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Abstract—A video with heterogeneous spatial quality is a
video where some regions of the frame have a different quality
than other regions (for instance, a better quality could mean
more pixels and less encoding distortion). Such a
quality-variable encoding is a key enabler of Virtual Reality
application, with 360-degree videos. So far, the main technique
that has been proposed to prepare spatially heterogeneous
quality is based on the concept of tiling. More recently,
Facebook has implemented another approach: the offset
projection where more emphasis is put on a specific direction of
the frame. In this paper, we study quality-variable 360-degree
videos with two main contributions. First, we provide the
theoretical analysis of the offset projection and show the impact
of the parameter settings on the video quality. Second, we
propose another approach which consists in preparing the
360-degree video from a Gaussian pyramid of downscaled and
blurred versions of the video. We perform an evaluation of
tiling, offset and Gaussian-based approaches in representative
scenarios of heterogeneous spatial quality in 360-degree videos
and highlight the main trade-off to consider when
implementing these approaches.

I. INTRODUCTION

To deliver 360° videos, the content providers implement
viewport-adaptive streaming solutions [2, 13, 15], where the
delivered video is characterized by heterogeneous spatial
quality: some regions of the frame have a better quality than
others [4]. The motivation is twofold: (i) display a
high-quality video in the viewport of the client, and (ii)
reduce the delivered bit-rate by encoding less information in
the regions that are unlikely to be watched.

In a video with a spatially heterogeneous quality, each
pixel is associated with a target quality, which ranges in a
given ordered set. The rationale behind the mapping between
quality and pixels, whether it comes from a statistical
analysis of previous sessions [3, 11, 17] or from a content
analysis [10], is out of the scope of this paper. We assume
that the content provider has defined a small set of qualities
and a set of regions consisting of contiguous pixels with the
same quality. An ideal implementation of spatially
heterogeneous quality in a 360° video is characterized by:
Precision The visual quality of a region in the frame reflects

the specifications, both in terms of region boundaries and
relative quality with respect to the quality in other regions.

Smoothness The pixels at the boundary of two contiguous
regions enable a smooth transition between both regions.

Encoding Efficiency The bit-rate budget that is necessary to
implement the spatially heterogeneous quality is low with
respect to the obtained visual quality of the regions.

Universality The process of preparing the video can be
implemented and widely deployed.

Requirement The resources (in particular, computing power
and memory) that have to be provisioned to prepare the
video are available in standard media servers.

To prepare heterogeneous spatial quality in videos, the
concept of tiling has received the most attention. Tiling is
offered by the motion-constrained tile sets (MCTS) feature
in the High Efficiency Video Coding (HEVC)
encoder [5, 9, 14, 19]. The key idea of tiling is to spatially
cut the video frame into non-overlapping blocks of pixels,
called tiles, and to encode them independently [12]. Before
streaming the video, a quality for each tile is selected
depending on its location and the current quality-region input
specifications [16]. The drawbacks of tiling become evident
when analyzed with regards to the aforementioned
fundamental characteristics. First, the precision of tiling
depends on the number of tiles. A large number of tiles
comes at the price of a lower encoding efficiency [1] and an
increased resource requirement (high signalling overhead and
heavier content delivery network (CDN) management).
Moreover, the visual quality changes abruptly at the
boundary of two contiguous tiles. Finally, tiling has a low
universality. So far, the only fast open-source HEVC encoder
to implement tile encoding is Kvazaar [7]. Hence, despite
being the most widely used method, tiling is not an ultimate
solution, and the preparation of heterogeneous spatial quality
in 360° videos is still an open research question.

To overcome the limitations of tiling, in this paper we
propose two new approaches that implement heterogeneous
spatial quality in 360° videos:

Gaussian Pyramid Composition An input video is
processed pixel-wise using multiple decreasing qualities,
arranged in a Gaussian pyramid. For each pixel in the
output video, the content provider picks a pixel from a
Gaussian level with respect to the expected quality at this
pixel. Such a pixel-wise approach has never been explored
for preparing heterogeneous spatial quality in 360° videos.

Formal Study of Offset Projection The idea consists in
modifying the sphere-to-plane projection before video
encoding [20]. The content provider applies a patch to the
projection to map more spherical pixels to a given area on
the planar image. Despite the interest in this approach, the
impact of the offset parameters on the visual quality after
video encoding has never been formally studied.



We study these two approaches by introducing their
mathematical principles, by analyzing their impact on the
video visual quality, and by comparing them to the
traditional tiling approach. In essence, this paper shows that
three approaches exist to implement heterogeneous spatial
quality in 360° videos: by leveraging encoder distortion (the
tiling approach), by blurring images (the Gaussian approach),
and by unequal pixel sampling (the offset approach). We
reveal their respective advantages and weaknesses as well as
open perspectives for this research challenge.

II. DEFINITIONS

The input of the content provider is a 360° spherical
video, which is captured by an omnidirectional camera
(either two fish-eye cameras, or a set of multiple stitched
cameras). The content provider aims to generate a video,
which is projected into a two-dimensional rectangular area
(in this paper, we focus on the equirectangular projection
but our results can be extended to other projections) and is
then encoded with regards to some specific characteristics
related to heterogeneous spatial quality.

The concept of heterogeneous spatial quality is defined by
two input parameters. First, we define Q as an ordered set of
qualities. This set is not formally associated with any precise
measurable scale. Following the definition from MPEG [6], the
quality is a rather vague indicator. We thus consider that there
exist Q qualities in Q, denoted qi for i ∈ {0, 1, . . . , Q − 1},
where q0 is the lowest quality, and qQ−1 is the best quality.

Second, we define a set of regions, which are sets of
contiguous pixels in a frame. The idea behind the concept of
quality-region is the following. The content provider
considers that the pixels in a given region have
approximately the same probability to be displayed in the
viewport, so they must be encoded at the same quality, i.e.
the higher the probability to be displayed in the viewport,
the higher the quality. Corbillon et al. [4] have considered a
single region per video and have represented this region as a
compact area on the sphere (i.e. spherical rectangle). Here,
we do not restrict the regions to spherical rectangles. On the
contrary, we assume that the regions may have any shape.
We denote the set of regions by R. The regions do not
overlap and cover the whole frame. The quality of a region
R ∈ R is a spatial function denoted q(R) ∈ Q. The qualities
of any two regions in R can be either different or the same.

III. GAUSSIAN PIXEL-WISE ENCODING

A. Background on Gaussian Pyramids

Image pyramids are multi-scale representations of an
image. In particular, the Gaussian pyramid has been widely
used to carry out various image processing tasks. The
Gaussian pyramid is constructed using a function, denoted
downSample(·). The function downSample (I, f(·))
performs two operations as follows: (i) blurs an input image
I using the spatial weighing function f(·) and (ii) reduces
both dimensions of image I by a scale of 2, i.e.
(W1, H1) = (W/2, H/2), where W × H is the original

resolution of I . The blurring is carried out by convolving
the input image I with the function f(·), also referred to as
the blurring kernel. To generate the Gaussian pyramid of
image I , I is convolved with a Gaussian kernel, i.e. each
pixel of the blurred image G(1) is computed as a weighted
average of the pixels of I in a 5×5 neighbourhood, as
follows:

G(1)(i, j) =

2∑
x=−2

2∑
y=−2

f(x, y)I(2i+ x, 2j + y) (1)

f(x, y) = ω(x)ω(y) (2)
ω(·) = (0.25− p/2, 0.25, p, 0.25, 0.25− p/2), (3)

where the parameter p ∈ [0.3, 0.6] controls the shape of the
Gaussian kernel f(·). Once the blurred image G(1) is
computed using Section III-A, the function
downSample (·, f(·)) downsamples image G(1) by rejecting
even rows and even columns, which reduces the resolution
of the resulting image, g(1), in half. Both the Gaussian blur
and function downSample(·) can then be applied to the
resulting image g(1) in order to compute a second scale of
the input image I . The sequence of images
G = {g(0), g(1), . . . , g(N)}, where g(0) = I and
g(i) = downSample(g(i−1), f(·)) for i ∈ (1, N ], denotes the
Gaussian pyramid of image I . The resolution of each image
in the sequence G is twice as small as its predecessor.

We denote the inverse function of downSample(·) as
upSample(·). The function upSample(g(i+1), f(·)) first
upscales the image g(i+1) to dimensions (Wi, Hi), such that
(Wi, Hi) = (2Wi+1, 2Hi+1) (Wi × Hi being the resolution
of the Gaussian level i) by injecting zero even rows and
columns. Then, the resulting upscaled image Gi+1 is
convoluted with a Gaussian kernel f(x, y), identical to the
one used in function downScale(·), as follows:

G(i+1)(i, j) = 4

2∑
x=−2

2∑
y=−2

f(x, y)Gi+1

([
i− x
2

]
,

[
j − y
2

])
,

(4)
where [a] denotes the nearest integer value to a.

B. Pixel-Wise Video Composition

We propose a multi-scale spatial approach for
implementing heterogeneous spatial quality in 360° videos
based on the Gaussian multi-scale representation. It consists
in two processes: an offline process to construct the
Gaussian pyramid, and an online process to compose the
video version with heterogeneous spatial quality.
Gaussian Pyramid Construction. For a given input video,
we compute the sequence {g(i)}Ni=0, where each element
g(i) contains the ith layer of the Gaussian pyramid,
constructed for all frames of the video. We refer to {g(i)}Ni=0

as the Gaussian pyramid of the original 360° video. The
levels of the Gaussian pyramid represent the degradation of
the video quality in N + 1 multi-scale levels. Then, we
upscale each level g(i) to the resolution of the original video.
Each level G(i) of the upscaled Gaussian pyramid is the
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Figure 1: Construction of the Gaussian pyramid (left part)
and video composition (right part).
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Figure 2: The bit-rate and distortion distributions for the
first four levels of the upscaled Gaussian pyramid.

result of upscaling and convolving with the Gaussian kernel
i times. This process, illustrated in Figure 1 (left part), leads
to a certain amount of redundant information, which is
exploited by the encoder to better compress the upsampled
videos. To analyze the bit-rate gain, we chose three
representative 1 min-long 360° equirectangular videos [3]
and we computed their upscaled Gaussian pyramids. Then,
we encoded each level of the upscaled Gaussian pyramids
using a constant Quantization Parameter (QP) value. In
Figure 2, we present the distributions of the video bit-rates
for each Gaussian level as well as the respective quality
distortions. We show the efficiency of the Gaussian approach
for generating videos at variable qualities and bit-rates by
applying basic pixel operations.
Create Quality-Variable Video. The upscaled Gaussian
pyramid {G(i)}Ni=0 is then exploited to create
quality-variable videos as illustrated in Figure 1 (right part).
We use a linear optimization to map the qualities, provided
by the function q(R), to a given upscaled level G(i). It takes
into account the overall video bit-rate budget and chooses
the most appropriate Gaussian levels with respect to this
budget. Let φ(·) be a function that, for every pixel, maps
q(R) to optimal Gaussian levels given a bit-rate budget B.

The video composition, prepared at the server side, is
computed from the upscaled Gaussian pyramids for each
pixel (u, v) as follows:

OG(u, v) = G(φ(q(x,y),B))(u, v), (5)

where {OG} is the output video with spatially-varying quality.

C. Analysis
The Gaussian-based pixel-wise video composition

approach requires the server to first compute the N + 1
levels of the Gaussian pyramid and encode them (for optimal
storage). This process can be done only once, as the pyramid
can then be re-used to create any number of different
quality-variable videos. The preparation of a quality-variable
video requires that the server decodes min (N + 1, |R|)
Gaussian pyramid levels, performs the spatial operation to
compose the spatially heterogeneous video, and encodes it.
To sum up, the number of operations per video composition
is: (i) decoding - min (N + 1, |R|) times; (ii) one spatial
video composing; (iii) one video encoding.

IV. OFFSET PROJECTION

The offset transformation [8] is a bijective
sphere-to-sphere transformation, which increases the quality
of a 360° video near an emphasized direction

#»

b . When two
pixels on the sphere are close to (resp. far from) the
emphasized direction

#»

b , the offset transformation decreases
(resp. increases) the angular distance between the two pixels.
The offset projection is a composition of a sphere-to-plane
projection with an offset transformation. First, the spherical
image is distorted using the offset transformation, then the
distorted spherical image is projected to a plane using a
sphere-to-plane projection. The offset projection maps on the
plane more pixels close to

#»

b and fewer pixels far from
#»

b .
The spatial sampling (thus, the quality) of the video
decreases when the angular distance to

#»

b increases.

A. Theory
The offset projection has been experimentally studied by

Zhou et al. [20] in the case of the cube-map projection. It is
characterized by the following parameters: a projection
function f : R3 → R2, an emphasized direction

#»

b , and an
offset amplitude α. The projection function f can be any
sphere-to-plane projection. The emphasized direction

#»

b is a
unit vector, pointing to the direction of space emphasized by
the offset projection, and α is a real value in [0, 1).

A sphere-to-plane projection maps a spherical pixel,
characterized by a unit vector #»a pointing from the origin of
the sphere to the pixel, to a point (u, v) on the plane.

The offset transformation F : R3 → R3 distorts the sphere
by mapping the vector #»a to the vector

(
#»a + α

#»
b
)
/
∥∥∥ #»a + α

#»
b
∥∥∥.

The offset projection g : R3 → R2 is then given as follows:

g( #»a ) = f ◦ F ( #»a ) = f
((

#»a + α
#»
b
)
/
∥∥∥ #»a + α

#»
b
∥∥∥) (6)

In Equation (6), both projection functions f and g transform a
given viewing direction #»a into planar coordinates (u, v). The
inverse offset projection g−1, transforming coordinates (u, v)
into a viewing direction #»a , is defined as follows:

g−1(u, v) = F−1 ◦ f−1(u, v) (7)

where f−1 is the plane-to-sphere projection, and F−1 is:

F−1( #»a ) =

(
#»a · α #»

b +

√
( #»a · α #»

b)2 − α+ 1

)
#»a − α #»

b (8)
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with · being the inner vector product in R3.
To study how the offset projection continuously degrades

the quality of the spherical image, we measure the sampling
density of the projection on the sphere. The sampling density is
a number that represents the number of pixels per surface unit
on the sphere. It can be computed for any point on the sphere.
If we consider only a finite number of pixels W ×H on the
plane, then the planar image can be split into W ×H similar
squares. A point p on the sphere is projected inside a unique
square sp on the plane. The sampling density at point p on
the sphere can be approximated by the inverse of the surface
of the square sp, once sp is projected back on the sphere. In
what follows, σα,r denotes the sampling density function for
the equirectangular offset projection with an amplitude α, an
emphasized direction

#»

b = (1, 0, 0) and a resolution r(W×H).
Hereafter, r ∈ [0, 1] refers to the resolution ratio.

Increasing the amplitude α for a constant r increases the
sampling near the emphasized direction and decreases it near
the direction opposite

#»

b . Put differently, when α increases,
more pixels from the plane are assigned to spherical angles
near the emphasized direction and less in the opposite
direction. Figure 3 depicts the offset sampling density
compared to the sampling density at the same position in the
original video, i.e. it depicts σα,r/σ0,1. When α = 0, the
sampling density ratio is constantly equal to r. As illustrated
by the curve for r = 0.36 in Figure 3, when α tends towards
1, the sampling density ratio tends toward 0 for points farther
than 90° from

#»

b , and tends towards 4r in the emphasized
direction

#»

b (i.e. tends towards 1.44 for r = 0.36). The latter
means that the offset projection with an amplitude α > 0
cannot increase the sampling σ0,r in the emphasized
direction more than four times the sampling for α = 0.1

Furthermore, when α > 0, the sampling decreases with the
distance from the

#»

b and the transition between the emphasized
and non-emphasized regions is smooth. Hereafter, we define
the Quality Emphasized Region (QER) for the offset projection
as being the zone of the video for which the sampling density
ratio is at least equal to the original sampling ratio (in Figure 3,

1Due to page limitations, the demonstration is not in the paper.

the original sampling ratio is constant and equal to 1). For a
given resolution ratio r, there exists at most one value of α
such that the angular size of the QER is equal to a given value.
For instance, Figure 3 shows that for r = 0.64, a region of
angular size 90° (i.e. 45° from

#»

b) is a QER when α = 0.37
(resp. α = 0.98 for r = 0.36 and α = 0.16 for r = 0.81).

B. Experiments and analysis

We now evaluate the impact of r and α on the visual
quality of the videos. So far, only Zhou et al. [20] have
studied the quality distortion caused by the offset approach.
The authors compare the video quality degradation of the
offset cube projection to the quality of the original
equirectangular video. Their experiments show that, for a
given α, the offset cube projection produces videos with
similar quality as a video at a higher resolution within a
certain angular distance from the offset center. However,
Zhou et al. do not elaborate on the choice of α and, more
importantly, how this choice influences the quality of the
offset videos. Hereafter, we present a more thorough analysis
of the quality distortion, caused by the offset
(equirectangular) projection given various video resolutions
and various values of the offset amplitude.

We applied the offset equirectangular projection on three
360° videos using three resolution ratios, i.e.
r ∈ {0.81, 0.64, 0.36}, and five amplitude values, i.e.
α ∈ {0, 0.25, 0.5, 0.75, 0.9}, for each resolution ratio r. To
reduce the content-related bias in the quality measurement,
we computed the offset projection eight times per video by
applying different sphere rotations. To measure the
distortion, introduced by the offset projection, we computed
the Peak Signal to Noise Ratio (PSNR) between viewports
from both the original equirectangular video and the offset
videos. We extracted viewports at varying angular distances
from the emphasized direction

#»

b to illustrate the relation
between quality degradation and distance to the offset center.

Figure 4 shows the PSNR quality curves for each considered
resolution ratio r and each amplitude α. The curves for α = 0,
i.e. when no offset is applied, are referred to as baselines.
Each baseline measures the distortion caused by the resolution
decrease (by r). The PSNR remains constant regardless of
the distance to the spherical center. In contrast, for α > 0,
the video quality varies depending on the angular distance to
the emphasized direction

#»

b . The PSNR curves show that, for
α > 0, the quality of the viewports close to

#»

b is higher than
the baseline quality. The farther we get from the center of
emphasis, the higher the distortion.

Furthermore, for all resolution ratios r, the more we
increase the amplitude α, the more we improve the video
quality near the emphasized direction

#»

b and the more we
degrade the quality near the opposite direction to

#»

b . The
plots in Figure 4 show that the quality curves intersect the
baseline at smaller angles when α increases. For instance,
the curve for α = 0.5 intersects the baseline at 60°, whereas
the curve for α = 0.9 intersects the baseline at 40°. The
latter means that the higher the amplitude α, the smaller the
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Figure 4: PSNR between viewports, extracted from the original equirectangular video, and viewports, extracted from
the equirectangular offset projection for various values of the amplitude α and three resolution ratios r.

emphasized region. As shown in Figure 3, for high
amplitude values, e.g. α = 0.98, most of the samples are
concentrated in a small region, centered at the emphasized
direction

#»

b , and there are less samples for regions away
from the center of emphasis. This explains the rapid decrease
in the quality when the distance from

#»

b increases.

V. EVALUATION

In Table I, we summarize the main differences between
the three approaches with regards to four out of the five
main characteristics, introduced in Section I. Due to page
limitations, the analysis of the computing and storage
requirements for composing 360° videos as well as the user
reaction to abrupt quality changes are left for future work.
Here, we focus on the encoding efficiency by measuring the
visual quality of the videos created using the three
approaches, for a similar overall bit-rate.

Tile Offset Gaussian

Precision depends on nb. tiles low high
Smoothness no yes no
Universality encoding issue yes yes

Requirements depends on nb. tiles low depends on nb. videos

Table I: Summary of main characteristics

Visual Quality Metric. We lack a metric to capture the
heterogeneity of quality in a 360° video. To fill this gap, we
created a new metric based on the Spherical Peak Signal to
Noise Ratio (S-PSNR) Yu et al. [18]. The S-PSNR first maps
each point on the sphere to a location in both the original
and the encoded videos. Then, the pixel values,
corresponding to these locations are used to determine the
distortion between the two pixels. Finally, the errors for all
spherical points are averaged to compute the S-PSNR.
However, the concept of heterogeneous spatial quality in
360° videos takes its root from the fact that not all spherical
pixels are equal (as some pixels have higher probability to
be in the clients’ viewports). To capture this heterogeneity,
we propose to weigh the error of each pixel with respect to
its expected quality. We thus use our quality function q(R)
to weigh the S-PSNR and obtain a new weighted metric,

denoted WS-PSNR. The highest weight is assigned to
spherical points which, after projection, lie in the region with
the highest quality. The weights of the spherical points lying
within the other quality regions decrease exponentially.

To sum up, the S-PSNR measures the average quality of
the entire encoded video, whereas the WS-PSNR measures
the quality with respect to the given quality regions. We
combine both metrics to obtain an interpolated quality
estimation, denoted IS-PSNR.

Quality Regions. We consider two configurations of quality
regions (Figure 5), which represent common viewport
movements [4]. The �-shape is common for a video where
viewers stably focus on a single location, whereas the
V-shape may appear when the object of interest is moving.

Video Preparation. We use three equirectangular 360°
videos from a public dataset [3] (rollercoaster, venice, and
timelapse). Their resolution is 3840×2160 pixels (4K). We
use the Kvazaar encoder [7] with three bit-rate targets:
6 Mbps, 9 Mbps and 14 Mbps. Specific settings include:
Tiles We set 8×8 tiles. We encode four tiled videos with four

bit-rate targets (3 Mbps, 7 Mbps, 13 Mbps and 21 Mbps). We
extract each tile from each tiled video. To obtain a quality-
variable video matching the quality regions and the bit-rate
target, we select each tile from one of the four qualities so
that the overall bit-rate is close to the target.

Offset We chose two resolutions: 3686×1944 (r = 81% of
the original video) and 2457×1296 (r = 36%). The offset
intensity α is set so that a 90° of the QER (resp. 50°) is
oversampled for �-shape (resp. V-shape).

Gaussian The Gaussian pyramid is built by halving the video
dimensions and applying a Gaussian kernel. The final video
is composed from pre-selected upscaled Gaussian levels.

Result Analysis. In Figure 5a (resp. in Figure 5b), we show
the IS-PSNR for the three bit-rate targets and for the �-shape
(resp. V-shape) quality regions. The lowest and the highest
values of the bars correspond to the S-PSNR and the WS-
PSNR respectively. In Figure 6, we show snapshots of the back
viewports and thus highlight the different approaches (blurring,
distorting, and reducing bit-rate by encoding).

First, we observe that all approaches manage to prepare 360°
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videos with heterogeneous qualities. In each configuration, the
visual quality in the emphasized regions, measured by the WS-
PSNR), is higher than the visual quality, measured by the S-
PSNR. The difference between both metrics is greater or equal
to 10 dB, which is a significant gap.

The offset approach is relevant for low encoding bit-rates,
but it does not benefit from extra bit-rates. Also, the offset is
sensitive to the viewport location, with large quality range
between the S-PSNR and the WS-PSNR, especially at low
resolutions. To obtain a high quality in a large viewport
despite the low resolution, the price we pay is a severely
degraded quality in the direction opposite

#»

b , as epitomized
in Figure 6. The Gaussian approach is also characterized by
large quality ranges. The latter is a result of the significant
quality gap between G(0) and G(1) (Figure 2). The gain,
obtained by exploiting the blurred Gaussian levels, enables
the encoder to maintain very high quality in the viewport
without decreasing the resolution. The Gaussian approach
never reaches the low quality levels, observed for the offset.
The Gaussian approach is sensitive to the video bit-rate: the
quality increases steadily with the increase of the bit-rate
budget. Finally, the tiling approach appears more stable. It
offers a consistent good quality in the best cases and the
quality never reaches very low levels (unlike the offset). The
back viewport in Figure 6 has also a good visual quality.
However, tiling requires specific encoders, and the abrupt
changes between tiles can degrade user’s experience.

VI. CONCLUSION

In this paper, we study the preparation of heterogeneous
spatial quality in 360° videos. We propose a novel method,

based on the Gaussian pyramid, and we analyze the
theoretical principles of the offset projection. We identify
three families of approaches: a quality degradation by the
encoder (tiling), a Gaussian kernel (Gaussian), and an
unequal projection (offset projection). We compare the three
approaches in terms of encoding efficiency.

This paper is the first one to formally study heterogeneous
spatial quality in 360° videos. Each of the proposed
approaches deserves a deeper analysis to better understand
the impact of the settings on the overall performance. Then,
the integration of the propositions in the global delivery
chain of viewport-adaptive streaming solutions also deserves
a deeper analysis with respect to the constraints of the
services, including definition of quality regions, live
requirements, and implementation in CDN.
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Performance evaluation of Kvazaar HEVC intra encoder on Xeon Phi
many-core processor. In IEEE GlobalSIP, 2015.

[8] E. Kuzyakov. End-to-end optimizations for dynamic streaming. Blog,
Feb 2017. https://code.facebook.com/posts/637561796428084.

[9] J. Le Feuvre and C. Concolato. Tiled-based Adaptive Streaming using
MPEG-DASH. In ACM MMSys, 2016.

[10] J.-S. Lee, F. De Simone, and T. Ebrahimi. Efficient video coding based
on audio-visual focus of attention. Journal of Visual Communication
and Image Representation, 22(8):704–711, 2011.

[11] W. Lo, C. Fan, J. Lee, C. Huang, K. Chen, and C. Hsu. 360° video
viewing dataset in head-mounted virtual reality. In ACM MMSys, 2017.

[12] K. M. Misra, C. A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and
M. Zhou. An overview of tiles in HEVC. J. Sel. Topics Signal Proc., 7
(6):969–977, 2013.

[13] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck. An
HTTP/2-Based Adaptive Streaming Framework for 360 Virtual Reality
Videos. ACM MM, 2017.

[14] Y. Sánchez, R. Skupin, and T. Schierl. Compressed domain video
processing for tile based panoramic streaming using HEVC. In IEEE
ICIP, 2015.

[15] K. K. Sreedhar, A. Aminlou, M. Hannuksela, and M. Gabbouj.
Viewport-adaptive encoding and streaming of 360-degree video for
virtual reality applications. In IEEE ISM, 2016.

[16] H. Wang, V.-T. Nguyen, W. T. Ooi, and M. C. Chan. Mixing Tile
Resolutions in Tiled Video: A Perceptual Quality Assessment. In ACM
NOSSDAV, 2014.

[17] C. Wu, Z. Tan, Z. Wang, and S. Yang. A dataset for exploring user
behaviors in VR spherical video streaming. In ACM MMSys, 2017.

[18] M. Yu, H. Lakshman, and B. Girod. A Framework to Evaluate
Omnidirectional Video Coding Schemes. In IEEE ISMAR, 2015.

[19] A. Zare, A. Aminlou, M. Hannuksela, and M. Gabbouj. HEVC-
compliant tile-based streaming of panoramic video for virtual reality
applications. In ACM MM, 2016.

[20] C. Zhou, Z. Li, and Y. Liu. A measurement study of occulus 360 degree
video streaming. In ACM MMSys, 2017.

https://code.facebook.com/posts/637561796428084

	Introduction
	Definitions
	Gaussian Pixel-Wise Encoding
	Background on Gaussian Pyramids
	Pixel-Wise Video Composition
	Analysis

	Offset projection
	Theory
	Experiments and analysis

	Evaluation
	Conclusion

