample counterpart BlockRDT [4]. It is robust to model
mismatches compared to the Sequential Probability Ratio Test (SPRT) [5], when the actual signal is a
distorted version of the assumed signal, especially at low Signal-to-Noise Ratios (SNRs).

Keywords: Sequential testing, non-parametric testing, robust hypothesis testing, random distortion testing
(RDT), sequential probability ratio test (SPRT)

1. Introduction
In standard binary hypothesis testing problems, on the basis of a fixed number of observations, a decision is
made between two possible statistical hypotheses, the so-called null (H0) and alternative (H1) hypotheses.
The decision is generally made under the Bayesian, minimax or Neyman-Pearson frameworks. In his
seminal works [5, 6], Wald moved from standard likelihood theory with fixed sample size to sequential
procedures, where observations are collected and processed one after another, until a decision can be
made with specified confidence. Basically, at any stage of a sequential procedure, the same decision rule
is applied. This rule has three possible outcomes, instead of two: it may either 1) accept H0 and stop
the testing, or 2) accept H1 and stop the testing or 3) make no decision and acquire a new observation.
These three steps are repeated sequentially until a decision is reached, in which case the testing stops.
In sequential testing, the sample size and the time instant when the decision is made are random. The
issue is then to devise a decision rule that optimizes a certain criterion “to achieve a tradeoff between
the average observation time and the quality of the decision. ...It has been shown that the sequential
procedure performs significantly better than the classical Neyman-Pearson test in the case of two simple
hypotheses." [7]. We recall that simple hypothesesH0 andH1 correspond to two possible distributions
for the observations. For details on Wald’s approach, the reader can refer to [7].

Standard sequential testing is an extension of likelihood theory in that it assumes prior knowledge
regarding the distributions of the observations under each hypothesis to derive the likelihood ratio, perhaps
up to a vector parameter in case of nuisance parameters. This procedure has the following limitations.
In practice, prior knowledge or good models for the distributions under each hypothesis are usually not
available This is all the more detrimental when likelihood ratio tests are not robust to uncertainty or
model mismatch. Moreover, many approaches in sequential testing make stationarity or independent
and identically distributed (iid) assumptions on the observed process under each hypothesis [7]. Such
assumptions are questionable in practice. For instance, in many practical applications such as radar, sonar
and communication systems, signals of interest, distorted by the environment, are acquired in noise and
are cluttered by interfering echoes. The observed random process resulting from this mixture — not
necessarily additive — of signal, distortions and interferences, can thus hardly be modeled as a stationary
random process with known distribution. Solutions proposed in the literature and aimed at relaxing
stationarity or iid assumptions are still based on likelihood ratio tests [7] and, as such, may suffer from the
lack of robustness of these tests.

To overcome these limitations, the observation process is hereafter modeled as the sum of a non-
stationary signal with unknown distribution and independent noise. We introduce a theoretical framework
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3. PROBLEM STATEMENT

suited for statistical signal processing applications such as those considered in [2, 3, 8], where the issue
is to sequentially test the empirical mean of a non-stationary random signal. The signal has non-i.i.d
samples and unknown sample distributions in additive and independent Gaussian noise. In contrast to the
preliminary approach [2, 3], the theory presented below introduces a sequential procedure SeqRDT that
guarantees an almost surely finite stopping time and error probabilities that can be rendered arbitrarily
small. We introduce the notion of buffer that makes it possible to control the probabilities of false alarm
and missed detection. Both the notion of buffer and the control over the probabilities of false alarm and
missed detection were not present in the past works [2, 3]. We exhibit nested models and assumptions
that help predict the behavior of SeqRDT without prior knowledge of the signal distribution and with
no stationarity or iid assumption. Moreover, we compare the number of samples taken by the proposed
sequential algorithm to its fixed sample counterpart BlockRDT and show that it is faster compared to
BlockRDT, specially in the low SNR regimes. Finally, we show the robustness of the proposed sequential
algorithm compared to conventional SPRT.

We explain the notation in Section 2 and state the problem in Section 3. We introduce SeqRDT in
Section 4. In Section 5, the assumptions made in the previous sections are relaxed. The performance of
SeqRDT is discussed in Section 6. Section 7 concludes the paper.

2. Notation
N is the set of natural numbers and R that of real numbers. Given N ∈ N, RN is the vector space
of all N-dimensional row vectors with real components. The components of x ∈ RN are denoted by
x1, x2, . . . , xN and we write x = (x1, x2, . . . , xN ).

All the random variables are defined on the same probability space (Ω,F, P). The set of all real random
variables defined on (Ω,F) is denoted byM(Ω,R). Given U ∈ M(Ω,R), PU is the probability distribution
of U: for any Borel set B of R, PU (B) = P

[
U ∈ B

]
. A domain D of a U is any Borel set of R such that

PU (B) = 1. Given ζ ∈ [0,∞), Z ∼ U(ζ) means that Z is uniformly distributed in [−ζ,+ζ]. Given ξ ∈ R
and σ ∈ [0,∞), Z ∼ N(ξ, σ2) means that Z is Gaussian distributed with mean ξ and variance σ2. The
Generalized Marcum Function [9] with order 1/2 is denoted by Q1/2. For any Z ∼ N(ξ, 1), we have
[10, Eq. (19) and Remark V.3]:

P
[
|Z | > η

]
= Q1/2(|ξ |, η). (1)

It follows that, for any (a, b) ∈ [0,∞) × [0,∞),

Q1/2(a, b) = 1 − Φ(b − a) + Φ(−b − a) (2)

where Φ is the cumulative distribution function (cdf) of Z . Q1/2 increases with its first argument and
decreases with its second [9]. Given γ ∈ (0, 1) and ρ ∈ [0,∞), λγ(ρ) is defined as the unique solution in x
to Q1/2(ρ, x) = γ [1, Lemma 2, statement (ii)], so that:

Q1/2(ρ, λγ(ρ)) = γ. (3)

The set of all sequences defined on N (resp. n1, No = {1, 2, . . . , N} and valued inM(Ω,R) is denoted by
M(Ω,R)N (resp. M(Ω,R)n1,No). Given U in M(Ω,R)N (resp. U ∈ M(Ω,R)n1,No), the realization of U at
n ∈ N (resp. n ∈ n1, No) is called a sample of U and denoted by Un. Each Un is an element ofM(Ω,R).
Given N ∈ N, the sample mean of U over the N samples U1, . . . ,UN is 〈U〉N = 1

N

∑N
n=1 Un. We say that

U,V ∈ M(Ω,R)N (resp. M(Ω,R)n1,No) are independent if Un and Vn are independent for each n ∈ N (resp.
n ∈ n1, No).
3. Problem statement
Let Ξ = (Ξn)n∈N be an element of M(Ω,R)N. This random process models the random mixture of a
distorted signal of interest and possible interferences. We suppose that Ξ is observed in additive and
independent noise X = (Xn)n∈N, whose samples are iid with unknown cdf F. The observation process
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is then Y = (Yn)n∈N such that Yn = Ξn + Xn for any n ∈ N and we write Y = Ξ + X . We assume that
the random process under the null hypothesis (H0) is generated form an underlying joint distribution
P0, i.e, Ξ = (Ξn)n∈N ∼ P0. Under alternative hypothesis (H1), Ξ is supposed to be generated by any
underlying arbitrary joint distribution other than P0, i.e., Ξ = (Ξn)n∈N � P0. No assumption is made on
the stationarity or the distribution of Ξ = (Ξn)n∈N. In this respect, the samples Ξn are not necessarily i.i.d.
The foregoing can be summarized by writing:

Observation : Y = Ξ + X ∈ M(Ω,R)N

with

{
Ξ ∈ M(Ω,R)N,
X1, X2, . . .

iid∼ F, F unknown.{
H0 : Ξ = (Ξn)n∈N ∼ P0,

H1 : Ξ = (Ξn)n∈N � P0

(4)

The problem in its current form (4) is difficult to tackle since we do not assume any knowledge of the signal
distributions under the two hypotheses. Therefore, we associate with each hypothesis a non-parametric
distance related criterion which independent of the distributions of these distributions. This non-parametric
criterion serves as a surrogate to the actual hypotheses to be tested. This idea was first proposed in the form
of Random Distortion Testing (RDT) [1] and was later extended to multiple samples by BlockRDT [4].
We now present our model more specifically.

In our formulation, Ξ models distortion other than noise around a fixed model ξ0. For instance, such
distortion can result from interferences as encountered in radar, sonar and telecommunication systems.
We, however, expect that, for N sufficiently large, the empirical mean 〈Ξ〉N remains close to ξ0 under H0
and drifts significantly away from ξ0 under H1. We can then formalize the foregoing by quantifying the
possible drift between 〈Ξ〉N and ξ0 via |〈Ξ〉N − ξ0 |, introducing a tolerance τ ∈ [0,∞) on this distance
to specify the maximal acceptable drift and assuming the existence of some N0 ∈ N such that, either
|〈Ξ〉N − ξ0 | 6 τ for any N > N0 or |〈Ξ〉N − ξ0 | > τ for any N > N0. The former (resp. latter) hypothesis
above becomes our null (resp. alternative) hypothesis H0 (resp. H1) in our surrogate model to (4). Given
the observation Y , the SeqRDT problem addressed in this paper is then the sequential testing ofH0 against
H1. Its formulation can be written as:

Observation : Y = Ξ + X ∈ M(Ω,R)N

with


Ξ = (Ξn)n∈N ∈ M(Ω,R)N,
X1, X2, . . .

iid∼ F, F unknown.
E [ X1 ] = 0,Var (X1) = 1 and E

[
X3

1
]
< ∞

Ξ and X are independent.

∃N0 ∈ N,
{
H0 :∀N > N0, 0 6 |〈Ξ〉N − ξ0 | 6 τ (a-s)
H1 :∀N > N0, τ < |〈Ξ〉N − ξ0 | 6 τH (a-s)

(5)

where, throughout the paper and without recalling it, τ ∈ [0,∞). In the proposed formulation, the
assumption on the noise third moment is technical and made clear below. The above testing model
encompasses the BlockRDT model [4] for a fixed sample size N . Here, N0 and the tolerances τ and τH are
known a priori, based on some prior knowledge about the signal. The idea is that, although the exact
distributions in play are unknown, the user’s experience on some representative data may be sufficient to
roughly bound the behavior of the empirical mean with respect to ξ0. Discussion of procedures suitable
for extracting such knowledge is beyond the scope of this work because they depend on the targeted
application. The generic question is how far we can get if prior knowledge on the process is limited to
such bounds.

Remark 1 The above problem (5) tests whether the deviation of the signal mean 〈Ξ〉N around ξ0 is below
(or above) a specified tolerance level τ for the null hypothesis (or the alternate hypothesis) to be true. As
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indicated above, this non-parametric criterion serves as a surrogate to the complete knowledge of the
distributions and thus avoids prior knowledge of them. Likelihood ratio based tests are, therefore, not
feasible for the above problem. Moreover, the absence of assumption on the signal stationarity makes the
problem even more challenging. �

Example 1 (Change-in-mean testing) A sufficient condition for Ξ to follow H0 (resp. H1) is that
|Ξn − ξ0 | 6 τ (a-s) (resp. |Ξn − ξ0 | > τ (a-s)) for any n ∈ N. The SeqRDT problem (5) thus embraces the
testing of a change in the mean of a Gaussian process [7,11] when, given two known real values ξ0 and ξ1,
Ξn = ξ0 for all n ∈ N underH0, Ξn = ξ1 for all n ∈ N underH1, τ = 0 and N0 = 1 in (5). �

Example 2 (Bounded regime testing) Given ξ ∈ R and h ∈ [0,∞), say that Ξ follows the (bounded)
regime (ξ, h) and write Ξ ∼ (ξ, h) if, for any N ∈ N, |〈Ξ〉N − ξ | 6 h. A sufficient condition for Ξ ∼ (ξ, h)
is that |Ξn − ξ | 6 h (a-s) for any n ∈ N. Suppose that Ξ satisfies either H∗0 : Ξ ∼ (ξ0, h0), where the
regime (ξ0, h0) is given, orH∗1 : Ξ ∼ (ξ1, h1), where (ξ1, h1) is any possibly unknown regime other than
(ξ0, h0). Say that the regimes (ξ0, h0) and (ξ1, h1) are separate if |ξ1 − ξ0 | > h0 + h1, which amounts to
assuming that (ξ0− h0, ξ0+ h0)∩ (ξ1− h1, ξ1+ h1) = ∅. When (ξ0, h0) and (ξ1, h1) are separate, testingH∗0
againstH∗1 is the particular problem (5) with h0 6 τ < |ξ1 − ξ0 | − h1, τH > |ξ1 − ξ0 | + h1 and N0 = 1. �

To solve the SeqRDT problem (5), we introduce two assumptions. The first one is asymptotic and can
be regarded as a weak notion of ergodicity. The second one concerns the case of finite sample sizes. Both
assumptions are used below to state different results. Their respective use depend on the available amount
of prior information on the process.

Assumption 3.1 ((a-s) convergence of 〈Ξ〉N )

∃ 〈Ξ〉∞ ∈ M(Ω,R), lim
N→∞
〈Ξ〉N = 〈Ξ〉∞ (a-s) (6)

for which exist τ− ∈ [0, τ) and τ+ ∈ (τ,∞) such that:{
Under H0 : |〈Ξ〉∞ − ξ0 | 6 τ− (a-s),
Under H1 : |〈Ξ〉∞ − ξ0 | > τ+ (a-s),

Remark 2 Assumption 3.1 is automatically satisfied if Ξ is stationary and ergodic. Indeed, in this case,
there exists ξ ∈ R such that E [Ξn ] = ξ for every n ∈ N, so that Assumption 3.1 holds with 〈Ξ〉∞ = ξ. �

Basically, Assumption 3.1 will prove helpful to characterize the relevance of the sequential procedure
introduced below, especially in asymptotic conditions. The next assumption is aimed at establishing
additional results in non-asymptotic situations.

Assumption 3.2 (Bounded behavior of |〈Ξ〉N − ξ0 |) There exist τ− ∈ [0, τ) and τ+ ∈ (τ,∞) such that:{
UnderH0 : ∀N > N0, |〈Ξ〉N − ξ0 | 6 τ− (a-s),
Under H1 : ∀N > N0, |〈Ξ〉N − ξ0 | > τ+(a-s).

Remark 3 At this stage, it is crucial to emphasize the significance of Assumption 3.1 and Assumption 3.2,
as well as the differences between them with respect to the two hypotheses in (5). To begin with,
Assumption 3.1 is asymptotic in nature whereas Assumption 3.2 is not. Moreover, Assumption 3.2 does
not require the existence of an (a-s) convergence of the empirical mean in contrast to Assumption 3.1. The
two assumptions will be helpful to better control the behavior, specifically, the probability of false alarm
and missed detection of the sequential test. This better control will actually be rendered possible via
the strict inequalities between τ− and τ, on the one hand, and between τ+ and τ, on the other hand. By
so proceeding, |〈Ξ〉N − ξ0 | is kept away from τ, under H0 and H1. The decision will then turn out to
be all the more reliable as τ− and τ+ drift away from τ, which can be seen as the frontier between the
two hypotheses in (5). Note also that, if Assumption 3.2 and (6) hold true together, |〈Ξ〉∞ − ξ0 | remains
bounded away from τ and all the properties stated under Assumptions 3.1 and 3.2 add to guarantee an
even better grip on the behavior of the sequential testing. �
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Remark 4 We could have introduced the tolerances τ− and τ+ under H0 and H1, respectively, in place
of τ in (5) as in Assumption 3.2. However, a single tolerance τ ∈ (τ−, τ+) in (5) keeps the model general
and, more importantly, consistent with the similar models introduced in [1] and [4]. No assumption such
as Assumption 3.2 was actually required in both [1] and [4]. The tests proposed in these works were
designed to guarantee the probability of false alarm below a pre-specified level, while guaranteeing a
maximal detection probability for fixed sample tests, without any control over this probability. As already
emphasized in the previous remark, Assumption 3.2 will allow for a control of both the probability of false
alarm and the probability of missed detection for fixed sample tests, as well as for the sequential testing
framework proposed in this work. �

Given γ ∈ (0, 1) and τ > 0, let us define TN,γ : RN → {0, 1} for any sequence x = (xn)n∈N ∈ RN by :

TN,γ (x) =
{

0 if |〈 x〉N − ξ0 | 6 λγ(τ
√

N)/
√

N
1 otherwise. (7)

Proposition 3.3 below describes the asymptotic behavior of such tests under Assumption 3.1. These tests
play a crucial role in the design of SeqRDT for the problem stated in (5).

Throughout, we use δN as specified in Lemma A.1.

Proposition 3.3 Given γ ∈ (0, 1) and τ > 0, TN,γ satisfies the following asymptotic behavior for testing
H0 againstH1 in (5):
(i) we have

underH0 : Q1/2
(
0, λα(τ

√
N)

)
6 lim

N→∞
P

[
TN,γ(Y ) = 1

]
6 γ (8)

underH1 : 1 −Q1/2
(
τH
√

N, λα(τ
√

N)
)
6 lim

N→∞
P

[
TN,γ(Y ) = 0

]
6 1 − γ (9)

(ii) under Assumption 3.1, we have,

lim
N
P

[
TN,γ(Y ) = 1

]
=

{
0 underH0
1 underH1

(10)

Proof:

Proof of statement (i): According to (7) and Lemma A.1,

E
[

Q1/2
(√

N |〈Ξ〉N − ξ0 |, λγ(τ
√

N)
) ]
− 2δN

6 P
[
TN,γ(Y ) = 1

]
6 E

[
Q1/2

(√
N |〈Ξ〉N − ξ0 |, λγ(τ

√
N)

) ]
+ 2δN

(11)

Therefore, underH0 and for any N > N0, we have:

Q1/2
(
0, λγ(τ

√
N)

)
− 2δN 6 P

[
TN,γ(Y ) = 1

]
6 Q1/2

(
τ
√

N, λγ(τ
√

N)
)
+ 2δN

According to (3), the upper-bound in the second inequality above equals γ + 2δN . As N grows to∞, δN
vanishes and (8) follows.

We prove (9) similarly. We begin by combining (7) and Lemma A.1 to get

1 − E
[

Q1/2
(√

N |〈Ξ〉N − ξ0 |, λγ(τ
√

N)
) ]
− 2δN

6 P
[
TN,γ(Y ) = 0

]
6 1 − E

[
Q1/2

(√
N |〈Ξ〉N − ξ0 |, λγ(τ

√
N)

) ]
+ 2δN

(12)
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It then suffices to particularize (12) under H1 for N > N0 and make N grow to∞ to complete the proof.

Proof of statement (ii): UnderH0 and Assumption 3.1, lim
N
|〈Ξ〉N − ξ0 | = |〈Ξ〉∞ − ξ0 | 6 τ− < τ (a-s). It

then follows from Lemma A.2 that:

lim
N

Q1/2
(√

N |〈Ξ〉N − ξ0 |, λγ(τ
√

N)
)
= 0 (a-s).

We then derive from (11) and the Lebesgue dominated convergence theorem that, under H0:

lim
N
P

[
TN,γ(Y ) = 1

]
= 0.

Similarly, under H1 and Assumption 3.1 lim
N
|〈Ξ〉N − ξ0 | = |〈Ξ〉∞ − ξ0 | > τ+ > τ (a-s). Lemma A.2

induce that
lim
N

Q1/2
(√

N |〈Ξ〉N − ξ0 |, λγ(τ
√

N)
)
= 1 (a-s).

By injecting this equality into (12) and using Lebesgue’s dominated convergence theorem again, we obtain:

lim
N
P

[
TN,γ(Y ) = 1

]
= 1.

underH1, which concludes the proof.

The asymptotic result of Proposition 3.3 enhances the interest of the tests defined in (7). In addition,
Proposition 3.3 (i) suggests the use of two thresholds as the false alarm and missed detection probabilities
cannot both be controlled through one single threshold designed for a fixed γ. One of these thresholds
should be small enough to diminish the probability of false alarm. In contrast, the other one should be
sufficiently high so as to make the probability of missed detection small. Such a strategy naturally leads to
a sequential approach. Proposition 3.3 (ii) also highlights the importance of Assumption 3.1 in achieving
arbitrarily low false alarm and missed detection probabilities for large sample sizes. However, we need to
control the number of samples, which pleads again for a sequential approach. As a matter of fact, with
the thresholds chosen according to (7), we can design a sequential test capable of reducing the decision
making time for the mean testing problem defined in (5), while guaranteeing certain performance levels.
This sequential approach is the SeqRDT described below.

4. SeqRDT
Section 3 above has highlighted the motivation for sequential approach involving two different tests of the
form (7). One of these tests must guarantee an upper-bounded false alarm probability, while the other aims
at upper-bounding the missed detection probability. Given any natural number M > N0 − 1, Proposition
3.3 then suggests specifying a sequential test forH0 against H1 by defining the stopping time:

T = min
{
N ∈ N : DM (N) , ∞

}
, (13)

with:



DM (1) = DM (2) = . . . = DM (M) = ∞,

for N > M,DM (N) =


0 if |〈Y〉N − ξ0 | 6 λL(N),
∞ if λL(N) < |〈Y〉N − ξ0 | 6 λH (N),
1 if |〈Y〉N − ξ0 | > λH (N).

(14)

where λL(N) = λγ(τ
√

N)/
√

N and λH (N) = λγ′(τ
√

N)/
√

N , with τ ∈ (0,∞) and γ, γ′ ∈ (0, 1) must be
such that λL(N) 6 λH (N). Here DM (N) represents the decision variable with DM (N) = 0 equivalent to
saying thatH0 is decided,DM (N) = 1 equivalent to saying thatH1 is decided andDM (N) = ∞ equivalent
to saying that no decision is made at Nth sample and that the algorithm will update the statistic and repeat
the test with N + 1 samples.

RR-2018-01-SC 7
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Note that M is the number of samples SeqRDT waits for before starting the test. We refer to this M as
the buffer size. An appropriate M can be chosen based on some elementary knowledge of the signal and
noise. This will be made clearer in the coming section and Section 6.

The choice for γ and γ′ can then be figured out as follows. The false alarm probability of the proposed
sequential testing is:

PFA(DM )
def
= P [DM (T) = 1 ] underH0 (15)

In the same way, the missed detection probability is:

PMD(DM )
def
= P [DM (T) = 0 ] underH1. (16)

Since the goal of the sequential algorithm is to guarantee PFA(DM ) and PMD(DM ) below certain pre-
specified levels α and β, respectively, Proposition 3.3 leads us to choose γ = 1 − β and γ′ = α with
α, β ∈ (0, 1/2). This is a technical assumption required to ensure λL(N) 6 λH (N) (refer to Proposition
4.1 (i)). Moreover, typical values of α and β are of the order of 10−1 to 10−4, so the assumption is not
particularly restrictive. Henceforth, we always assume α, β ∈ (0, 1/2) and set:

λL(N) = λ1−β(τ
√

N)/
√

N and λH (N) = λα(τ
√

N)/
√

N (17)

Proposition 4.1 below then validates that such thresholds are indeed appropriate for SeqRDT under both
asymptotic and non-asymptotic conditions.

Proposition 4.1 We have:
(i) λL(N) 6 λH (N), ∀N ∈ N,
(ii) the threshold λH (N) is non-increasing in N ∈ N and lower bounded by τ,
(iii) for N large enough, the threshold λL(N) is non-decreasing in N and upper bounded by τ,
(iv) both the thresholds approach τ as N increases:

lim
N→∞

λH (N) = lim
N→∞

λL(N) = τ.

Proof: The proof of the above proposition follows from Lemmas B.4, B.5 and B.6 in Appendix B.

Proposition 4.1 (i) & (ii) imply that, asymptotically as N →∞ and thus, in vanishing noise, the test
will resemble a non-sequential test as both thresholds become equal to τ.

The question addressed now is then “Can this choice of thresholds give some performance guarantees?".
Before stating several theorems to answer this question, we establish the following straightforward

inequalities, which will prove useful at several places in the sequel. With the same notation as above, for
any given ε ∈ {0, 1}, we have:

P
[
DM (T) = ε

]
= P

( [
DM (T) = ε

]
∩

[
T ≥ M + 2

] )
+ P

[
DM (M + 1) = ε

]
(18)

Now, using [
DM (T) = ε

]
∩

[
T ≥ M + 2

]
⊂

[
DM (M + 1) = ∞

]
, (19)

we derive from (18) that:

P
[
DM (T)=ε

]
6P

[
DM (M + 1)=∞

]
+P

[
DM (M + 1)=ε

]
(20)

Now, let us consider the first term on the rhs of (20). We can write that

P
[
DM (M + 1) = ∞

]
=1−P

[
DM (M + 1) = 1

]
− P

[
DM (M + 1) = 0

]
By injecting this equality into (20), we get:

P
[
DM (T) = ε

]
6 1 − P

[
DM (M + 1) = 1 − ε

]
(21)
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Theorem 4.2 (Asymptotics: T , PFA(DM ) and PMD(DM )) If α, β ∈ (0, 1/2) and Assumption 3.1 holds
true, then:
(i) P [T = ∞] = 0 underH0 and H1,

(ii) lim
M→∞

PFA(DM ) = lim
M→∞

PMD(DM ) = 0

Proof:
Proof of statement (i): T = ∞ if and only if DM (N) = ∞ for each integer N > M. Therefore,
P [T = ∞] 6 P [DM (N) = ∞] for any integer N > M + 1. Since[

DM (N) = ∞
]
=

[
λL(N) < |〈Ξ〉N + 〈 X〉N − ξ0 | 6 λH (N)

]
,

we have now:

P [DM (N) = ∞] = P
[
T
λ1−β

(
τ
√
N

)
/
√
N
(Y ) = 1

]
− P

[
T
λα

(
τ
√
N

)
/
√
N
(Y ) = 1

]
.

It then follows from Proposition 3.3 (ii) that lim
N→∞

P [DM (N) = ∞] = 0. Thence the result.

Proof of statement (ii): The probability of false alarm is PFA(DM ) = P
[
DM (T) = 1

]
under H0.

According to (21), PFA(DM ) 6 1 − P
[
DM (M + 1) = 0

]
. The rhs in this equality can be rewritten

P
[
|〈Y〉M+1 − ξ0 | > λL(M + 1)

]
. It follows from (17) and Lemma A.1 that, regardless of Assumption 3.1:

PFA(DM ) 6 E
[
Q1/2

(√
M + 1|〈Ξ〉M+1 − ξ0 |, λ1−β(τ

√
M + 1)

)]
+ 2δM+1 (22)

We then derive from Assumption 3.1 & Lemma A.2 that, under H0,

lim
M→∞

Q1/2
(√

M + 1 |〈Ξ〉M+1 − ξ0 |, λ1−β(τ
√

M + 1)
)
= 0 (a-s).

The Lebesgue dominated convergence theorem then implies that lim
M→∞

PFA(DM ) = 0.

The probability of missed detection PMD(DM ) is P
[
DM (T) = 0

]
under H1. As above, we derive from

(21), (17) and Lemma A.1 that, regardless of Assumption 3.1:

PMD(DM ) 6 1 − E
[
Q1/2

(√
M + 1|〈Ξ〉M+1 − ξ0 |, λα(τ

√
M + 1)

)]
+ 2δM+1 (23)

It then suffices to apply Assumption 3.1, Lemma A.2 and the Lebesgue dominated convergence theorem
to obtain the second equality in (ii).

The above theorem implies that if the two hypotheses in (5) converge asymptotically away from τ, the
sequential test (14) takes a decision in finite time with probability one. Moreover, the theorem also implies
that PFA(DM ) and PMD(DM ) approach zero if the buffer size is large enough. However, in practice all the
tests will be non-asymptotic in nature. Therefore, we must give some performance guarantees for the
non-asymptotic regimes. In this regard, the next theorem shows that PFA(DM ) and PMD(DM ) are bounded
away from one. Moreover, we need to fix the buffer size M before conducting the sequential test. For this
purpose we make use of Assumption 3.2 to derive upper and lower bounds on PFA(DM ) and PMD(DM ).
We then use these bounds to choose the buffer size M . We derive two bounds in the coming theorems.

Theorem 4.3 (Non-Asymptotics: PFA(DM ) and PMD(DM )) PFA(DM ) and PMD(DM ) are bounded as:
Q1/2

(
0, λα(τ

√
M + 1)

)
− 2δM+1

6 PFA(DM ) 6 1 − β + 2δM+1

1 −Q1/2
(
τH
√

M + 1, λ1−β(τ
√

M + 1)
)
− 2δM+1

6 PMD(DM ) 6 1 − α + 2δM+1,
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Proof: UnderH0, we derive from (14), (15), (17), (18) & Lemma A.1 that:

PFA(DM ) > P [DM (M + 1) = 1] > E
[
Q1/2

(√
M + 1|〈Ξ〉M+1 − ξ0 |, λα(τ

√
M + 1)

)]
− 2δM+1 (24)

The bounds on PFA(DM ) then results from the inequalities satisfied by |〈Ξ〉M+1 − ξ0 | underH0 and (24)
for the lower bound and (22) along with the definition given in (3) for the upper bound.

Similarly, for the probability of missed detection, underH1, (14), (16), (17), (18) & Lemma A.1 yield

PMD(DM )>P [DM (M + 1) = 0]>1−E
[
Q1/2

(√
M + 1|〈Ξ〉M+1 − ξ0 |, λ1−β(τ

√
M + 1)

)]
−2δM+1. (25)

We obtain the bounds on PMD(DM ) from the inequalities satisfied by |〈Ξ〉M+1 − ξ0 | under H1 and (25) for
the lower bound and (23) along with the definition given in (3) for the upper bound.

This theorem states that, without any assumptions, the upper bounds on PFA(DM ) and PMD(DM ) tend to be
bounded away from unity. In particular, when noise is Gaussian distributed — which is of special interest
as many systems of practical interest are modeled using this assumption— or M grows to∞, PFA(DM ) and
PMD(DM ) are upper-bounded by 1 − β and 1 − α, respectively. Moreover, the lower bounds for PFA(DM )
and PMD(DM ) always stay below levels α and β, respectively. The simulations later suggest that the upper
bounds given in Theorem 4.3 are actually loose, i.e., PFA(DM ) and PMD(DM ) will be considerably smaller
than these upper bounds. At this stage, Assumption 3.2 is then useful for deriving tighter bounds for
PFA(DM ) and PMD(DM ). These bounds are given in the next theorem and will be employed to choose
appropriate buffer sizes for SeqRDT.

Theorem 4.4 (Non-Asymptotics: PFA(DM ) and PMD(DM )) (i) Under Assumption 3.1, PFA(DM ) and
PMD(DM ) are bounded as:

Q1/2
(
0, λα(τ

√
M + 1)

)
− 2δM+1

6 PFA(DM ) 6 UB1FA(M)
∧

UB2FA(M)

1 −Q1/2
(
τH
√

M + 1, λ1−β(τ
√

M + 1)
)
− 2δM+1

6 PMD(DM ) 6 UB1MD(M)
∧

UB2MD(M)

(26)

where a1
∧

a2 = min(a1, a2) for a1, a2 ∈ R and UB1FA(M), UB2FA(M), UB1MD(M) and UB2MD(M) are
given at the top of the next page;

(ii) UB1FA(M)
∧

UB2FA(M) and UB1FA(M)
∧

UB2FA(M) do not increase with M .

Proof:
Proof of statement (i): When Assumption 3.2 holds true, 0 6 |〈Ξ〉M+1 − ξ0 | 6 τ− under H0. Injecting
these inequalities into (24) and (22)yield the bounds:

Q1/2
(
0, λα(τ

√
M + 1)

)
− 2δM+1 6 PFA(DM ) 6 UB1FA(M).

We obtain UB2FA(M) by writing first:[
DM (T) = 1

]
=

[
DM (M + 1) = 1

] ∞⋃
N=M+2

( [
DM (N) = 1

]
∩

[∀K ∈ nM + 1, N − 1o,DM (K) = ∞
] )
.

Since all the events involved in the equality above are disjoint, it follows from the Frechet inequality that:

P
[
DM (T) = 1

]
6 P

[
DM (M + 1) = 1

]
+

∞∑
N=M+2

P
[
DM (N) = 1

] ∧ ( N−1∧
K=M+1

P
[
DM (K) = ∞

] )
(27)
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UB1FA(M) = Q1/2
(√
τ− M + 1, λ1−β(τ

√
M + 1)

)
+ 2δM+1

UB2FA(M) = Q1/2
(
τ−
√

M + 1, λα(τ
√

M + 1)
)
+ 2δM+1

+

∞∑
N=M+2

[(
Q1/2

(
τ−
√

N, λα(τ
√

N)
)
+ 2δN

) ∧ ( N−1∧
K=M+1

(
Q1/2

(
τ−
√

K, λ1−β(τ
√

K)
)
−Q1/2

(
0, λα(τ

√
K)

)
+ 4δK

))]
UB1MD(M) = 1 −Q1/2

(√
M + 1 τ+, λα(τ

√
M + 1)

)
+ 2δM+1

UB2MD(M) = 1 −Q1/2
(
τ+
√

M + 1, λ1−β(τ
√

M + 1)
)
+ 2δM+1

+

∞∑
N=M+2

[(
1 −Q1/2

(
τ+
√

N, λ1−β(τ
√

N)
)
+2δN

)∧( N−1∧
K=M+1

(
Q1/2

(
τH
√

K, λ1−β(τ
√

K)
)
−Q1/2

(
τ+
√

K, λα(τ
√

K)
)
+4δK

))]

For any N > M + 1, Lemma A.1 and Assumption 3.2 imply that underH0;

P
[
DM (N) = 1

]
6 Q1/2

(
τ−
√

N, λα(τ
√

N)
)
+ 2δN (28)

For any K ∈ nM + 1, N − 1o, we can write:
P
[
DM (K) = ∞

]
= P

[
〈Y〉K − ξ0 | > λL(K)

]
− P

[
〈Y〉K − ξ0 | > λH (K)

]
(29)

It follows again from Lemma A.1 and Assumption 3.2 that, underH0:

P
[
DM (K) = ∞

]
6 Q1/2

(
τ−
√

K, λ1−β(τ
√

K)
)
−Q1/2

(
0, λα(τ

√
K)

)
+ 4δK (30)

The desired bound UB2FA(M) follows by injecting (28) and (30) into (27). The bounds UB2MD(M)
and UB2MD(M) on PMD(DM ) follow similarly from (23), (25), (29) and Lemma A.1, under H1 and
Assumption 3.2. Because of space limitations, the details are left to the user.
Proof of statement (ii): For any given ρ ∈ [0,∞) such that ρ , τ and for all γ ∈ (0, 1), it follows from
Lemma B.3 of Appendix B that the map N ∈ N 7→ Q1/2

(
ρ
√

N, λγ(τ
√

N)
)
is non-increasing if ρ < τ and

non-decreasing if ρ > τ. In addition, (δN )N ∈N is a non-increasing sequence. Therefore, UB1FA(M) and
UB1MD(M) do no increase with M. Careful inspection of UB2FA(M) and UB2MD(M) reveals that each
term involved in these bounds is non-increasing with M . Statement (ii) follows since the minimum of two
non-increasing terms is also non-increasing.

Theorem 4.4 makes it possible to choose the least buffer size M guaranteeing specified values for the
upper bounds UB1FA(M)

∧
UB2FA(M) and UB1MD(M)

∧
UB2MD(M). Therefore, with the choice of an

appropriate buffer size M , we can expect to control PFA(DM ) and PMD(DM ) under desired levels. More
precisely, if we want a test that guarantees PFA(DM ) 6 α and PMD(DM ) 6 β for specified 0 < α < 1/2
and 0 < β < 1/2, we can choose an appropriate M as follows, provided that the first three moments of
X1 are known. First, choose M1 such that UB1FA(M1)

∧
UB2FA(M1) 6 α. Afterwards, choose M2 such

that UB1MD(M2)
∧

UB2MD(M2) 6 β. The buffer size can then be fixed to M = max(M1, M2). In Section
6, we will proceed in this manner to choose the buffer size. It is, however, important to emphasize that
the bounds given in Theorem 4.4 are loose, so that SeqRDT is expected to work for considerably smaller
buffer sizes, as shown in the simulation section.

5. An extension
Suppose that, instead of Eq. (5), we have either H∗0 : P

[∀N > N0, |〈Ξ〉N − ξ0 | 6 τ
]
> 1 − ε or

H∗1 : P
[∀N > N0, |〈Ξ〉N − ξ1 | > τ

]
> 1 − ε with a small positive constant ε 6 min(α, β). Under the
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Figure 1: Upper bound on PFA(DM ) vs M for N
curtailed to 500 in Theorem 4.4 with h0 = 1.
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Figure 2: Upper bound on PMD(DM ) vs M for N
curtailed to 500 in Theorem 4.4 with h0 = 1.

assumptions of Theorem 4.4, SeqRDT can still be used as follows to test H∗0 against H
∗
1 with guaranteed

bounds on the false alarm and missed detection probabilities. Indeed, given α, β ∈ (0, 1), choose M so that
UB1FA(M)

∧
UB2FA(M) 6 α and UB1MD(M)

∧
UB2MD(M) 6 β in (26). Under H∗0, the false alarm

probability P∗FA of SeqRDT satisfies:

6. Experimental Results and Discussion
In this section, we perform some simulations to highlight the advantages of SeqRDT compared to
BlockRDT [4] and SPRT [5, 6]. We first present the detection problem considered to carry out the
experiments, then we outline each algorithm and finally, carry out the comparison of the presented
algorithms for different parameter values.

6.1. The Gaussian mean change detection problem with model mismatch
In the classical Gaussian mean detection problem [7, 11], the observation is Yn = Ξn + Xn (n ∈ N),
with X1, X2, . . .

iid∼ N(0, 1), Ξn = ξ0 under H0 and Ξn = ξ1 under H1, where ξ0 and ξ1 are deterministic
constants. This problem can be formulated in the SeqRDT framework (5) with τ = 0 and N0 = 1. But,
in many applications, there might be a mismatch between the model and the actual signal observed in
practice. In reality, under either hypothesis, the actual signal would not be a constant assumed by the
model but be a perturbed version of this constant. Such unavoidable perturbation may be hard to model
in a parametric setup and likelihood ratio based tests can fail to guarantee reliable performance in the
presence of model mismatches [1]. However, the BlockRDT setup [4] and the SeqRDT setup as given
in (5) and (14) are not limited by these drawbacks. Therefore, instead of dealing with the somewhat
unrealistic model described above, we consider the case when the signal is Ξn = ξi + ∆n under Hi for
i ∈ {0, 1} and for all n ∈ N. Here, ∆n models possible additive distortion with unknown distribution
around ξi. In what follows, we compare different algorithms for mean testing of the distorted signal Ξ.
Specifically, we consider two cases: first the bounded regime (bounded distortion) case introduced in
Example 2 and then, the unbounded regime case (the distortion is not bounded). In the second case, we
show that even if the assumptions of SeqRDT are not strictly satisfied, SeqRDT will still be able to provide
sufficient performance guarantees.

6.2. Bounded Distortion
We consider the case where there exist known positive real values h0, h1 and H such that 2h0 < h1 < H
and ∀n ∈ N, |∆n | 6 h0 and h1 6 |ξ1 − ξ0 | 6 H. We thus have |〈∆〉N | 6 h0 and h0 < h1 − h0 <
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|∆n + ξ1 − ξ0 | 6 h0 + H, which imply:{
Under H0 :∀N > 1, 0 6 |〈Ξ〉N−ξ0 | 6 h0,

Under H1 :∀N > 1, h0 < h1−h0 6 |〈Ξ〉N−ξ0 | 6 h0+H.
(31)

This makes it possible to test the distorted signal using SeqRDT with the tolerances τ− = h0, τ+ = h1 − h0,
τ ∈ (τ−, τ+), τH ∈ [h0 + H,∞) and N0 = 1. This is all SeqRDT needs to know to conduct the test,
irrespective of the distortion distribution. Note that Assumption 3.2 is satisfied so that we can benefit from
the most elaborate results established above.

For experimental illustration, we first choose ∆n ∼ U(h0), ∀n ∈ N, with h1 ∈ (h0, |ξ1 − ξ0 | − h0] and
H ∈ [|ξ1 − ξ0 | + h0,∞). This distortion distribution has to be fully known for SPRT, whereas SeqRDT and
BlockRDT are unaware of it and need to know a few parameters only. We now discuss the algorithms and
their behavior in the considered bounded regime.

SeqRDT
By referring to (31) and Example 2, one potential choice of tolerances in the SeqRDT framework can
be τ− = h0, τ+ = 3h0, τ = 2h0 and τH = |ξ1 − ξ0 | + h0. With this choice, H0 and H1 specify bounded
and separate regimes with N0 = 1. The choice of these values is not rigid. These values were chosen for
ease of presentation and illustration purposes, but infinitely many others could have been considered to
yet guarantee bounded and separate regimes. Note also that we need not know the distortion distribution
to design the tolerances. These tolerances can be learned over time or can be available a priori to the
user, as discussed earlier in Section 3. To perform SeqRDT, we must first choose an appropriate buffer
size M > N0 − 1. We fix M such that PFA(DM ) and PMD(DM ) are below specified levels α and β,
respectively, by making use of the upper bounds derived in Theorem 4.4 (i). Henceforth, we choose
h0 = 1, α = β = 10−2 or α = β = 10−3 in our simulations. Figures 1 and 2 display the upper bounds on
PFA(DM ) and PMD(DM ) given by Theorem 4.4 (i), when M increases. Note that the terms UB2FA(M) and
UB2MD(M) in Theorem 4.4 are infinite sums over N = M + 2 to∞. For simulation purposes we curtail
the sum to N = 500 terms, which approximates the bounds sufficiently well. As stated by Theorem 4.2
(ii), these bounds decrease. Figures 1 and 2 suggest that we can choose M = N0 − 1 = 0. We have all
the required information to perform detection of a change in the mean of Yn by SeqRDT (5). We again
emphasize that the bounds on PFA(DM ) and PMD(DM ) depend on the distribution of the signal through
τ, τ−, τ+ and τH only. So, to choose an appropriate buffer size M, SeqRDT only needs to know these
parameters rather than the complete distribution of the signal under both hypotheses, which is relevant in
practice.

BlockRDT
In the BlockRDT framework, the problem of testing the mean of a random process observed over a block
of N samples can be summarized as:

Observation:Y = Ξ + X ∈ M(Ω,R)n1,No

with

{
Ξ ∈ M(Ω,R)n1,No, X1, X2, . . . , XN

iid∼ N(0, 1),
Ξ and X independent,

H0 : |〈Ξ〉N − ξ0 | 6 τ,

H1 : |〈Ξ〉N − ξ0 | > τ.

(32)

The solution to this problem is proposed in [4] & [12]. Given N ∈ N, any (measurable) map T : RN →
{0, 1} is called an N-dimensional test. The size of any such test T is defined as

αT = sup
Ξ ∈M(Ω,R)n1,No:P[ | 〈Ξ〉N−ξ0 |6τ],0

P
[
T(Y ) = 1

�� |〈Ξ〉N − ξ0 | 6 τ
]

and the test is said to have level γ ∈ (0, 1) if αT 6 γ. No Uniformly Most Powerful (UMP) test with level
γ exists for BlockRDT. By UMP test with level γ, we mean an N-dimensional test T∗ such that αT∗ 6 γ
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and P
[
T∗(Y ) = 1 |〈Ξ〉N − ξ0 | > τ

]
> P

[
T(Y ) = 1 |〈Ξ〉N − ξ0 | > τ

]
for any N-dimensional test T and any

Ξ ∈ M(Ω,R)n1,No. We thus exhibit the subclass of BlockRDT-coherent tests, among which a “best” test
exists. Say that an N-dimensional test T is BlockRDT-coherent if:
[Invariance in mean] For all y, y′ ∈ RN , if 〈 y〉N = 〈 y′〉N , then T(y) = T(y′)
[Constant conditional power] For all Ξ ∈ M(Ω,R)n1,No independent of X , there exists a domain D of
|〈Ξ〉N − ξ0 | such that, for any ρ ∈ D∩ (0,∞), P

[
T(Y ) = 1 | |〈Ξ〉N − ξ0 | = ρ

]
is independent of P | 〈Ξ〉N−ξ0 | .

The rationale behind [Invariance in mean] is straightforward. [Constant conditional power]
encapsulates the idea that T should not yield different results for different distributions of |〈Ξ〉N − ξ0 |,
conditionally to |〈Ξ〉N − ξ0 | = ρ. The notion of domain is required for mathematical correctness.

Let Kγ denote the class of all N-dimensional tests with level γ that satisfy (i) and (ii). This class can
be partially ordered as follows: given T, T′ ∈ Kγ, write that T � T′ if, for any Ξ ∈ M(Ω,R)n1,No, (i) T
and T′ satisfy [Constant conditional power] on the same domain D and (ii) For all ρ ∈ D ∩ (τ,∞),

P
[
T(Y ) = 1 | |〈Ξ〉N − ξ0 | = ρ

]
6 P

[
T′(Y ) = 1 | |〈Ξ〉N − ξ0 | = ρ

]
According to [4] & [12], the N-dimensional test T∗N,γ : RN → {0, 1} defined for every x ∈ RN by:

T∗N,γ (x) =
{

0 if |〈 x〉N − ξ0 | 6 λγ(τ
√

N)/
√

N
1 otherwise. (33)

is maximal in Kγ: for any T ∈ Kγ, T � T∗N,γ. Let Pb-rdt
fa (N, γ) and Pb-rdt

md (N, γ) be the probabilities
of false alarm and missed detection for BlockRDT, respectively, when the testing on Y is performed by
T∗N,γ,so that T

∗
N,γ(Y ) is the accepted hypothesis in (32).

Proposition 6.1 Pb-rdt
fa (N, γ) 6 γ & Pb-rdt

md (N, γ) 6 1 − γ.

Proof: ApplyH0 andH1 specified in (32) to (11) and (12), with δN = 0 since noise is Gaussian.

Under Assumption 3.2,H0 andH1 in (32) are satisfied for τ− instead of τ. Thereby, λγ(τ
√

N)/
√

N
can be replaced by λγ(τ−

√
N)/
√

N in (33). The resulting better performance guaranteed by BlockRDT is
given by the next proposition.

Proposition 6.2 Under Assumption 3.2, Pb-rdt
fa (N, γ) 6 γ & Pb-rdt

md (N, γ) 6 1−Q1/2
(
τ+
√

N, λγ(τ−
√

N)
)
.

Proof: Apply Assumption 3.2 to (11) and (12) underH0 andH1 specified by (32).

Given γ, the upper bound on Pb-rdt
md (N, γ) is non-increasing with N , which can thus be chosen large

enough to guarantee a specified missed detection probability. BlockRDT applies to the detection of a
change in the mean of Ξ with bounded distortions by choosing τ− = h0 in (32) and |∆n | 6 τ−. Given
α, β ∈ (0, 1), we can compute the block size NB-RDT required to drive the upper bound on Pb-rdt

md (N, α)
below β. The decision is made by T∗N,γ with N = NB-RDT and γ = α in (33)

Sequential Probability Ratio Test (SPRT)
Suppose that the density probability density function fi of the observation is known under Hi for i = 0, 1.
Given α, β ∈ (0, 1), and with initialization N = 1, SPRT has the following form:

If ΛN 6 λSPRTL , decide H0 and stops
If ΛN > λSPRTH , decide H1 and stops
If λSPRTL < ΛN < λSPRTH : compute ΛN+1 and repeat

(34)
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6. EXPERIMENTAL RESULTS AND DISCUSSION 6.4. Comparison: SeqRDT, BlockRDT and SPRT

with ΛN =
∏N

n=1
f1(Yi )
f0(Yi ) , λ

SPRT
L = log β

1−α and λSPRTH = log 1−β
α . The probability of false alarm Psprt

fa and
the probability of missed detection Psprt

md of SPRT are guaranteed to stay below α and β, respectively [5,6].
In our case,

ΛN =

N∑
n=1

log

∫ h0
−h0

exp
(
− (Yn−(ξ1+∆))2

2

)
dh∫ h0

−h0
exp

(
− (Yn−(ξ0+∆))2

2

)
dh
.

SPRT is possible when the distortion distribution is completely known. But in many practical scenarios,
it is unaware of the distortion. In this case, we represent the algorithm by SPRT-MM and denote by
TSPRT-MM, Psprt-mm

fa and Psprt-mm
md , its stopping time, probability of false alarm and probability of missed

detection, respectively. SPRT-MM has same thresholds as SPRT but log-likelihood updated as

ΛN = N
ξ2

0 − ξ
2
1

2
+ (ξ1 − ξ0)

N∑
n=1

YN . (35)

6.3. Unbounded Distortion
Because Assumption 3.2 might not be satisfied for all types of distortion, we relax Assumption 3.2 by
considering unbounded distortions ∆n ∼ N(0, h2

0) for all n ∈ N. The notation below remains the same as in
the bounded regime case. The robustness of SeqRDT is however shown with respect to this experimental
setting.

SeqRDT
Since τ− = h0, τ+ = 3h0, τ = 2h0 and τH = |ξ1−ξ0 |+h0, P[|〈∆〉1 | 6 τ] = 0.9545, P[|〈∆〉1 | 6 τ−] = 0.6827,
P[|〈∆〉1 + ξ1 − ξ0 | > τ] ≈ 0.9772 and P[|〈∆〉1 + ξ1 − ξ0 | > τ+] ≈ 0.8413 for |ξ1 − ξ0 | = 4h0. According to
Figures 1 and 2 again, we choose M = N0 − 1 = 0 for α = β = 0.01 and α = β = 0.001. Although the
(a-s) convergence in Assumption 3.2 is not satisfied with N0 = 1, simulations show that this buffer size
does not impact the results significantly.

BlockRDT
For τ− = h0 as in the bounded regime case, P [|∆n | 6 τ−] = 0.6827 for all n ∈ N so that |∆n | 6 τ−

does not hold. However, as shown by the experimental results below, this does not really impact the
performance of BlockRDT for the detection of the distorted signal.

SPRT
Because SPRT is aware of the distortion distribution ∆n ∼ N(0, h2

0) (n ∈ N), the log-likelihood ratio in

(34) becomes ΛN = N
ξ2

0−ξ
2
1

2(1+h2
0)
+
ξ1−ξ0
1+h2

0

∑N
n=1 Yn. Unaware of the distortion distribution, SPRT-MM remains

the same as specified above with log-likelihood ratio (35).

6.4. Comparison: SeqRDT, BlockRDT and SPRT
For both the bounded distortion case described in Section 6.2 and the unbounded distortion case described
in Section 6.3, we define |ξ1 − ξ0 | as the Signal-to-Noise Ratio (SNR). First, in Table 1 we analyze the
average number of samples taken by SeqRDT compared to its fixed sample size counterpart BlockRDT
for level α = β = 0.01 and α = β = 0.001. We choose the distortion parameter to be h0 = 1 for both
bounded and unbounded distortion cases. We compare NB-RDT needed for BlockRDT to guarantee that
Pb-rdt

md (NB-RDT, β) stays below β against T of SeqRDT designed to guarantee that PFA(DM ) and PMD(DM )
stay below α and β, respectively. For, BlockRDT we chose τ+ = |ξ1 − ξ0 | − h0 for computing NB-RDT.
This is the best τ+ we can choose to have the minimum possible NB-RDT. Note from Table 1 that SeqRDT
is faster compared to BlockRDT for both bounded and unbounded distortions even when the best possible
τ+ is known, specially at low SNRs.
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α = β = 0.01
SNR = |ξ1 − ξ0 | 4 5 6 8

BlockRDT Number of samples, NB-RDT 6 3 2 1
SeqRDT, M = 0, Bounded Regime Average stopping time, E[T] 2.58 2.18 2.05 2.01

SeqRDT, M = 0, Unbounded Regime Average stopping time, E[T] 2.79 2.37 2.23 2.17

α = β = 0.001
BlockRDT Number of samples, NB-RDT 10 5 3 2

SeqRDT, M = 0, Bounded Regime Average stopping time, E[T] 3.74 3.05 2.81 2.70
SeqRDT, M = 0, Unbounded Regime Average stopping time, E[T] 3.98 3.28 3.04 2.90

Table 1: SeqRDT vs BlockRDT.

In Tables 2 and 3, we compare the average stopping times and probabilities of false alarm and missed
detection of SeqRDT against SPRT and SPRT-MM, for different SNRs and for levels α = β = 0.01
and α = β = 0.001. We average the stopping times, the probabilities of false alarm and probabilities
of missed detection over 106 Monte Carlo iterations. The stopping time is taken to be the average of
the stopping times under the two hypotheses. As expected, SPRT is optimal if the distortion and noise
distributions are completely known. Otherwise, the SPRT-MM probabilities of false alarm and missed
detection are higher and do not stay below the levels α and β for unbounded distortions, especially at low
SNRs. SPRT is sensitive to model mismatches, whereas SeqRDT is robust and requires knowledge of only
a few parameters. The results of Table 3 implies that Assumption 3.2 need not be satisfied in a strict (a-s)
sense. If the assumption is satisfied with sufficiently high probability, SeqRDT still provides sufficient
performance guarantees. This means that SeqRDT is also robust to mismatches with respect to the choice
of parameter values and can be expected to perform well even if the tolerances are not known precisely or
known approximately.

7. Conclusion and Perspectives
In this work, we proposed a new framework SeqRDT for non-parametric sequential mean testing. Under
mild assumptions on the signal, SeqRDT satisfies the properties desired for a sequential test. We studied
the properties of the thresholds and showed that the chosen thresholds are appropriate for conducting the
sequential test. We introduced the concept of buffer size; this buffer size helps in controlling PFA(DM ) and
PMD(DM ) of the proposed test. Simulations showed that the SeqRDT approach leads to faster decision
making compared to its fixed sample counterpart BlockRDT [4]. Moreover, we showed that SeqRDT is
robust to model mismatches compared to conventional sequential testing procedures [5, 6].

Many mathematical results established above generalize to any dimension for the observation, signal
and noise. Extension of SeqRDT to multi-dimensional observations may thus be addressed in future
work. Future directions could also concern truncated versions of SeqRDT, where the algorithm stops if a
decision is not made within a specified time interval. Such an algorithm can be expected to require fewer
assumptions on the signal compared to SeqRDT.
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A. USEFUL LEMMAS

α = β = 0.01
SNR = |ξ1 − ξ0 | 4 5 6 8

SeqRDT, M = 0
Average stopping time, E[T] 2.58 2.18 2.05 2.01

PFA(DM ) 1.23 × 10−4 1.23 × 10−4 1.18 × 10−4 1.23 × 10−4

PMD(DM ) 1.27 × 10−4 6 × 10−6 0 0

SPRT
Average stopping time, E[TSPRT] 1.40 1.14 1.04 1

PSPRT
FA 1.3 × 10−3 6.34 × 10−4 2.25 × 10−4 1.3 × 10−5

PSPRT
MD 1.3 × 10−3 6.1 × 10−4 1.89 × 10−4 1.4 × 10−5

SPRT-MM
Average stopping time, E[TSPRT-MM] 1.27 1.09 1.03 1

PSPRT-MM
FA 3.4 × 10−3 1.4 × 10−3 4.33 × 10−4 2.2 × 10−5

PSPRT-MM
MD 3.4 × 10−3 1.4 × 10−3 3.91 × 10−4 2.2 × 10−5

α = β = 0.001
SNR = |ξ1 − ξ0 | 4 5 6 8

SeqRDT, M = 0
Average stopping time, E[T] 3.74 3.05 2.81 2.70

PFA(DM ) 4 × 10−6 3 × 10−6 6 × 10−6 3 × 10−6

PMD(DM ) 3 × 10−5 0 0 0

SPRT
Average stopping time, E[TSPRT] 1.74 1.29 1.10 1

PSPRT
FA 1.67 × 10−4 9 × 10−5 3.8 × 10−5 1 × 10−6

PSPRT
MD 1.78 × 10−4 7.7 × 10−5 3.8 × 10−5 3 × 10−6

SPRT-MM
Average stopping time, E[TSPRT-MM] 1.50 1.18 1.06 1

PSPRT-MM
FA 6.89 × 10−4 3.54 × 10−4 1.16 × 10−4 7 × 10−6

PSPRT-MM
MD 6.88 × 10−4 3.07 × 10−4 1.04 × 10−4 9 × 10−6

Table 2: SeqRDT vs SPRT for bounded regime.

Appendices

A. Useful lemmas
Lemma A.1 For any N ∈ N and any η > 0, we have:

E
[

Q1/2
(√

N |〈Ξ〉N − ξ0 |, η
√

N
) ]
− 2δN

6 P [ |〈Ξ〉N + 〈 X〉N − ξ0 | > η ]

6 E
[

Q1/2
(√

N |〈Ξ〉N − ξ0 |, η
√

N
) ]
+ 2δN

with δN =c E
[
|X1 − E [ X1 ] |3

]
Var (X1)−3/2N−1/2 and (2π)−1/2 6 c < 0.8.

Proof: The Berry-Essen inequality [13, p. 374, Chap. 3] implies:

sup
x∈R

���P[√N 〈 X〉N 6 x
]
− Φ(x)

��� 6 δN (36)
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α = β = 0.01
SNR = |ξ1 − ξ0 | 4 5 6 8

SeqRDT, M = 0
Average stopping time, E[T] 2.79 2.37 2.23 2.17

PFA(DM ) 2.4 × 10−3 2.5 × 10−3 2.4 × 10−3 2.4 × 10−3

PMD(DM ) 1.1 × 10−3 1.32 × 10−4 2 × 10−6 0

SPRT
Average stopping time, E[TSPRT] 1.84 1.38 1.16 1.02

PSPRT
FA 2.2 × 10−3 1.3 × 10−3 7.35 × 10−4 1.43 × 10−4

PSPRT
MD 2.1 × 10−3 1.3 × 10−3 7.49 × 10−4 1.26 × 10−4

SPRT-MM
Average stopping time, E[TSPRT-MM] 1.32 1.14 1.06 1.01

PSPRT-MM
FA 1.68 × 10−2 8.8 × 10−3 4.2 × 10−3 5.94 × 10−4

PSPRT-MM
MD 1.66 × 10−2 8.6 × 10−3 4 × 10−3 6.56 × 10−4

α = β = 0.001
SNR = |ξ1 − ξ0 | 4 5 6 8

SeqRDT, M = 0
Average stopping time, E[T] 3.98 3.28 3.04 2.90

PFA(DM ) 3.33 × 10−4 3.47 × 10−4 3.19 × 10−4 3.17 × 10−4

PMD(DM ) 1.24 × 10−4 5 × 10−6 5 × 10−6 0

SPRT
Average stopping time, E[TSPRT] 2.44 1.73 1.34 1.05

PSPRT
FA 2.08 × 10−4 1.59 × 10−4 1.03 × 10−4 2.85 × 10−5

PSPRT
MD 2.09 × 10−4 1.54 × 10−4 1.03 × 10−4 2.57 × 10−5

SPRT-MM
Average stopping time, E[TSPRT-MM] 1.57 1.24 1.10 1.01

PSPRT-MM
FA 6.2 × 10−3 3.5 × 10−3 1.8 × 10−3 2.88 × 10−4

PSPRT-MM
MD 6.2 × 10−3 3.6 × 10−3 1.8 × 10−3 3.05 × 10−4

Table 3: SeqRDT vs SPRT for unbounded regime.

Since 〈Ξ〉N and 〈 X〉N are independent, we have:

P[|〈Ξ〉N + 〈 X〉N − ξ0 | 6 η] =
∫
R
P [ |x + 〈 X〉N | 6 η ]P〈Ξ〉N−ξ0(dx)

It then follows from (36) that, for all x ∈ R:

ψ(x
√

N, η
√

N) − 2δN 6 P
[
|ρ + 〈 X〉N | 6 η

]
6 ψ(x

√
N, η
√

N) + 2δN (37)

with ψ(a, b) = Φ(b − a) − Φ(−b − a) for any (a, b) ∈ R × R. We derive from the foregoing that:

E
[
ψ

(√
N

(
〈 X〉N−ξ0

)
, η
√

N
)]
− 2δN

6 P[|〈Ξ〉N + 〈 X〉N − ξ0 | 6 η]

6 E
[
ψ

(√
N

(
〈 X〉N − ξ0

)
, η
√

N
) ]
+ 2δN

and conclude since ψ(a, b) = ψ(|a|, b) = 1 −Q1/2(a, b).
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Lemma A.2 If Ξ satisfies Assumption 3.1, then, for any γ ∈ (0, 1), we have:

lim
N→∞

Q1/2
(√

N |〈Ξ〉N − ξ0 |, λγ(τ
√

N)
)
=1[τ+,∞)(|〈Ξ〉∞ − ξ0 |) (a-s).

Proof: Under Assumption 3.1, lim
N→∞

|〈Ξ〉N − ξ0 | = |〈Ξ〉∞ − ξ0 | (a-s). Therefore, there exists Ω′ ∈ F

such that P(Ω′) = 1 and for all ω ∈ Ω′, lim
N→∞

|〈Ξ〉N (ω) − ξ0 | = |〈Ξ〉∞(ω) − ξ0 |. It follows that, for any
ε > 0 and any ω ∈ Ω′, there exists N0(ε, ω) ∈ N such that, for any N > N0(ε, ω),

|〈Ξ〉∞(ω) − ξ0 | − ε 6 |〈Ξ〉N (ω) − ξ0 | 6 |〈Ξ〉∞(ω) − ξ0 | + ε

Because Q1/2(•, λγ(τ
√

N) increases, we can also write that, for all ε > 0 and all ω ∈ Ω′, there exists
N0(ε, ω) ∈ N such that, for any N > N0(ε, ω):

Q1/2
(√

N
(
|〈Ξ〉∞(ω) − ξ0 | − ε

)
, λγ(τ

√
N)

)
6 Q1/2

(√
N |〈Ξ〉N (ω) − ξ0 |, λγ(τ

√
N)

)
6Q1/2

(√
N (|〈Ξ〉∞(ω) − ξ0 | + ε) , λγ(τ

√
N)

)
(38)

UnderH0, (6) implies the existence of Ω0 ∈ F such that, for any ω ∈ Ω0, |〈Ξ〉∞(ω) − ξ0 | 6 τ−. Choose
ε > 0 such that τ− + ε < τ. For any ω ∈ Ω0, |〈Ξ〉∞(ω) − ξ0 | + ε < τ. Therefore, for any ω ∈ Ω0, it follows
from Lemma B.2 that:

lim
N→∞

Q1/2
(√

N (|〈Ξ〉∞(ω) − ξ0 | + ε) , λγ(τ
√

N)
)
= 0. (39)

Since P(Ω′ ∩Ω0) = 1, Eqs. (38) and (39) imply that:

lim
N→∞

Q1/2
(√

N |〈Ξ〉N − ξ0 |, λγ(τ
√

N)
)
= 0 (a-s)

UnderH1, the proof is similar. From (6), there existsΩ1 ∈ F such that: ∀ω ∈ Ω1, |〈Ξ〉∞(ω)− ξ0 | > τ+.
For ε > 0 such that τ+ − ε > τ, Lemma B.2 induces that, for any ω ∈ Ω1:

lim
N→∞

Q1/2
(√

N (|〈Ξ〉∞(ω) − ξ0 | − ε) , λγ(τ
√

N)
)
= 1. (40)

Since P(Ω′ ∩Ω1) = 1, it follows from (40) and (38) that:

lim
N→∞

Q1/2
(√

N |〈Ξ〉N − ξ0 |, λγ(τ
√

N)
)
= 1 (a-s),

which concludes the proof.

B. Asymptotic properties of the thresholds
Lemma B.1 For any γ ∈ (0, 1):
(i) lim

ρ→∞

(
λγ(ρ) − ρ

)
= Φ−1(1 − γ);

(ii) lim
ρ→∞

λγ(ρ)/ρ = 1;

Proof: We prove (i) only since it straightforwardly implies (ii). Pose g(ρ) = λγ(ρ)− ρ and θ = Φ−1(1−γ).
Since Φ(x) + Φ(−x) = 1, (2) and the definition of λγ(τ) induce that:

Φ(g(ρ)) + Φ(g(ρ) + 2ρ) = 1 + Φ(θ). (41)
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To prove that g(ρ) tends to θ when ρ → ∞, we proceed by contradiction. If g(ρ) does not tend to θ
when ρ → ∞, there exists some positive real number ε such that, for all n ∈ N, there exists some real
number ρn > n such that either g(ρn) > θ + ε or g(ρn) < θ − ε. Basically, lim

n→∞
ρn = ∞. Consider any

η ∈ (0,Φ(θ) − Φ(θ − ε)). Since lim
n→∞
Φ(2ρn + θ + ε) = 1, there exists N0 ∈ N such that, for all n > N0:

Φ(2ρn + θ + ε) > 1 − η. (42)

Similarly, since lim
n→∞
Φ(2ρn + θ − ε) = 1, there exists N1 ∈ N such that, for all n > N1:

Φ(2ρn + θ − ε) < 1 + η. (43)

Let n be any integer above max(N0, N1). If g(ρn) < θ − ε, we then have Φ(g(ρn)) < Φ(θ − ε) and
Φ(2ρn + g(ρn)) < Φ(2ρn + θ − ε). Eqs. (41) and (43) then imply that:

1 + Φ(θ) < Φ(θ − ε) + Φ(2ρn + θ − ε) < Φ(θ − ε) + 1 + η,

which is impossible because of our choice for η. Therefore, we cannot have g(ρn) < θ − ε. We cannot
have g(ρn) > θ + ε either because, via (41) and (42), this inequality leads to:

1 + Φ(θ) > Φ(θ + ε) + Φ(2ρn + θ + ε) > Φ(θ + ε) + 1 − η, (44)

which is contradictory to our choice for η.

Lemma B.2 (Asymptotic behavior of Q1/2 in vanishing noise) Consider τ ∈ |0,∞) and ρ ∈ (0,∞)
such that ρ , τ.

∀γ ∈ (0, 1), lim
σ→0

Q1/2
(
ρ/σ, λγ(τ/σ)

)
= 1(τ,∞)(ρ).

Proof: Let (σn)n∈N be a sequence of positive real values such that lim
n→∞

σn = 0 and set ρn = τ/σn

for each n ∈ N. According to (1), Q1/2
(
(ρ/τ)ρn, λγ(ρn)

)
= P

[��(ρ/τ) + X/ρn
�� > λγ(ρn)/ρn

]
for any

X ∼ N(0, 1). It follows from Lemma B.1 (ii) that |(ρ/τ) + (X/ρn)| − λγ(ρn)/ρn = (ρ/τ) − 1 (a-s).
Therefore, the cdf of

��(ρ/τ) + (X/ρn)�� − λγ(ρn)/τn converges weakly to 1[(ρ/τ)−1,∞). Since ρ , τ, this
weak convergence implies that lim

n→∞
P

[��(ρ/τ) + X/ρn
�� > λγ(ρn)/ρn

]
= 1(τ,∞)(ρ). Thence the result since

(σn)n∈N is arbitrary.

Lemma B.3 (Non-Asymptotic behavior of Q1/2) Given τ ∈ [0,∞), ρ ∈ (0,∞) and γ ∈ (0, 1), the map:

σ∈ [0,∞) 7→Q1/2
(
ρσ, λγ(τσ)

)
is


constant equal to γ if ρ = τ
non-increasing if ρ < τ

non-decreasing if ρ > τ

Proof: Given ρ and τ, we want to study the behavior of

Q(σ) = Q1/2
(
ρσ, λγ(τσ)

)
= 1 − Φ(r−(σ)) + Φ(−r+(σ)) (45)

with r+(σ) = λγ(τσ) + ρσ and r−(σ) = λγ(τσ) − ρσ. For ρ = τ, it follows from (3) that Q is constant
equal to γ. We thus have 1 − Φ(λγ(τσ) − τσ) + Φ(−λγ(τσ) − τσ) = γ. After differentiating the two
members of the equality above and after some routine algebra, we obtain:

λ′γ(τσ) = (1 − e−2τσλγ (τσ))/(1 + e−2τσλγ (τσ)) (46)
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where λ′γ is the first derivative of λγ. We now differentiate Q defined by (45). Some easy computation
yields:

Q′(σ)= 1
√

2π

(
e−r

2
−(σ)/2−e−r

2
+(σ)/2

) (
ρ − τλ′γ(τσ)

1 + e−2ρσλγ (τσ)

1 − e−2ρσλγ (τσ)

)
By injecting (46) into the equality above, we obtain:

Q′(σ) = τ
√

2π

(
e−r

2
−(σ)/2 − e−r

2
+(σ)/2

) (
ρ

τ
− ∆−1(ρ, τ)
∆+1(ρ, τ)

)
(47)

with ∆ε(ρ, τ) = (1 + εe−2τσλγ (τσ))/(1 + εe−2ρσλγ (τσ)) and ε ∈ {−1,+1}. For all σ > 0, the sign of Q′ is
therefore that of (ρ/τ) − (∆−1(ρ, τ)/∆+1(ρ, τ))We verify easily that:{

ρ < τ ⇔ ∆−(ρ, τ) > 1⇔ ∆+(ρ, τ) < 1
ρ = τ ⇔ ∆−(ρ, τ) = ∆+(ρ, τ)) = 1

Therefore, if ρ < τ, ρ/τ < 1 < ∆−(ρ, τ)/∆+(ρ, τ), which implies that Q′(σ) 6 0 and, thus, that Q
is non-increasing. On the other hand, if ρ > τ, we have ρ/τ > 1 > ∆−(ρ, τ)/∆+(ρ, τ), so that Q is
non-decreasing in this case.

Lemma B.4 Given ρ ∈ (0,∞), the map γ ∈ (0, 1) 7→ λγ(ρ) is decreasing.

Proof: A straightforward consequence of (3) and the decreasing nature of Q1/2 with its second argument.

Lemma B.5
(P1) For any τ ∈ [0,∞) and any η ∈ [τ,∞), the map σ ∈ (0,∞) 7→ Q1/2

(
τ/σ, η/σ

)
is non-decreasing.

(P2) The map ρ ∈ (0,∞) 7→ Q1/2
(
ρ, ρ

)
is non-increasing, lower-bounded by 1/2 and lim

ρ→∞
Q1/2

(
ρ, ρ

)
=

1/2.
(P3) For any γ 6 1/2, the map ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is non-increasing and lower bounded by 1.

Proof: Throughout the proof, W ∼ N(0, 1). For any pair (τ, η) ∈ (0,∞) × (0,∞) and any σ ∈ (0,∞), (1)
implies that:

Q1/2
(
τ/σ, η/σ

)
= P [ |τ + σW | > η ] . (48)

We then define f (σ, x) = |τ + σx |2 − η2 = x2σ2 + 2τxσ + τ2 − η2, for every σ ∈ (0,∞) and every x ∈ R.
We can thus write that:

Q1/2
(
τ/σ, η/σ

)
= P [ f (σ,W) > 0 ] . (49)

Proof of statement (P1): Given any x ∈ R, the reduced discriminant of the quadratic polynomial f (•, x)
is ∆′(x) = x2η2. Therefore, for x , 0, ∆′(x) > 0 and f (•, x) has two roots, σ0(x) = −(τ/x) − (η/|x |)
and σ1(x) = −(τ/x) + (η/|x |), possibly equal. Since we assume η > τ, σ0(x) 6 0 6 σ1(x). Therefore,[

f (σ,W) > 0
]
∩

[
W , 0

]
=

[
σ > σ1(W)

]
. Because W , 0 (a-s), we derive from the foregoing and (49)

that
Q1/2

(
τ/σ, η/σ

)
= P [σ1(W) < σ ] . (50)

If 0 < σ < σ′,
[
σ1(W) < σ

]
⊂

[
σ1(W) < σ′

]
. It follows from (50) that Q1/2

(
τ/σ, η/σ

)
6

Q1/2
(
τ/σ′, η/σ′

)
. Thence the result.

Proof of statement (P2): The map ρ ∈ (0,∞) 7→Q1/2
(
ρ, ρ

)
is non-increasing as a consequence of (P1).

Given ρ ∈ (0,∞), it follows from (48) that

Q1/2(ρ, ρ) = P [ |1 +W/ρ| > 1 ] . (51)
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Since
[
|1 +W/ρ| > 1

]
⊃

[
W > 0

]
and P [W > 0 ]= 1/2, (51) induces that Q1/2(ρ, ρ) > 1/2. When ρ

tends to∞, (1/ρ)W2 + 2W converges (a-s) to 2W . Therefore, for any sequence (ρn)n∈N of positive real
values such that lim

N→∞
ρn = ∞, F(1/ρn)W 2+2W⇒F2W . Because F2W is continuous everywhere, it follows

from (51) that lim
n→∞

Q1/2(ρn, ρn) = 1 − lim
n→∞
F(1/ρn)W 2+2W (0) = 1 − F2W (0) = 1/2.

Proof of statement (P3): Let ρ and ρ′ be two positive real numbers such that 0 < ρ 6 ρ′. According to
(3), we have:

Q1/2
(
ρ, λγ(ρ)

)
= Q1/2

(
ρ′, λγ(ρ′)

)
= γ. (52)

Since γ 6 1/2, it follows from (P2) and (52) that Q1/2(ρ, ρ) > 1/2 > Q1/2(ρ, λγ(ρ)). The non-
increasing behavior of Q1/2 with its second argument implies that λγ(ρ) > ρ, so that λγ(ρ)/ρ is lower
bounded by 1. We then derive from (P1) that x ∈ (0,∞) 7→ Q1/2

(
ρ/x, λγ(ρ)/x

)
is a non-decreasing

map. Since ρ/ρ′ 6 1, we have Q1/2
(
ρ, λγ(ρ)

)
> Q1/2

(
ρ′, ρ′λγ(ρ)/ρ

)
. This inequality and (52) induce

that Q1/2
(
ρ′, λγ(ρ′)

)
> Q1/2

(
ρ′, ρ′λγ(ρ)/ρ

)
. The non-increasing nature of Q1/2(ρ′, •) then implies that

λγ(ρ′) 6 ρ′λγ(ρ)/ρ. Thereby, ρ ∈ (0,∞) 7→ λγ(ρ)/ρ does not increase.

Lemma B.6 For γ ∈ (1/2, 1) and ρ large enough, the map ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is non-decreasing and
upper bounded by 1.

Proof: According to statement (i) of Lemma B.1, λγ(ρ) − ρ = Φ−1(1 − γ) + κ(ρ) where κ is such that
lim
ρ→∞

κ(ρ) = 0. Since γ > 1/2, Φ−1(1 − γ) < 0. Given η such that 0 < η < −Φ−1(1 − γ), there exists ρ0

such that, for all ρ > ρ0, κ(ρ) 6 η. Therefore, for all ρ > ρ0, λγ(ρ) − ρ 6 Φ−1(1 − γ) + η < 0. We have
hence proved that λγ(ρ) < ρ for ρ large enough.

Pose f (ρ) = λγ(ρ)/ρ so that Φ(ρ( f (ρ) − 1)) − Φ(−ρ( f (ρ) + 1)) = 1 − γ. By differentiation of this
equality with respect to ρ and since f is differentiable via the implicit function theorem, we find that f ′(ρ)
has the same sign as Υ(ρ) =

(
1 − f (ρ)

) (
e2ρλγ (ρ) +

λγ (ρ)+ρ
λγ (ρ)−ρ

)
. For ρ large enough, f (ρ) < 1 by the first

part of the proof and Lemma B.1 implies that lim
ρ→∞
Υ(ρ) = ∞. Therefore, Υ(ρ) > 0 for ρ large enough and

the proof is complete.
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