
HAL Id: hal-01894535
https://imt-atlantique.hal.science/hal-01894535

Submitted on 16 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing the Performance of a Microservice-Based
Application Deployed on User-Provided Devices

Bruno Stévant, Jean-Louis Pazat, Alberto Blanc

To cite this version:
Bruno Stévant, Jean-Louis Pazat, Alberto Blanc. Optimizing the Performance of a Microservice-
Based Application Deployed on User-Provided Devices. ISPDC 2018 - 17th International Symposium
on Parallel and Distributed Computing, Jun 2018, Genève, Switzerland. pp.133-140, �10.1109/is-
pdc2018.2018.00027�. �hal-01894535�

https://imt-atlantique.hal.science/hal-01894535
https://hal.archives-ouvertes.fr

Optimizing the performance of a microservice-based
application deployed on user-provided devices

Bruno Stévant
IMT Atlantique, IRISA

bruno.stevant@imt-atlantique.fr

Jean-Louis Pazat
Univ Rennes, Inria, CNRS, IRISA

jl.pazat@irisa.fr

Alberto Blanc
IMT Atlantique, IRISA

alberto.blanc@imt-atlantique.fr

Abstract—It is now feasible for consumers to buy inexpensive
devices that can be installed at home and accessed remotely
thanks to an Internet connection. Such a simple “self-hosting”
can be an alternative to traditional cloud providers, especially
for privacy-conscious users. We discuss how a community of
users can pool their devices in order to host microservices-based
applications, where each microservice is deployed on a different
device. The performance of such an application depends heavily
on the computing and network resources that are available and on
the placement of each microservice. Finding the placement that
minimizes the application response time is an NP-hard problem.
We show that, thanks to well known optimization techniques
(Particle Swarm Optimization), it is possible to quickly find
a service placement resulting in a response time close to the
optimal one. Thanks to an emulation platform, we evaluate the
robustness of this solution to changes in the Quality of Service
under conditions typical of a residential access network.

Index Terms—Edge computing, Performance modelization,
QoS-aware placement, Particle Swarm Optimization, Microser-
vice application design

I. INTRODUCTION

Over the last decade, the number of public cloud providers
has increased significantly. It is now possible to rent resources
located in one or more data-center. Such an infrastructure can
satisfy the needs of a large number of users, but it does have
the downside that data must be moved (and often stored) in
these shared data-centers, raising doubts about the privacy of
the data and, potentially, its ownership (for instance, in the
case of providers going out of business).

Data-centers are not alone in taking advantage of techno-
logical progress: user devices, including personal computer
and set-top boxes, have ever increasing computing and storage
capabilities. Computer networks offer higher data rates to the
wider public, with the spread of Fiber To The Home (FTTH)
solutions and high speed wireless networks. Thanks to all this,
it is conceivable for the devices hosted on the user premises to
offer services to their owners, even remotely. Such a solution
has the added advantage of addressing the data privacy and
ownership issues mentioned above.

An obvious shortcoming of such an approach is that it
introduces two single points of failures, namely the user device
and the corresponding network connection. Either one can
fail, rendering the service unavailable remotely. While modern
hardware is reasonably reliable, such a solution is no match
for the public cloud providers that can offer highly available
services thanks to their redundant infrastructure.

A possible solution to overcome these limitations is for sev-
eral users to cooperate, by pooling their individual resources to
form a larger (redundant) system. A few devices (for instance
between 10 and 20) can already be enough to significantly
increase the availability and, potentially, the performance with
respect to a single device. As an example, let us consider
a sport club, whose members would like to share pictures
and other materials related to the club activities. One member
decides to use the storage space available on one of his devices
connected at home to let other members store and retrieve
their photos. When comparing this solution with the service
provided by a public platform, two limitations stand out.
First, as these devices are provisioned for individual usage,
they might not have enough local resources (CPU, storage,
network) for a larger number of users. In our example, the
storage space and the residential network will become bottle-
necks as members of the club are uploading and browsing
more photos. The second limitation comes from the lower
availability of these on-premise devices. The photo-sharing
storage will be unavailable anytime the device is powered
off or experiencing a network outage. If multiple members of
the sport club are willing to share their devices and network
connectivity, they could significantly improve the situation,
provided they have a large enough variety of network providers
and usage patterns. Extended functionalities like generating
thumbnails and presenting them in a web gallery can be
offered to the community as the different devices contribute to
the application with their computing and networking resources.

Members of the community will fully benefit from the
cooperation between the devices as the application can be
distributed over these devices. Many frameworks for distribut-
ing applications over user-provided devices have been already
proposed, such as Cloud@Home[6], Nebulas[4], Community
Cloud[13] or CNMC[17]. These solutions aim at creating an
Infrastructure-as-a-Service (IaaS) interface on top of the user-
provided devices where applications embedded inside virtual
machines can be deployed and managed the same way as in
a data-center. Such solutions however tends to be complex as
they have to adapt to devices and networks which are much
more heterogeneous and with a lower availability rate than the
infrastructure of a data-center.

In this paper we focus on a higher level solution where the
application is based on a microservice architecture[11]. In such
an architecture, each basic functionnality of the application is

provided by a separate microservice. The application can be
considered as a composition of these different microservices.
Distributing the application on the user-provided devices is
then possible by deploying each microservice on the different
devices. Once each microservice is deployed and accessible
from any other devices, the composition of these services
offers a fully functional application.

Such a distribution solution is very flexible as many possible
placements of the services of the application are possible. The
performance of application is however highly dependent of the
chosen placement. Each service may indeed be deployed on
devices with CPU and network resources that are insufficient
for the task handled by the service. Finding the devices where
to deploy the microservices which result in the optimal per-
formance of the application is a difficult problem. The choice
of a placement of the service has to match the requirements
of the services and the resources available on the devices.

As a first contribution of this paper, we describe in Sec-
tion III a model to evaluate the performance of the application
depending on the capabilities of devices chosen for hosting the
microservices. In section IV we define the problem of finding
the placement of the services that optimize the performance
as defined by our model. The Particle Swarm heuristic is used
to find acceptable solutions to this problem in constant time.
A second contribution of this paper is the evaluation of the
results of this heuristic on a platform emulating user-provided
devices interconnected by a network with similar capabilities
to residential networks. We demonstrate in Section V that with
relatively little information on the infrastructure and on the
application, the heuristic can find good solutions close to 15%
of the optimal performance.

II. A CONCRETE EXAMPLE: A PHOTO SHARING
APPLICATION

In this paper, we consider a photo sharing application,
allowing users to upload their photos and browse a web gallery
with thumbnails of the stored photos. Such an application
could be used, for instance, by the people belonging to a
sport club. As Figure 1 (a) shows, we have implemented the
application using four microservices:
• WebUI (UI): provides a web photo gallery with thumb-

nails and a form to upload photos.
• PhotoHub (PH): stores the photos.
• ThumbHub (TH): produces the thumbnail of a photo by

resizing the original photo.
• MetaHub (MH): stores the photo metadata.
It is important to note that the microservices are inter-

dependent: in order to accomplish a task, a microservice
may need to call other services to get some data or perform
other tasks. For example, the ThumbHub service relies on the
PhotoHub service to retrieve the original bitmap of the photo
and on the MetaHub service for the metadata of the photo.

We want to distribute these microservices on different user-
provided devices, characterized by heterogeneous CPU and
network capabilities. Figure 1 (b) shows a representation of
these devices interconnected by the Internet. Each device

offers a different amount of CPU resources, depending on
its hardware profile. The residential access networks that
connect the device to the Internet also have heterogeneous
capabilities in terms of bandwidth and latency, depending on
the technology used by the access network (DSL or Fiber).

Figure 1 (c) gives an example of a deployment of the
application over these devices. Some devices are selected to
host a service of the application, for example by using a
placement algorithm such as the one that we describe later.
Once the services are deployed, an external registry service,
not described in this paper, is used to make the deployed
services known and reachable from the other services. The
services, being able to communicate directly with each other,
are then capable of cooperating in order to offer all the
functions of the photo sharing application.

Many deployments are possible, each one potentially re-
sulting in a different performance of the application. The time
for a service to handle a request depends on the computing
capabilities of the hosting device, especially when this task
requires some computations. For example, the ThumbHub
service, which has to generate thumbnails by resizing an photo,
will perform better if located on a device with more CPU
resources.

As the microservices communicate through a wide-area
network, the time spent in forwarding the requests and re-
sponses over the network can have a significant impact on
the performance of the application. In the photo sharing
application, given that both the UI and the TH services use the
PH service, the available bandwidth on the links connecting
them to the PH service can influence heavily the performance
and hence the user experience. Compared to the PH service,
the MH service requires the transfer of a smaller amount
of data, namely the metadata of the photos. This service is
therefore more impacted by the network latency. Table I gives
an overview of the impact of the available CPU resources and
of the network Quality of Service (QoS) parameters on the
performance of the different services.

For these reasons, the global performance of the application
depends on the placement of each microservice. Deciding on
which devices one should deploy the microservices, in order
to maximize the performance of the application, is a difficult
problem. The choice of a placement should consider the
requirements of each microservice in terms of computing and
communication resources, as well as the interactions between
the different services.

III. PERFORMANCE METRICS

In this section we compute the response time of the appli-
cation, from the point of view of its users. That is, the time
needed to accomplish different tasks, such as displaying the
photo gallery, downloading (or uploading) a photo. We model
the performance of the application as a weighted average of
the response times of all the possible user actions. This is a
proxy for the Quality of Experience (QoE) experienced by the
user [8].

UI PH

TH

MH

(a) Microservices-based application

Internet

DSL

Fiber

CPU

(b) User-provided devices with different capabilities

Internet

UI

PH

UI

TH

UI

MH

(c) Deployment of microservices on devices

Fig. 1: Deployement of an application based on microservices over user-provided devices.

Service

Avg.
computation
time per
request (ms)

Impact of
CPU resources

Avg. request
size (Bytes)

Impact of
downstream
bandwidth

Avg. reply
size (Bytes)

Impact of
upstream
bandwidth

Impact of
network
latency

Metahub 10 Low 100 Low 200 Low High

PhotoHub (get
photo) 10 Low 100 Low 5M High Low

PhotoHub (put
photo) 10 Low 5M High 100 Low Low

ThumbHub 100 High 100 Low 100K Medium Medium

TABLE I: Impact of CPU resources and network QoS on the performance of the services

Such an approach requires knowing the response time of
each microservice, on which device each microservice is
running, as well as the characteristics of the network paths
(available bandwidth and delay) between the devices hosing
the microservices. The response time of each microservice
depends itself on the resources (CPU, memory) available on
the device on which it is running but these factors can be
incorporated in the response time of the microservice, if its
value is sufficiently stable. This is the case if the network is the
bottleneck rather than the computing devices. As reasonably
powerful devices are not very expensive, we believe that the
network will indeed be the bottleneck most of the times,
especially for devices connected by a wide area network,
resulting in response times that depend mainly on the network
QoS, as long as the devices are not overloaded.

In [16] the authors propose to use the response time of a
service deployed on a particular device as a unified utility
function to evaluate the performance of a service. This metric
unifies in a single value parameters such as CPU ressources
and network QoS. In our case, we can apply the same metric
to evaluate the performance of a service deployed on a user-
provided device. This metric depends on the service itself, on
the device where the service is deployed and on the device
requesting the service.

We assume that it is possible to estimate the response time
of each service, more precisely that it is possible to estimate
how long it would take for a service s, running on device n,
to call service s′, running on device n′. This could be done,

for instance, by deploying each service on each node and then
by running a series of measurements. While such a solution
is potentially time consuming, it is feasible and, by repeating
it periodically, one could keep up with any changes in the
network and/or devices.

Each client can evaluate the performance of the application
as the sum of the response times of the calls to the application.
In the case of the photo-sharing application, the different calls
are: browsing the gallery of photos, downloading a full-size
photo, downloading a thumbnail of a photo and uploading one
photo.

By knowing the values of the response times for the
different services, we can evaluate the response time of the
application as the sum of the response times for each mi-
croservices involved in the application. We need the following
definitions in order to define the objective function f :
• Let N be the set of devices in the infrastructure.
• Let C be the set of devices used as clients of the

application (C ⊂ N).
• Let S be the set of services composing the application.
• Let D(si, sj) be the dependency between each service si

and sj ; D(si, sj) = 1 if si needs to call sj , otherwise
D(si, sj) = 0.

• Let P (s) be the chosen placement for service s (s ∈
S, P (s) ∈ N)

• Let Rs(ni, nj) be the response time of a service s
requested by device ni when running on device nj .

The objective function for one user is the response time

for this user requesting the front-end service s0 from its own
node c. For the sake of simplicity, we consider that one service
makes requests to the other services sequentially. In this case,
the response time is the sum of the response time of the
others required services seen from the front-end s0. These
others services may also call other services, implying that the
objective function to be computed recursively.

f(c, s0) = Rs0(c, P (s0))+
∑

sk∈S
D(s0, sk)× f(P (s0), sk)

The global objective function is the weighted sum of the
objective function for each user. Let W (c) be the weight
applied to user c:

f(s0) =
∑

c∈C
W (c)f(c, s0)

In the case of the photo-sharing application the set of
services is:

S = {s0, s1, s2, s3, s4}

where s0 is the UI service, s1 is the MH service, s2 the PH
service used to download a photo, s3 the PH service used to
upload a photo and s4 the TH service.

The dependency function D is built from the call graph of
the application, depicted in figure 1 (a):

D(s0, s1) = 1

D(s0, s2) = 1

D(s0, s3) = 1

D(s0, s4) = 1

D(s4, s1) = 1

D(s4, s2) = 1
(1)

These values show that the UI service (s0) calls each of the
other services and the TH service (s4) calls services MH (s1)
and PH (s2).

The objective function for one user can be expressed as:

f(c, s0) = Rs0(c, P (s0)) +Rs1(P (s0), P (s1))

+Rs2(P (s0), P (s2)) +Rs3(P (s0), P (s3))

+Rs1(P (s4), P (s1)) +Rs2(P (s4), P (s2)) (2)

IV. OPTIMIZING OF THE PERFORMANCE OF THE
APPLICATION

The objective function 2, presented in the previous section,
gives the response time of the application for one client
located on a given device. The placement Popt(s) that results
in the optimal performance of the application is the one
that minimizes the objective function f(s0). Finding Popt(s)
requires finding the values of P (si) ∈ N ; si ∈ S which
minimize the sum in the objective function 2. The number
of possible placements is equal to |N ||S|. The complexity
of an exhaustive search for the optimal placement Popt(s) is
therefore polynomial in the number of devices and exponential
in the number of services.

As this problem is NP-hard, it is necessary to use a heuristic
in order to find acceptable solutions in constant or linear time.
We found that nature-inspired metaheuristics have shown good

results for the problem of QoS-aware service composition [12],
to which our problem can be considered as equivalent. For
such problems with a very large solution space, heuristics
based on Genetic Algorithms or Ants-colony optimization are
indeed particulary efficient as they can find acceptable solution
in constant time. We selected Particle Swarm Optimization
(PSO) [7] as a candidate for a metaheuristic to be applied
to our problem. This algorithm has already been previously
used [15] to solve the problem of choosing a composition of
services based on QoS parameters.

By applying the PSO metaheuristic, we define a particle
location as a placement P (si) ∈ N ; si ∈ S. At the
first iteration, the PSO algorithm initializes a swarm of k
particles by randomly selecting their location, i.e., choosing
a random placement for the services. The objective function 2
is evaluated for each of these placements and the result is
assigned to the corresponding particle as its current score. At
each iteration, the PSO algorithm defines a new generation of
the swarm where each particle is updated with a new location.
The new location for a particle is computed from parameters
such as its previous location, its velocity and the minimal
score found in the previous iteration. By so doing, the particles
will converge at each iteration to the particle with the current
minimum score. Other local minima may also be found as new
placements are evaluated. The algorithm stops either when
all particles have converged to the same minimum score or
when it reaches a maximum number of iterations fixed as a
parameter of the algorithm.

In order to validate the choice for this heuristic, we tested
the PSO algorithm by using as input synthetic values for the
response times of the service. We generated these values using
a simple model described below. We then compare the score of
the placement found by the heuristic to the score of the optimal
placement found by exhaustive search. For the heuristic to be
considered as valid, the score of the placement found by PSO
should be relatively close to the optimal score compared to the
score evaluated for others possible placements. We evaluated
the scalability of the heuristic by checking if the minimal score
found by PSO does not deviate from the optimal solution when
the number of devices increases.

We generate the inputs for this test using a simple model
for the response times of the service running on the different
devices. For one pair (ni, nj), the value of Rs(ni, nj) follows
a Pareto distribution whose parameters depend on the nature
of the service s and of the interconnecting network between
the devices ni and nj . In order to add some diversity in
these values we use two types of network technology with
different QoS parameters: Fiber (high symmetrical bandwidth,
low latency) and DSL (low assymetrical bandwidth, high la-
tency). Table II gives the parameters of the Pareto distributions
(minimum and average value) used to generate the response
time Rs(ni, nj) of each service s depending of the type of
network connecting the devices calling the service (ni) and
the device hosting the service (nj). These values have been
deduced from measurements on real deployed services. We
choose that 50% of the devices use a DSL network and the

Service s ni nj DSL Fiber

MetaHub DSL 50/200 30/100

Fiber 200/800 15/70

PhotoHub DSL 200/800 50/200

(get photo) Fiber 200/800 30/100

PhotoHub DSL 200/800 200/800

put photo) Fiber 50/200 30/100

ThumbHub DSL 150/250 100/150

Fiber 150/250 100/150

TABLE II: Min/Average values for the response times (in ms)
for the different services depending on the network used by
client ni and server nj

other 50% use a Fiber network.
We initialize the algorithm with the following parameters:
• Number of devices: |N | ∈ {10, 20, 30, . . . , 100}
• Number of clients: |C| = 0.2 ∗ |N |
• Weight applied to clients: W (c) = 1 ∀c
• Number of particles: 100
• Maximum number of iterations: 100
In addition to these parameters, we introduce some con-

straints on the solution. A first constraint is related to the
PhotoHub service that is represented in our model by two
virtual services: downloading an existing photo file and up-
loading a new photo file. These virtual services are defined
in our model as s2 and s3. As these services are offered
by the same microservice, they must be deployed on the
same device. The first constraint for the heuristic is therefore
P (s2) = P (s3). A second constraint is defined to avoid
trivial solutions where all services are deployed on the same
device. Such solutions give good results in our model but are
not realistic as the concurrency between the services reduces
the performance. To reduce concurrency, all services must be
deployed on different devices, except for s3 which is colocated
with s2. The second constraint applied to PSO solutions is
P (si) 6= P (sj) ∀i, j ∈ {1, 2, 4}

Based on these inputs, and constraints, the PSO algorithm
is able to produce a result which is the placement with the
minimal score. It is important to note that several executions
of the algorithm with the same parameters and input data may
produce different results. It can be explained as the particles
may not have converged before the algorithm reaches the
maximum number of 100 iterations that we configured. By
increasing the number of iterations, the algorithm produces
more stable results. However it also increase the execution
time. We established that, in our case, 100 iterations is a
reasonable compromise for the PSO algorithm to produce
consistent results.

We tested the PSO algorithm in different cases by increasing
the number of devices from 10 to 100. The execution time of
the PSO algorithm was constant as the number of iterations
is limited and the evaluation of the objective function does
not depend on the number of devices. The execution time

was below 1 second on a 3GHz four-core server. We also
performed an exhausive search for the optimal solution by
evaluating the score of all possible deployments, in order to
find the optimal solution for the test cases.

10 20 30 40 50 60 70 80 90 100

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Number of devices
Sc

or
e

Min. Score (Exhaustive)
Score Distribution (PSO)

Score Distribution (Exhaustive)

Fig. 2: Results of PSO heuristics compared to exhaustive
search.

Figure 2 shows the results of both PSO and exhaustive
search algorithms for the different test cases. The score of
the optimal solution for each test case found with exhaustive
search is marked with a blue dot. The two red horizontal
lines delimit the score interval containing 90% of the solu-
tions found by 50 different executions of the PSO algorithm.
The boxes show the distribution (5-percentile, 25-percentile,
average, 75-percentile, 95-percentile) of the scores of all the
possible placements (found with exhaustive search).

From these results we can conclude that the PSO heuristic
is able to find placements for which the performance for the
application is very close to the optimal solution found with an
exhaustive search. These placements are included in the 5% of
the possible placements with the lowest score. Moreover the
PSO heuristic is able to find such placement in a maximum
of 100 iterations.

The code used for this test is written in Python1 and uses
the pyswarm implementation of the PSO algorithm.

V. TEST AND VALIDATION ON AN EMULATED NETWORK

The results presented in the previous section are meant only
to evaluate the efficacy of the PSO algorithm in our specific
use case. The response times of the services Rs(ni, nj) are
static values generated using a simple model. But, in a real-life
systems, the response time of a service is a random process
that depends on the device hosting the service and the network
traffic.

1Code available at https://github.com/bstevant/eval-pso-photosharing

https://github.com/bstevant/eval-pso-photosharing

In order to evaluate the impact of such variations on the
objective function defined in our model, we use a network
emulation platform reproducing the QoS parameters of differ-
ent technologies for residential access networks (DSL, Fiber)
and the variations of the network performance (jitter, packet
loss). By measuring the response time of actual microservices
connected to such a network emulator, we can have a realistic
evaluation of the performance of the application.

We selected Containernet2 as the network emulation plate-
form for this evaluation. Containernet is a fork of the well-
known Mininet network emulator, which can connect Docker
containers to the emulated network. This platform allows its
users to define the QoS parameters such as the bandwidth,
latency, jitter and packet loss ratio, for each emulated network.

VSwitch

VSwitch VSwitchVSwitch

VSwitch VSwitchVSwitch

UIPH

THMH

DSL Link
Fiber Link

Fig. 3: Example of a topology used in the network emulator
for evaluating a deployment of microservices over devices on
user-premise.

Containernet allows us to define network topologies emu-
lating devices on user-premise interconnected with different
network technologies. An example of such topology is shown
in Figure 3. The network connection of each user-provided
device is emulated by a virtual switch. When a microservice
is to be located on a particular device, the container embed-
ding the actual implementation of the service is connected
to the corresponding virtual switch. Each virtual switch is
then attached to a central switch with a link emulating the
residential access network. This link is configured with the
QoS parameters of the network technology (DSL or Fiber)
chosen for the device. The QoS parameters defined for each
type of link are listed in Table III

Using this platform for network emulation, we are able
to define different test cases by specifying the number of
devices and the access network technology for each device.

2Containernet website: https://containernet.github.io/

Technology Uplink BW Downlink BW Latency

Fiber 100Mb/s 100Mb/s 5ms

DSL 2Mb/s 20Mb/s 25ms

TABLE III: QoS parameters for emulation of residential access
networks.

Once the topology is defined, the resulting emulated network
interconnects containers running the actual implementation of
the microservices of the photo sharing application. With all
the needed microservices deployed, it is possible to measure
the performance of the application in realistic conditions.
We performed these measurements by generating independent
requests to the application from each client and measuring the
time needed by the application to provide a response.

For the PSO heuristic to find optimal placements of the
microservices, we need the values for Rs(ni, nj); ni, nj ∈
N ; s ∈ S used by the objective function to evaluate a place-
ment. Two methods can be applied to bootstrap these values.
It is possible to measure them exhaustively by deploying the
service on each device and measuring its response time from
the other devices. This process is cumbersome and can be
relatively expensive when the number of devices is important.
Another solution is to estimate the value for the response time
based on the QoS parameters given to the platform. We first
made sample measurements of the response time of the service
on different devices. Then we infered the response time for
the other devices by linear regression on the bandwidth and
latency parameters.

In addition to the values for Rs(ni, nj) inferred using the
method described above, we defined the following parameters
for the PSO algorithm:
• Number of devices: |N | = 50
• Number of clients: |C| = 10
• Weight applied to clients: W (c) = 1 ∀c
• Number of particles: 100
• Maximum number of iterations: 100
• Constraints: P (s2) = P (s3);P (si) 6= P (sj) ∀i, j ∈
{1, 2, 4}

Configured with these parameters, the PSO heuristic is able
to produce a placement for the microservices of the photo-
sharing application. The containers embedding these services
are deployed on the virtual devices specified by the placement.
The real performance of the application is then measured from
the clients as the sum of the response times of the calls to the
application.

To evaluate the stability of the system, we introduce some
variations on the performance of the network by adding a jitter
parameter. In wide-area network the measured transmission
delay for a packet shows variations as the packet is forwarded
in the network among many other packets. In order to produce
variations in the transmission delay, the network emulator
uses the well-known netem3 module. The delay variation (or

3netem module: https://wiki.linuxfoundation.org/networking/netem

https://containernet.github.io/

0 10 20 30 40 60

16,000

18,000

20,000

22,000

% Jitter

Sc
or

e

Estimated Score (PSO)
Measured Score

Fig. 4: PSO score compared to measured performance on a
emulated network with different jitter values.

jitter) is defined in netem by providing the interval for the
possible values of the transmission delay. As the link in the
emulator have different latency values, we define the jitter as a
percentage of the nominal latency for the link. The value for
the delay applied to a packet on a link is a random value
uniformly distributed between (1 − jitter) × latency and
(1 + jitter)× latency.

We evaluated the solution found by PSO algorithm on a
single test case (same topology, same devices used as clients)
with jitter increasing from 0% to 40% of the nominal latency
for the link. The performance of the application is measured
by the clients requesting the different services of the appli-
cation 10 times each. The values of the optimal performance
estimated by PSO and the global performance measured by
all clients are shown in Figure 4. These measurements show
that for a jitter below 20% of the nominal latency of the
link, the performance measured for the application is stable
at approximatively 15% of the optimal performance. For jitter
above 20%, the measured response times increase and deviate
from the optimal performance.

We can conclude from this measurement that the perfor-
mance of the photo sharing application, as defined in our
model, is not impacted by the fluctuation of the network.
With a jitter below 20% of the nominal latency, the measured
performance of the application stays in the same interval of
15% of the optimal performance estimated by PSO. In such
conditions, we can be confident that the PSO heuristic is able
to find an acceptable service placement.

VI. RELATED WORK

The contribution of this article is connected to various areas
of research which have studied performance optimization for
application distributed on edge devices.

Volunteer computing and Grid computing are well estab-
lished areas of research with many contributions. Some of
them are focused on performance considerations [3], [9]. In
such a context, the performance is measured as task through-
put. Job scheduling strategies are defined by considering
resource availability and reliability. These papers proposed to
optimize the throughput of the application by reducing the idle
time at the device level. The optimization target is different in
our case as we are focused on application responsiveness.

In a service-oriented approach, a distributed application
can be considered as a composition of service executing a
workflow. Choosing a service composition that optimizes the
global QoS of the workflow is a problem considered by
many contributions listed in [1]. Some proposed solutions to
this problem are based on Linear or Mixed Integer Program-
ming [20], [2]. Other heuristics to this problem have been
proposed such as Genetic Algorithms [14] or Particle Swarm
Optimization [15]. The problem of service composition and
workflow scheduling is however slightly different from our
problem. In such case the services locations are given as input
to the scheduling strategy that should decide which service
instance to use in the workflow. In our case, the services can
be located on any device, increasing the complexity of the
problem.

The placement of services considering devices with hetero-
geneous CPU and network capabilities also has been studied
in various articles. In [10] the placement is considered in
the case of servers connected by an overlay network over a
wide area network whereas in [18] the servers are located
in different public clouds. Each article proposes a heuristic
to find an optimal placement by using a fine-grain model of
the performance considering the network QoS parameters and
the CPU resources. In [17] the authors present the use case of
hosting the service in edge micro-clouds. This article proposes
as a heuristic to select in the model the significant parameters
according to the requirement of the services (e.g., bandwidth
demanding or latency sensitive services). In our approach we
adopt a higher level model by the use of the response time as
the single metric for the evaluation of the performance.

Fog computing [19] is an emerging area of research that
focuses on task migration from the cloud to the edge. In [5],
the use case of deploying a game service on edge servers to
optimize the player latency is presented. These edge servers
are selected in a decentralized way using a distributed voting
protocol. This approach is interesting as our centralized ap-
proach may have some limitations if the number of devices
participating in the system increases. Our problem is yet more
complex as we consider the placement of inter-dependent
services, while the game service is standalone.

VII. CONCLUSION AND FUTURE WORKS

In this article, we have considered the use case of running
an application, comprised of several microservices, on a col-
lection of user-provided devices, interconnected by a wide area
network. The application response time is a key element for
the QoE of it users. Given that placing each microservice

instance in order to minimize the total application response
time is an NP-hard problem, we have used the PSO algorithm
to find a solution. We have first shown, using simulations,
that this algorithm gives satisfactory results in constant time.
In order to show that such a solution is applicable in a real
network, we evaluated the performance of the application on
an emulated network, whose parameters represent different
type of Internet connections (FTTH and DSL). When deployed
according to the result of the PSO algorithm, the performance
of the application is stable for reasonable jitter values. We
conclude that even if the PSO heuristic use static values for
the response times of the services, the selected placement still
results in acceptable performance for the application even if
the network QoS is fluctuating.

In addition to the response time of the services, the client
behavior is another key parameter to our model for the
performance evaluation of the application. In this work, we
assumed that all the users are using the application with equal
probability, and that each client makes the same number of
requests. Some parameters of the model should be adjusted to
better capture the average behavior of the client. It is important
to evaluate how fluctuations in the request distribution impact
the performance of the application. The network emulation
platform can be used to emulate concurrent requests from
different clients to the services. As our model considers an
unloaded system, it should be extended to avoid concurrency.
One solution is to define for the same service multiple
instances that share the load of processing the incoming
requests. The placement should then decide where the different
instances should be located.

REFERENCES

[1] Ehab Nabiel Alkhanak, Sai Peck Lee, and Saif Ur Rehman Khan.
Cost-aware challenges for workflow scheduling approaches in cloud
computing environments: Taxonomy and opportunities. 50:3–21.

[2] Mohammad Alrifai and Thomas Risse. Combining Global Optimization
with Local Selection for Efficient QoS-aware Service Composition. In
Proceedings of the 18th International Conference on World Wide Web,
WWW ’09, pages 881–890. ACM.

[3] D. P. Anderson and G. Fedak. The Computational and Storage Potential
of Volunteer Computing. In Sixth IEEE International Symposium on
Cluster Computing and the Grid, 2006. CCGRID 06, volume 1, pages
73–80.

[4] Abhishek Chandra and Jon B. Weissman. Nebulas: Using Distributed
Voluntary Resources to Build Clouds. In HotCloud.

[5] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosen-
berg. A hybrid edge-cloud architecture for reducing on-demand gaming
latency. 20(5):503–519.

[6] V. D. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa. Volunteer
Computing and Desktop Cloud: The Cloud@Home Paradigm. In 2009
Eighth IEEE International Symposium on Network Computing and
Applications, pages 134–139.

[7] R. Eberhart and J. Kennedy. A new optimizer using particle swarm
theory. In , Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, 1995. MHS ’95, pages 39–43.

[8] S. Egger, P. Reichl, T. Hofeld, and R. Schatz. Time is bandwidth ?
Narrowing the gap between subjective time perception and Quality of
Experience. In 2012 IEEE International Conference on Communications
(ICC), pages 1325–1330.

[9] A. Essafi, D. Trystram, and Z. Zaidi. An Efficient Algorithm for
Scheduling Jobs in Volunteer Computing Platforms. In Parallel Dis-
tributed Processing Symposium Workshops (IPDPSW), 2014 IEEE In-
ternational, pages 68–76.

[10] Jeroen Famaey, Tim Wauters, Filip De Turck, Bart Dhoedt, and Piet
Demeester. Network-aware service placement and selection algorithms
on large-scale overlay networks. 34(15):1777–1787.

[11] Martin Fowler and James Lewis. Microservices.
[12] C. Jatoth, G. R. Gangadharan, and R. Buyya. Computational Intelligence

based QoS-aware Web Service Composition: A Systematic Literature
Review. PP(99):1–1.

[13] Amin M. Khan, Mennan Selimi, and Felix Freitag. Towards Distributed
Architecture for Collaborative Cloud Services in Community Networks.
In 6th International Conference on Intelligent Networking and Collab-
orative Systems (INCoS14). Salerno, Italy: IEEE.

[14] A. Klein, F. Ishikawa, and S. Honiden. SanGA: A Self-Adaptive
Network-Aware Approach to Service Composition. 7(3):452–464.

[15] Wenfeng Li, Ye Zhong, Xun Wang, and Yulian Cao. Resource virtual-
ization and service selection in cloud logistics. 36(6):1696–1704.

[16] Takayuki Nishio, Ryoichi Shinkuma, Tatsuro Takahashi, and Narayan B.
Mandayam. Service-oriented Heterogeneous Resource Sharing for
Optimizing Service Latency in Mobile Cloud. In Proceedings of the First
International Workshop on Mobile Cloud Computing & Networking,
MobileCloud ’13, pages 19–26. ACM.

[17] Mennan Selimi, Davide Vega, Felix Freitag, and Lus Veiga. Towards
Network-Aware Service Placement in Community Network Micro-
Clouds. In Euro-Par 2016: Parallel Processing, pages 376–388.
Springer, Cham.

[18] Moritz Steiner, Bob Gaglianello Gaglianello, Vijay Gurbani, Volker
Hilt, W.D. Roome, Michael Scharf, and Thomas Voith. Network-aware
Service Placement in a Distributed Cloud Environment. 42(4):73–74.

[19] Luis M. Vaquero and Luis Rodero-Merino. Finding your way in the fog:
Towards a comprehensive definition of fog computing. 44(5):27–32.

[20] Chen Wang. A QoS-Aware Middleware for Dynamic and Adaptive
Service Execution.

	Introduction
	A Concrete Example: a Photo Sharing Application
	Performance Metrics
	Optimizing of the Performance of the Application
	Test and Validation on an Emulated Network
	Related Work
	Conclusion and Future works
	References

