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Abstract: In this work we address the reconstruction of gap-free Sea Surface Temperature (SST) fields1

from irregularly-sampled satellite-derived observations. We develop novel Neural-Network-based2

(NN-based) Kalman filters for spatio-temporal interpolation issues as an alternative to ensemble3

Kalman filters (EnKF). The key features of the proposed approach are two-fold: the learning of4

a probabilistic NN-based representation of 2D geophysical dynamics, the associated parametric5

Kalman-like filtering scheme for a computationally-efficient spatio-temporal interpolation of Sea6

Surface Temperature (SST) fields. We illustrate the relevance of our contribution for an OSSE7

(Observing System Simulation Experiment) in a case-study region off South Africa. Our numerical8

experiments report significant improvements in terms of reconstruction performance compared with9

operational and state-of-the-art schemes (e.g., optimal interpolation, Empirical Orthogonal Function10

(EOF) based interpolation and analog data assimilation).11

Keywords: Data assimilation; Dynamical model; Kalman filter; Neural networks; Data-driven12

models; Interpolation13

1. Introduction14

Satellite sensors and in-situ networks can provide observations of sea surface tracers (e.g.15

temperature, salinity, ocean colour). However, due to sensors’s characteristics (e.g., space-time16

sampling, sensor type) and their sensitivity to the atmospheric conditions (e.g., rain, clouds), only17

partial and possibly noisy observations are available. As a consequence, no sensor can provide gap-free18

high-resolution observations in space and time. A typical example of the missing data pattern for SST19

is reported in Fig. 3 for an infrared sensor. In some situations, missing data may become very large20

which makes crucial the development of spatio-temporal interpolation tools.21

Within the satellite ocean community, Optimal interpolation (OI) is the standard technique [1–7].22

Given a covariance model of spatio-temporal dynamics, the interpolated field results from a linear23

combination of the observations. The parameters of the linear combination are typically tuned by24

exploiting some statistical properties of the target field.25
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In general, stationary covariance hypotheses are considered, which prove relevant for the26

reconstruction of horizontal scales above 100km. Fine scale components may hardly be retrieved27

with such approaches and a variety of research studies aim to improve the reconstruction of the28

high-resolution component of our spatio-temporal fields.29

Empirical Orthogonal Function (EOF) based interpolation is an other categorie widely used in30

geosciences [8–10]. They rely on a Singular Value Decomposition (SVD) to compute the EOF basis, the31

field is then reconstructed by projecting the observations on the EOF subspace until a convergence32

criterion is reached [11]. Unfortunately, dealing with high missing data rates decreases the encoded33

variability in the EOF components witch results in smoothing fine scale components.34

Data assimilation is the state-of-the-art framework for the reconstruction of dynamical systems35

from partial observations based on a given numerical model [12,13]. Statistical data assimilation36

schemes especially ensemble Kalman filters, have become particularly popular due to their trade-off37

between computational efficiency and modeling flexibility. Unlike OI and EOF based techniques,38

these schemes explicitly rely on dynamical priors to address interpolation issues from partial and39

noisy observations. When dealing with sea surface dynamics, the analytical derivation of these40

priors involves simplifying assumptions which may not be satisfied by real observations. By contrast,41

realistic analytical parameterizations may lead to highly computationally-demanding numerical42

models associated with modeling and inversion uncertainties, which may limit their relevance for an43

application of the interpolation of a single sea surface tracer.44

Recently, data-driven approaches [8,14] have emerged as relevant alternatives to model-driven45

schemes. They take benefit from the increasing availability of remote sensing observation and46

simulation data to derive dynamical priors from these datasets. Analog methods are one of the first47

data-driven techniques to develop this data-driven paradigm within a data assimilation framework48

[14]. Analog forecasting operators provide a data-driven formulation of the dynamical operator, which49

can be used as a plug-and-play operator in Kalman-based assimilation schemes. Combined with50

patch-based representation, the analog data assimilation was recently proven to be relevant with51

respect to OI and EOF-based schemes for the spatio-temporal interpolation of sea surface geophysical52

tracers [15–17].53

In this paper, we further investigate data-driven interpolation approaches within a statistical54

data assimilation framework. We focus on neural network and deep learning models, which have55

rapidly become the state-of-the-art in machine learning for a wide range of applications, including56

inverse imaging issues [18]. Recent applications to the assimilation of low-dimensional dynamical57

systems [19] and to the forecasting of geophysical dynamics [20] have been developed. However,58

to our knowledge, the design of neural-network-based assimilation models for the spatio-temporal59

interpolation of geophysical dynamics remain an open challenge, which may greatly benefit from the60

ability of deep learning models to capture computationally-efficient representations from available61

ocean observation and simulation datasets. In this study, we address this challenge and propose a novel62

NN-based Kalman filtering scheme applied to the spatio-temporal interpolation of satellite-derived63

sea surface temperature. We exploit a ResNet architecture [19,21] and a patch-based decomposition64

[22] to derive a data-driven representation of spatio-temporal fields. Importantly, this architecture65

conveys a probabilistic representation through the prediction of a mean component and a covariance66

pattern. The later may be regarded as a NN-based representation of the covariance patterns issued67

from Monte Carlo approximations in ensemble assimilation schemes [23]. Overall, the methodological68

contributions of this work are two-fold: i) we propose a new probabilistic NN-based representation69

of 2D geophysical dynamics, ii) we derive the associated NN-based Kalman filtering scheme for70

spatio-temporal interpolation issues. We demonstrate the relevance of these contributions with respect71

to state-of-the-art approaches [2,8,16] for the spatio-temporal interpolation of satellite-derived SST72

fields in a case study region off South Africa. This paper is organized as follows. Section 2 reviews73

data assimilation schemes. Section 3 describes the proposed neural-network-based data assimilation74
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framework. Section 4 presents the results of the numerical experiments. We further discuss our75

contributions in Section 6.76

2. Problem statement and related work77

Regarding ocean remote sensing data, spatio-temporal interpolation issues can be regarded as the78

reconstruction of some hidden states from partial and/or noisy observation series, referred to as data79

assimilation in geoscience [23]. Data assimilation techniques usually involve a state-space evolution80

model [23]:81

xt+1 = F (xt) + ηt (1)

yt+1 = H(xt+1) + εt (2)

where t ∈ {0, ..., T} represents the temporal resolution of our time series and F the dynamical82

model describing the temporal evolution of the physical variables x. The observation modelH links the83

observation y to the physical variable x. ηt and εt are random processes accounting for the uncertainties84

in the dynamical and observation models. They are usually defined as centered Gaussian processes85

with covariances Qt and Rt respectively.86

From a probabilistic point of view, the spatio-temporal interpolation problem can be seen87

as a Bayesian filtering problem where the main goal is to evaluate the conditional probabilities88

p(xt+1|y1, ..., yt) (prediction distribution of the state xt+1 given observations up to time t) and89

p(xt+1|y1, ..., yt, , yt+1) (posterior distribution of xt+1 given observations up to time t + 1). Under90

certain assumptions over the state space model (the dynamical and observation models are linear91

with Gaussian uncertainties), the prediction and posterior distributions are also Gaussian and can be92

written as :93

p(xt+1|y1, ..., yt) = N (x−t+1, Σ−t+1) (3)

p(xt+1|y1, ..., yt+1) = N (x+t+1, Σ+
t+1) (4)

with the means and covariances computed for each time t using the well known Kalman recursion94

x−t+1 = Fx+t (5)

Σ−t+1 = FΣ+
t FT + Qt (6)

x+t+1 = x−t+1 + Kt+1[yt+1 − Ht+1x−t+1] (7)

Σ+
t+1 = Σ−t+1 − Kt+1Ht+1Σ−t+1 (8)

with95

Kt+1 = Σ−t+1HT
t+1[Ht+1Σ−t+1HT

t+1 + Rt]
−1. (9)

Here F and Ht+1 corresponds respectively to some linear dynamical and observation models. The96

superscript (-) refers to the forecasting of the mean of the state variable x−t+1 and of its covariance matrix97

Σ−t+1 given observations up to time t but without the new observation at time t + 1. The superscript (+)98

refers in the other hand to the mean of the state variable x+t+1 and of the covariance matrix Σ+
t+1 given99

all observations up to time t + 1. They are referred to as the assimilated mean and covariance. Kt+1 is100

the Kalman gain. Kalman filters provide a sequential formulation of the Optimal Interpolation (OI)101

[24] which may also be solved directly knowing the space-time covariance of processes x and y. For102
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non-linear and high-dimensional dynamical systems, the pdfs are not Gaussian anymore and the above103

Kalman recursion does define their means and covariances. Ensemble Kalman methods have been104

proposed to address these issues. The ensemble Kalman filter and smoother [23] are the first sequential105

filtering techniques used reliably in the reconstruction of geophysical fields. The key idea here is to106

approximate the forecasting mean x−t+1 and covariance Σ−t+1 by a sample mean and covariance matrix107

computed by propagating an ensemble of M members, {xi−
t+1}M

i=1, using the dynamical model F .108

xi−
t+1 = F (xi+

t , i ∈ {0, ..., N}) (10)

Σ−t+1 =
1

N − 1
Dt+1Dt

t+1 (11)

Dt+1 = [x1−
t+1 − x−t+1, ...xN−

t+1 − x−t+1] (12)

xi+
t+1 = xi−

t+1 + Kt+1[yt+1 − Ht+1xi−
t+1] (13)

Kt+1 = Σ−t+1HT
t+1[Ht+1Σ−t+1HT

t+1 + Rt]
−1 (14)

Σ+
t+1 = Σ−t+1 − Kt+1Ht+1Σ−t+1 (15)

Besides all its advantages, EnKF techniques do not escape the curse of dimensionality.109

High-dimensional systems require using large ensemble sizes M which may lead to very110

high-computational complexity. The use of small ensemble sizes in the other hand may result in111

undersampling the covariance matrix (the considered ensemble is not representative of our systems112

dynamics) which may in turn result in poor reconstruction performance, including for instance113

filter divergence and spurious long-range correlations. Proposed solutions such as inflation [25],114

cross-validation [26] and localization methods[27–29] may require thorough tuning experiments.115

An alternative strategy based on a model-driven propagation of parametric covariance models116

[30,31] seems appealing. Using advection priors [32], it propagates parametric covariance structures,117

which leads to the implementation of the classic Kalman recursion. Accounting for more complex118

dynamical priors for the covariance structure is an open question, which may limit the applicability119

of this approach to complex geophysical systems. Inspired by the later parametric framework,120

we aim to design an efficient sequential filtering technique for the reconstruction of geophysical121

fields. Rather than considering a model-driven prior to propagate Gaussian states as in [30,31], we122

investigate NN-based priors, which may be fitted from training data. The resulting NN-based Gaussian123

representations provide computationally-efficient approximations of the dynamical priors that should124

prevent undersampling issues within a Kalman recursion.125

3. Proposed interpolation model126

3.1. Neural-network Gaussian dynamical prior127

Our key idea is to exploit neural-network (NN) representations for the time propagation of128

a Gaussian approximation of the distribution of the state. Compared with dynamical priors in129

assimilation model (1), which state conditional distribution xt|xt−1, we here consider neural-network130

representations to extend the prediction step of the Kalman recursion (5-6) to non-linear dynamics.131

Formally, it comes to define:132

x−t+1 = F (x+t ) (16)

Σ−t+1 = FΣ(x+t , Σ+
t ) (17)

with x−t+1 and Σ−t+1 the mean and covariance of the prediction of the Gaussian approximation133

of the state at time t + 1 given the assimilated mean x+t and covariance Σ+
t at time t. Functions134

F ,FΣ are neural networks to be defined with parameter vectors θ = (θµ, θΣ). It may noted that our135
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parameterization follows (5-6) such that the update of the mean component in (16) only depends on136

the mean at the previous time step and the update of the covariance depends both on the mean and137

covariance at the previous time step. Given this NN-based representation of the prediction step of the138

Kalman filter, we apply the classic Kalman-based filtering under the assumption that the observation139

model is linear and Gaussian:140

x+t+1 = x−t+1 + Kt+1[yt+1 − Ht+1x−t+1] (18)

Kt+1 = Σ−t+1HT
t+1[Ht+1Σ−t+1HT

t+1 + Rt]
−1 (19)

Such a formulation does not require forecasting an ensemble to compute a sample covariance141

matrix. It results in a significant reduction of the computational complexity. The same holds when142

compared to the computational complexity of the analog data assimilation which involves ensemble143

forecasting and repeated nearest-neighbor search.144

3.2. Patch-based NN architecture145

When considering spatio-temporal fields, the application of the model defined by (16) and146

(17) should be considered with care to account for the underlying dimensionality, especially for the147

covariance model in (19). Following our previous works on analog data assimilation [15,16], we148

consider a patch-based representation1. This patch-based representation is fully embedded in the149

considered NN architecture to make explicit both the extraction of the patches from a 2D field and the150

reconstruction of a 2D field from the collection of patches. The later involves a reconstruction operator151

which is learnt from data.152

Regarding model F , the proposed architecture proceeds as follows:153

• At a given time t, the first layer of the network, which is parameter-free in terms of training,154

comes to decompose an input field xt into a collection of Np P × P patches xPs ,t, where P is155

the width and height of each patch and s the patch location in the global field. Each patch is156

decomposed onto an EOF basis B according to :157

zPs ,t = xPs ,tBT (20)

with zPs ,t the EOF decomposition of the patch xPs ,t. The EOF decomposition matrix B is trained158

offline as preprocessing step;159

• The second layer implements a numerical integration scheme (typically, an Euler or 4th-order160

Runge-Kutta scheme) using a patch-level dynamical model FPs , s ∈ [1, ..., Np] to predict161

zPs ,t+1. For patch-level models FPs , we consider residual architectures [21] with a bilinear162

parameterization [19];163

• The third layer is a reconstruction network Fr. It combines the predicted patches xPs ,t =164

zPs ,tB, s ∈ [1, ..., Np] to reconstruct the output field xt. This reconstruction network Fr involves a165

convolution neural network [33].166

The details of the considered parameterizations for the second and third layers are given in167

Section 4. To train mean dynamical model F , we apply a two-step procedure. We first learn the local168

dynamical models FPs , s ∈ [1, ..., Np] based on the minimization of the EOF-patch based forecasting169

error. The reconstruction network Fr is then optimized using the same criterion over the global field.170

1 A patch is a P× P subregion of a 2D field with P the width and the height of the patch.
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Regarding covariance model FΣ we also consider a patch-based representation of the spatial171

domain FPs
Σ , more precisely a block-diagonal parameterization of the patch-level covariances in the172

EOF space. It may be noted that a diagonal parameterization of the covariance in the EOF space forms173

a full covariance matrix in the original patch space. This block-diagonal covariance model FΣ is learnt174

separately for each patch according to a ML (Maximum Likelihood) criterion. The associated training175

dataset comprises patch-based EOF decompositions of the forecasted states according to the mean176

model FPs from states of the training dataset corrupted by an additive Gaussian perturbation with a177

covariance structure Σ0. Here, Σ0 is given by the empirical covariance of the EOF patches for the entire178

training dataset. Overall, for a given patch Ps, we parameterize FPs
Σ the restriction of covariance FΣ179

onto patch Ps as:180

FPs
Σ (xPs ,t+1, ΣPs ,t+1) = BtΨ(ΣPs ,t, Σ0) · FPs

D (zPs ,t, Σ0) · B (21)

with Ψ(ΣPs ,t−1, Σ0) a scaling function. Among different parameterizations, a constant scaling181

function Ψ() = 1 led to the best performance in our numerical experiments.182

To illustrate the relevance of the proposed full covariance matrix parametrization (based on a183

patch based projection on the EOF space and illustrated for instance by equation 21), we also investigate184

a diagonal covariance matrix model in the patch space.185

3.3. Data assimilation procedure186

Given a trained patch-based NN representation as described in the previous section, we derive187

the associated Kalman-like filtering procedure. As summarized in Algorithm 1, at time step t, given the188

Gaussian approximation of the posterior likelihood P(xt−1|y0, . . . , yt−1) with mean x+t−1 and covariance189

Σ+
t−1, we first compute the forecasted Gaussian approximation at time t with mean field F (x+t−1) and190

patch-based covariance FΣ(x+t−1, Σ+
t−1). The assimilation of the new observation yt is performed at191

a patch-level. For each patch Ps, we update the patch-level mean x+Ps ,t and covariance Σ+
Ps ,t using192

Kalman recursion (8) with observation yPs ,t. We then combine these patch-level updates to obtain193

global mean x+t and covariance Σ+
t . Whereas we compute global mean x+t using trained reconstruction194

network Fr, Σ+
t just comes to store the collection of patch-level covariances. This procedure is iterated195

up to the end of the observation sequence.196

Compared with the patch-based analog data assimilation [16], it might be noted that we iterate197

patch-level assimilation steps and global reconstruction steps thanks to the NN-based propagation of198

the patch-based covariance structure. This procedure potentially allows information propagation from199

one patch to neighborhing ones after each assimilation step. By contrast, in the patch-based analog200

data assimilation, each patch is processed independently, such that no such information propagation201

can occur. This is regarded as a key feature to account for the propagation of geophysical structures202

(e.g., fronts, eddies, filaments,...).203

We refer to the patch-based NNKF reconstruction model using the EOF block-diagonal204

parameterization of the covariance model FΣ, as model PB-NNKF-EOF. The model using the diagonal205

parameterization of the covariance model FΣ in the patch space is referred to as PB-NNKF.206

4. Data and experimental setting207

As a case-study, we address the spatio-temporal interpolation of satellite-derived SST fields208

associated with infrared sensors, which may involve high missing data rates (typically from 50% to209

90%). We consider the same region and dataset as in [16] to make easier benchmarking analyses.210

4.1. Dataset description211

As SST time series used here is delivered by the UK Met Office [2] from January 2008 to December212

2015. The spatial resolution of our SST field is 0.05° and the temporal resolution h = 1 day. The data213

from 2008 to 2014 were used as training data and we tested our approach on the 2015 data. To perform214
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Figure 1. Proposed neural-network-based representation of a spatio-temporal dynamical system. The
input Xt is first decomposed into P× P patches, each patch is then propagated using its associate local dynamical
model. The output Xt+1 is then reconstructed by injecting the forecasted patches into the reconstruction model
Fr.
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Algorithm 1 Patch-based NNKF reconstruction

1: procedure PB-NNKF(F ,FΣ,y,R)
2: for t in [0, ..., T]:
3: x−t ← F (x+t−1)

4: [Σ−P0,t, ..., Σ−PNp ,t]← FΣ(x+t−1, Σ+
t−1)

5: [x−P0,t, ..., x−PNp ,t]← ExtractPatches(x−t )

6: [yP0,t, ..., yPNp ,t]← ExtractPatches(yt)

7: for s in [1, ..., Np]:
8: KPs ,t = Σ−Ps ,t Ht

Ps ,t[HPs ,tΣ−Ps ,tHt
Ps ,t + Rt]−1

9: X+
Ps ,t = x−Ps ,t + KPs ,t[yPs ,t − HPs ,tx−Ps ,t]

10: Σ+
Ps ,t = Σ−Ps ,t − KPp ,t HPp ,tΣ−Pp ,t

11: x+t ← Reconstruct([x+P0,t, ..., x+PNs ,t])

12: Σ+
t ← Reconstruct([Σ+

P0,t, ..., Σ+
PNs ,t])

a quantitative evaluation, we simulated realistic spatio-temporal cloud patterns using METOP-AVHRR215

masks. This sensor is highly sensitive to the cloud cover and results in very high missing data rates216

as illustrated in Fig. 3. As case-study area, we select an area off South Africa (from 2.5°E, 38.75°S217

to 32.5°E, 58.75°S). This region involves complex fine-scale SST dynamics (e.g., fronts, filaments). It218

makes it relevant for the considered quantitative evaluation.219

4.2. Experimental setting220

The proposed neural-network-based Kalman scheme involves the following parameter setting.221

The proposed patch-based and NN-based Kalman filter is applied to SST anomaly fields w.r.t.222

optimally-interpolated SST fields (see below for the parameterization of the optimal interpolation).223

These optimally-interpolated fields provide a relevant reconstruction of horizontal scales up to≈100km.224

We exploit patch-level representations with non-overlapping 20× 20 patches. For each patch Ps, we225

learn an EOF basis from the training data. We keep the first 50 EOF components, which amount on226

average to 95% of the total variance. For the patch-level NN model FPs , we use a bilinear residual227

neural network architecture as proposed in [34] with 60 linear neurons, 100 bilinear neurons and 10228

fully-connected layers with a Relu activation. The reconstruction model Fr is a convolutional neural229

network with 3 convolutional layers. The first two layers comprise 64 filters of size 3× 3 with a Relu230

activation and the last layer is a linear convolutional layer with one filter. Regarding covariance model231

FPs
D , we consider a diagonal covariance model within each patch. Each element of diagonal involves232

a a 3-layer MLP with 4 neurons and Relu activation functions on the hidden layers and a softplus233

activation in the output layer. With a view to evaluating the EOF-based covariance parameterization,234

we consider both PB-NNKF-EOF and PB-NNKF schemes.235

We perform a quantitative analysis of the interpolation performance of the proposed scheme with236

respect to an optimal interpolation, the analog data assimilation [16] and the EOF based interpolation237

method VE-DINEOF. The considered parameter setting is as follows:238

• Optimal interpolation (OI) : We use a Gaussian kernel with a spatial correlation length of 100km239

and a temporal resolution length of 3 days. These parameters were empirically tuned for the240

considered dataset using a cross-validation experiment.241

• Analog data assimilation (LAF-EnKF, GAF-ENKF): We apply both the global and local analog242

data assimilation schemes, referred to as G-AnDA and L-AnDA [14,16]. Similarly to the243

proposed scheme, we consider 20× 20 patches and 50-dimensional EOF decomposition with244

an overlapping of 10 pixels. We let the reader refer to [14,16] for a detailed description of this245

data-driven approach, which relies on nearest-neighbor regression techniques.246
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Figure 2. Selected patches on the high resolution component of the SST data. (The SST map corresponds
to July 19, 2015)

• EOF based reconstruction (PB-VE-DINEOF): We also compare our approach to the state-of-the-art247

interpolation scheme based on the projection of our observations with missing data on an248

EOF basis [8]. The SST field is here decomposed as described in the analog data assimilation249

application into a collection of 20× 20 patches with a 10 pixels overlapping. Each patch is then250

reconstructed using the VE-DINEOF method.251

5. Results and discussion252

We report in this section the results of the considered numerical experiments. We first focus on253

patch-level performance as the patch-based representation is at the core of the proposed interpolation254

model. We then report interpolation performance for the whole case-study region.255

5.1. Patch-level interpolation performance256

We first evaluate the patch-level interpolation performance of the proposed scheme for four257

patches corresponding to different dynamical modes as illustrated in Fig. 2 located in the area (5°E258

to 75°E and latitude 25°S to 55°S). In Tab.1, we report the interpolation performance in terms of259

RMSE (root mean square error) for the proposed EOF NN-based scheme (NNKF-EOF) and include a260

comparison to the local analog data assimilation (LAF-EnKF). With a view to specifically analyzing261

the relevance of NN-based parametric covariance model, we also apply an ensemble Kalman filter262

with the trained dynamical model FPs . The reported results clearly illustrate the relevance of the263

proposed NN-based scheme for the assimilation of a single patch. The proposed NN-based scheme,264

which combines a NN-based formulation of the mean forecasting operator and of the associated265

covariance pattern, slightly outperforms the ensemble Kalman filters, while also significantly reducing266

the computational complexity induced by the generation of ensembles of size 500.267

5.2. Global interpolation performance268

We further evaluate the performance of the proposed schemes over the considered case-study269

region. Tab.2 report the mean forecasting RMS error of the proposed NN-based representation270

compared with local and global forecasting operator [14]. The proposed patch-level NN-based model271

outperforms the benchmarked approaches by about 5-15% in terms of interpolation RMSE, which272

stresses the relevance of mean dynamical model F .273

We report the mean interpolation performance in Tab. 3 and the time series of interpolation274

errors illustrated in Fig. 5. The proposed NN-based scheme (PB-NNKF-EOF) leads to very significant275

improvements with respect to the optimal interpolation in terms of RMSE and correlation coefficients276

for both the SST and its gradient, which emphasizes fine-scale structures (e.g., relative improvement of277
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Assimilation method Considered patch RMSE (°C)

Patch1 Patch2 Patch3 Patch4
LAF EnKF 0.50 0.25 0.22 0.39
Bi-NN-EnKF 0.55 0.23 0.22 0.30
Bi-NN-NNKF-EOF 0.46 0.20 0.19 0.27

Table 1. Patch-level interpolation experiment: RMSE of the reconstructed anomaly fields for the LAF EnKF
(local analog forecasting based ensemble Kalman filter), Bi-NN-EnKF (Bilinear residual neural net model (FPs )
used in an ensemble Kalman filter), Bi-NN-NNKF (Proposed NNKF based on a bilinear residual neural net
dynamical mean model).

Figure 3. Interpolation of the SST field on July 19 2015: first row, the reference SST, its gradient and the
observation with missing data (here, 82% of missing data); second row, interpolation results using respectively
OI, PB-VE-DINEOF, GAN-EnKF, LAN-ENKF, PB-NN-NNKF, PB-NN-NNKF-EOF; third row, gradient of the
reconstructed fields.
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the RMSE above 50% for missing data areas for the SST and its gradient). A clear gain is also exhibited278

w.r.t. analog data assimilation and PB-VE-DINEOF schemes with a relative gain greater than 20% in279

terms of RMSE for both the SST and its gradient. The same conclusion holds in terms of correlation280

coefficients close to 90% or above for all parameters for PB-NNKF-EOF scheme, all the other ones281

depicting correlation coefficients below 85% for SST gradient fields. Although the considered NN-based282

representation exploits non-overlapping patches, we still come up with significant improvements w.r.t283

AnDA schemes which involve a 50% overlapping rate between patches. This clearly illustrates the284

relevance of NN-based representation, which fully embeds the direct and inverse mappings between285

the SST field and its patch-level representation. Interestingly, Tab.3 also reveals the importance of286

the EOF-based parameterization of the NN-based covariance model (21) in the improvement of287

interpolation results w.r.t. AnDA schemes.288

We further illustrate these conclusions through interpolation examples in Fig. 3. The visual289

analysis of the reconstructed SST gradient fields emphasize the relevance of PB-NNKF-EOF scheme to290

reconstruct fine-scale details. While OI and PB-VE-DINEOF schemes tend to smooth out fine-scale291

patterns, the analog data assimilation may not account appropriately for patch boundaries. This292

typically requires an empirical post-processing step [16]. By contrast, the PB-NNKF-EOF scheme fully293

embeds this post-processing step through reconstruction layer Fr and learns its parameterization from294

data, which is shown here to greatly improve patch-based interpolation performance. The analysis of295

the spectral signatures leads to similar conclusions with the PB-NNKF-EOF scheme being the only one296

to recover significant energy level up to 50km.297

Model Forecasting RMSE (°C)

t + h t + 4h t + 8h

PB-NN 0.48 0.60 0.63
LAF 0.50 0.68 0.76
GAF 0.61 0.74 0.76

Table 2. Forecasting experiment for several prediction time steps

Model Entire map Missing data areas

RMSE Correlation RMSE Correlation

SST(°C) ∇SST(°C/°) SST ∇SST SST(°C) ∇SST(°C/°) SST ∇SST

PB-NNKF-EOF 0.33 0.13 99.87% 89.30% 0.35 0.10 99.85% 93.49%
PB-NNKF 0.51 0.18 99.75% 81.24% 0.51 0.18 99.71% 81.50%
LAF-EnKF 0.43 0.16 99.79% 84.41% 0.42 0.15 99.77% 86.73%
GAF-EnKF 0.48 0.19 99.74% 79.12% 0.48 0.18 99.72% 80.74%
PB-VE-DINEOF 0.54 0.20 99.68% 75.30% 0.54 0.21 99.66% 74.71%
OI 0.76 0.25 99.37% 60.31% 0.75 0.27 99.37% 55.73%

Table 3. SST interpolation experiment: Reconstruction correlation coefficient and RMSE over the SST time
series and their gradient.

6. Conclusion298

In this work, we addressed neural-network-based models for the spatio-temporal interpolation299

of satellite-derived SST fields with large missing data rates. We introduced a novel probabilistic300
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Figure 4. Radially averaged power spectral density of the interpolated SST fields with respect to the
reference SST.

Figure 5. Interpolation RMSE times series for the selected models.
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NN-based representation of geophysical dynamics. This representation, which relies on a patch-level301

and EOF-based representation, allows us to propagate in time a mean component and the covariance302

of the SST field. It makes direct the derivation of an associated Kalman filter for the spatio-temporal303

interpolation of SST fields. Our numerical experiments stress a significant gain in interpolation304

performance w.r.t. optimal interpolation and other state-of-the-art data-driven schemes, such DINEOF305

[8] and analog data assimilation [14,16].306

Further work could explore the application of the proposed framework to other sea surface307

geophysical tracers, including multi-source and multi-modal interpolation issues. SLA (Sea Level308

Anomaly) fields could provide an interesting case-study as the associated space-time sampling is309

particularly scarce and multi-source strategies are of key interest [35].310
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