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Abstract—In this paper, we provide self-configuration and
adaptation capabilities to UWSN thanks to Q-learning. UWSN
deployed for the long term over large areas for environmental
monitoring are possible applications of our work. Sensor nodes
deployed on the sea bottom are devoted to measure a physical
quantity of interest transmitted to surface buoys considered as
access points. Packet transmission are asynchronous and low
overheads are desirable so as to save throughput and battery
life. Prior to a transmission, the nodes choose, depending on the
channel conditions, which access point maximizes the probability
of successful decoding a the receiver side. Results show that Q-
learning is able to perform close to an ideal “genie-aided” scheme,
without the need of a detailed knowledge on the environment.

I. INTRODUCTION

Underwater sensor networks (UWSN) have drawn the at-
tention of the underwater acoustic (UWA) communications
research community for more than two decades. As the number
of surveys on the topic can testify [1]–[8], research has been
conducted in many fields from the physical to the routing layer
and a wide variety of applications have been investigated. The
specificity of the UWA environment calls for the development
of dedicated protocols, such as those proposed in [9]–[12].
Furthermore, the UW channel varies on different time scales
[13], [14] and the transmission ranges and depths may change
due to mobility. Therefore, some adaptation capabilities of the
modems and networks are desirable.

Adaptive medium access (MAC) protocols have been pro-
posed in [15], [16]. Synchronization between transmitters is
assumed in [15], which is difficult to maintain underwater. In
[16] a delay-tolerant handshaking mechanism is implemented,
which necessitates some overheads. More recently, [17]–[21]
have investigated decentralized spectrum sharing between non-
cooperative UW communication links. Communications take
place outside any network, without protocol, synchronization
or information exchanges between different links. Spectrum
sharing is achieved by implementing an equilibrium strategy of
a properly defined game. A limitation is the possible unfairness
and inefficiency of noncooperative equilibria. Recently, rein-
forcement learning (RL) [22], [23] has successfully provided
adaptive MAC layers for radio wireless sensor networks [24]–
[26]. In these works, Q-Learning is used to enable dynamic
spectrum access in LTE networks [24] and to schedule TDMA-
based MAC schemes [25], [26]. In the UWA community, [27],
[28] use Q-Learning to adapt transmission parameters to the
temporal variations of the channel in a single user context.

In this paper, we exploit similar ideas for application in
UWSN where asynchronism, low overheads and adaptability
are desirable. Many things can motivate asynchronous oper-
ations in UWA communications: lack of GPS, low capacity
links and long propagation delays which inhibits signaling
for distributed synchronizations, drift/motion of devices, etc.
Low overheads improve data throughput and battery life. Self-
configuration and adaptation capabilities are also needed so
as to enable operations in dynamic environments. UWSN
deployed for the long term over large areas for environmental
monitoring are possible applications of our work. Sensor nodes
deployed on the sea bottom are devoted to measure a physical
quantity of interest transmitted to surface buoys or sink nodes.
To allow for adaptability, we consider nodes with choices of
transmission strategies. This choice could be an access point
(like a surface buoy or a sink node), a frequency bandwidth,
a time slot, etc .., or a combination of different parameters.
As an example, in this paper we focus on choices of access
points. This defines the actions sets of the nodes considered
as learning agents. Transmissions are asynchronous and data
packets might collide at the reception. However, the signal-
to-interference-plus-noise-ratio (SINR) may still be sufficient
to decode the packet of interest, depending on the path losses
suffered. It is considered that decoding all the packet is not
sensible, but we rather want to maximize the number of
successfully transmitted packets. This assumption is made
in the light of works on random access compressed sensing
[29], [30] where the phenomenon under monitoring admits
a sparse representation in the spatial domain, allowing for
reconstruction of the measures without all the packets to be
received correctly. When a node transmits a data packet, it
must choose which access point is best to establish a reliable
communication depending on the channel conditions.

The proposed algorithm enables nodes to autonomously
make choices of access points in order to maximize their
probability of successful transmission. Q-learning [23] offers
a way to allow nodes to learn about the environment and react
to changes in the network topology, channel fading statistics
or transmission geometry. Overheads are minimal as it does
not require synchronization or information exchange between
nodes or between nodes and their receivers, apart from a
1-bit feedback signal from the receivers. We evaluate the
performance in terms of the average probability of success-
ful transmission through simulations and compare with the
ideal adaptive channel selection scheme which would have
perfect knowledge of the channels before every transmissions.



Average path losses are simulated with Bellhop [31] This
give an average channel gain around which random log-
normal fluctuations are added to simulate time-varying UWA
channels.

II. TRANSMISSION MODELS

A set I of I non-cooperative transmitters (TXs) is supposed
to transmit packets to a set A of A receivers (RXs). The RXs
are access points such as surface buoys, sinks or relay nodes,
and they collect data from sensor nodes considered as TXs.
Each TX i ∈ I accesses only one RX a ∈ A at a time, and may
eventually cause interference to the others. It is assumed that
I > A, so that RXs are accessed by several concurrent TXs,
which may also interfere with each other when transmitting
at the same time. The receivers decode each transmitter
separately using a single-user decoding (SUD) scheme, the
others being considered as an unknown interference.

Each TX generates, asynchronously and independently of
the others, λ packets per second whose inter-arrivals are
exponentially distributed. On average, there are I × λ packets
per second transmitted within the network. For each packet
generated, the corresponding TX must choose an RX so as
to maximize the probability of successful transmission. Direct
sequence spread spectrum (DSSS) communications are con-
sidered, so as to enhance transmissions robustness by taking
advantage of the processing gain [32], [33]. A spreading code
is associated with each RX. All the TXs know the spreading
codes so that they can choose an RX by choosing the sequence
with which they spread their signals. We suppose all the
sequences to have the same length and the same spreading gain
G. The RXs are able to decode only packets spread with their
own sequences. Transmissions are asynchronous, so that the
codes of the different RXs cannot be considered as perfectly
orthogonal. Thus, the TXs may interfere with all the RXs.

Let Tp denote the packet duration and consider a TX i ∈ I
transmitting a packet to the RX a. The packet is transmitted
with power Pi uniformly spread on a bandwidth B centered
on fc, and arrives at RX a at a time ti. It has incurred an
attenuation depending on the time-varying transfer function
of the channel between i and a. The UWA channel time
variations can be decomposed into two parts [34], [35]: a
large-scale fading component, which makes the received power
vary slowly compared to the packet length, and a small-
scale fading whose coherence time is much shorter than Tp.
Let Hi,a(t, f) be the randomly time-varying channel transfer
function between TX i and RX a. The average attenuation on
the packet arrived at time ti can be expressed as

ρ̄i,a(ti) =
1

Tp

∫ ti+Tp

ti

ρi,a(t)dt (1)

where

ρi,a(t) =
1

B

∫ fc+B/2

fc−B/2

|Hi,a(f, t)|2 df (2)

is a realization of a random process which depends on the
fading processes underlying Hi,a(f, t).

During the reception of a packet from TX i, collisions from
others TXs might occur as long as it exists some j ̸= i ∈ I

such that the arrival time of its packet at the RX chosen by i,
denoted by tj , is within [ti − Tp, ti + Tp]. Let the interference
power perceived on the TX i’s packet denoted by the random
variable

Ii,a(ti) =
1

Tp

∫ ti+Tp

ti

∑
j ̸=i

ρj,a(t)Pj1[tj ,tj+Tp](t) dt (3)

which also depends on the channels fading processes, as well
as on the arrival times of all the packets generated.

The successful transmission of a packet by the TX i to
the RX a will be evaluated through the average SINR on the
packet

γi,a(ti) =
ρ̄i,a(ti)Pi

σ2
a + Ii,a(ti)

×G, (4)

where σ2
a is the ambient noise power at the RX a. It is

considered that the packet of TX i is successfully decoded
at the chosen RX a if γi,a ≥ Γi, where Γi is some SINR
constraint.

In a practical set-up, the SINR should be estimated at the
RX side using pilot symbols included within the packets. The
choice of a satisfaction criterion based on the SINR is not
mandatory since the type of metric chosen does not have an
influence on the general behavior of the proposed algorithm.
One could choose, for example, a bit error rate constraint
on the packet or whether the packet is correctly decoded
using a cyclic redundancy check. Therefore, the assumption
of perfect knowledge of the SINR is not sensible in what
will be presented next. However, the choices of the values for
rewards/punishments of successful/failed transmissions (see
(5)) may have an influence but these discussions go beyond
the scope of this paper. These values will be chosen in a very
pragmatic manner in the next section.

III. CHANNEL SELECTION WITH Q-LEARNING

We propose to use the RL algorithm called Q-Learning
to enable the nodes to autonomously choose the receivers
which maximize their probability of successful transmission.
The TXs are considered as independent agents having several
actions to their disposal. In the scenario previously described,
the possible actions correspond to a choice of a RX in
A = {1, · · · , A} to transmit the current packet at a given time.
As each RX is associated to a spreading sequence, to choose
an RX is equivalent to choose a spreading sequence, which
can be written in the sensors memory prior to deployment.
For all i ∈ I, the action space is thus defined as Ai = A. In
order to ease the presentation, we take the point of view of a
particular agent i in the following.

Let Ti = 0, 1, 2, · · · be the set of time indexes (possibly
mapped to the real line) at which TX i ’s packets arrive at
any RX (neglecting the propagation delays). The algorithm
proceeds as follows. The TX first chooses the RX ai,t ∈ A
to sent the packet which arrives at time t ∈ Ti. Note that
the packet was sent at time t − ∆i,ai , where ∆i,ai is the
propagation delay between TX i and RX ai. The RX is
supposed able to compute the SINR of the agent i on the
basis of Eq (4). The agent i receives a reward Ri,t+1 which



depends on whether the SINR contraint is met or not. The
reward is thus defined as

Ri,t+1
∆
=

{
+1 if γi(ai,t) ≥ Γi

−1 if γi(ai,t) < Γi
(5)

and can take the form of a 1 bit feedback from the RX ai,t
to the TX i to acknowledge the successful reception of the
packet. On the basis of the cumulated received rewards, the
agent will update the action chosen for the next packets by
favoring those that generate positive rewards the most often.

The agents do not know what can be the channel gains and
the arrival times of other packets, and they are not supposed
to observe them. So, from the point of view of agent i and for
a given action ai, Ri,t+1 is a random variable with unknown
distribution. The agent i seeks to maximize its expected reward
through a judicious choice of action, i.e. it solves

max
ai,t∈Ai

E [Ri,t+1] . (6)

The expected rewards must be estimated. Let Qi,t be an
estimator of E [Ri,t+1] when considered as a function of ai,
the action taken at time t and for which a reward Ri,t is
received. For all ai ∈ Ai

Qi,t(ai) = Qi,t−1(ai) + α [Ri,t −Qi,t−1(ai)]

= (1− α)t−1Qi,0 +
t−1∑
k=1

α(1− α)t−kRi,k1[ai,k=ai].

(7)
with α ∈ [0, 1] the step size (or learning rate) parameter and
Qi,0 an initial value. By maintaining a table with Q-Values
Q(ai) associated to each action ai ∈ Ai and updating it over
time, an agent can devise how worth it is to play a given
action. The step-size parameter is used to weight differently
the new estimates compared to the old ones, allowing to track
non-stationary problems [22]. By selecting actions and getting
rewards accordingly, the agent learns about the environment.
This is expressed through the successive improvements in the
estimation of the expected rewards by the Q-Values. When the
agent exploits its current knowledge, its selects the “greedy”
action at the time considered :

ai,t = argmax
ai∈Ai

Qi,t−1(ai). (8)

Nevertheless, it is necessary to try each action sufficiently
often to guarantee a good estimation of the Q-Values. Explo-
ration is thus needed. Here, we consider the exploration strat-
egy consisting in exploring with probability ϵ and choosing the
greedy action with probability 1− ϵ. Algorithm 1 sums up the
procedure previously described (the agent’s index is omitted).
If several Q-Values are maxima, we randomize between the
corresponding actions.

IV. NUMERICAL RESULTS

The proposed scheme is evaluated through simulations. A
set I = 80 TXs and N = 8 RXs are considered. The
transmitters can be considered, for example, as sensor nodes
immersed at the sea bottom and the receivers are surface
buoys. Communications take place on a bandwidth B = 8
kHz centered at fc = 12 kHz. Each node sends packet at a

Algorithm 1 Q-Learning
1: parameters: ϵ, α
2: t = 0
3: ∀ ai ∈ Ai Qi,t(ai) = 0
4: for t = 1, 2, · · · do
5:

ai,t =

{
argmax
ai∈Ai

Qi,t−1(ai) w. p. 1− ϵ

a random action w. p. ϵ

6: Ri,t ← reward for ai,t based on Equation (5)
7: Qi,t(ai,t) = Qi,t−1(ai,t) + α [Ri,t −Qi,t−1(ai,t)]
8: end for
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Fig. 1. Average cumulative rewards over time for channel selections based
on Q-Learning and two other schemes. Solid lines depict the performance
averaged on the number TXs. Dashed lines are minimum and maximum
performance among TXs.

rate λ = 0.1. There are thus 8 packets per seconds on average
transmitted by the whole set of nodes to the 8 buoys. Packets
are spread with a DSSS sequence of L = 128 chips, offering
a processing gain of G = 21 dB. We approximate the chip
duration by Tchip ≈ 1/B = 0.125 µs so that the symbol
duration is L × Tchip = 16 µs. The packet duration is set to
Tp = 1 s, so that 62 symbols are transmitted per packets. In
a practical set-up where the sensors are devoted to measure
a physical quantity, such a packet length can be sufficient
to transmit one or several measurements, depending on the
constellation size. The terminals locations are randomly drawn
in an area of 64 km2, with a minimum distance separating TXs
and RXs of 100 m and 500 m respectively. The water depth is
1000 m. TXs are immersed randomly between 1000 and 800
meters, while RXs are immersed between 5 and 20 meters.

The channels gains coefficients ρi,n(t) are simulated as
order 1, log-normal auto-regressive processes such that ∀ i ∈
I, ∀ n ∈ N (with t understood as discrete time indexes in
the following):

ρi,n(t) = 10
1
10 (gi,n(t)+ḡi,n) (9)

where
gi,n(t) = ϕ gi,n(t− 1) + ϵi,n(t) (10)



with ϵi,n(t) ∼ N (0, σ2
dB). This models the large-scale fading

of the channel. The constant ϕ is computed so as to have
a coherence time of τc = 60 s and the power spread is
σ2
dB = 10 dB. The large-scale fading process is centered

around a mean ḡi,n corresponding to the transmission loss
returned by the Bellhop ray-tracing simulator [31]. This
simulator traces acoustic rays from a TX to an RX given
the transmission geometry parameters (depths, ranges) and a
sound speed profile. This SSP was acquired in North Atlantic
at longitudes [−70◦, −60◦] and latitudes [22◦, 30◦]1 and was
truncated at a 1 km depth for the needs of the simulation.
An impulse response is then computed on the basis of the
ray tracing. Transmission losses can then be computed by
integrating over frequencies to give the coefficient ḡi,n. The
transmission power is constrained to 170 dB ref µPa and the
noise power is computed according to the path loss to have a
reference signal to noise ratio (SNR) of 10 dB at 1 km. The
SINR constraint is set to Γi = 10 dB.

Each node runs Algorithm 1. The step-size is set to α = 0.1
and the exploration is ϵ = 0.05. Usually, ϵ is small so as to
benefit of exploitation when the algorithm as converged to
consistent choices. The step-size is set empirically here, as
several simulations have shown no sensibility regarding the
average long-term cumulated rewards. This is explained by
the channels stationarity when considered on sufficiently long
duration, as the log-normal fading always fluctuates around
the same average path loss. When a packet is received by the
chosen RX, the SINR is computed with Equation (4) and the
corresponding reward is sent back to the TX for updating its
action. All propagation delays are taken into account.

Performance is evaluated in terms of the average cumu-
lated rewards. Comparisons are made with the naive random
(uniform) selection of RXs and with a “genie-aided“ adaptive
scheme where, before a packet is sent, the TXs know perfectly
what will be the channel gains at the RXs side and choose the
one with the best gain. This ideal scheme would necessitate
information exchanges between TXs and RXs prior to every
packet transmission, which would produce large overheads.
Nevertheless this a reasonable upper-bound for comparison.
Figure 1 shows the results. It can be seen that the Q-Learning
selection is beneficial compared to the random access proce-
dure, as expected. Most importantly, it performs quite close
to the ideal scheme but with much less knowledge required
about the environment (only the rewards encoded into a 1-
bit feedback). The cumulated rewards of Q-learning translate
asymptotically into a probability of successful transmission of
90,3%. This probability is 97% for the ideal scheme and 68,4%
for random access. The ideal scheme shows less deviation of
individual nodes performance from the average. The reward
value standard deviations tend to 8.5% in the ideal scheme,
14.6% in Q-learning and 13.2% in random access.

Figure 2 shows the Q-Values and actions choices of two
randomly chosen TXs in case of a breakdown of RX #4,
which was initially preferred. The breakdown appears after 15
minutes of operation. It can be seen that the node modifies its
behavior after receiving sufficient punishments. The number

1see also the example provided by [36]

0 20 40 60 80

time [min]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
ge
n
t’
s
Q

V
al
u
es

Node #2

CH 1

CH 2

CH 3

CH 4

CH 5

CH 6

CH 7

CH 8

0 20 40 60 80

time [min]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
ge
n
t’
s
Q

V
al
u
es

Node #55

CH 1

CH 2

CH 3

CH 4

CH 5

CH 6

CH 7

CH 8

Fig. 2. Evolution of the Q-Values of two TXs in case of a breakdown of
the access point (RX) #4 after 15 minutes.

of successive punishments needed to consider RX #4 as a bad
choice depends on α. The choice of another RX depends then
on the exploration previously performed. It is also interesting
to see that convergence behaviors can be quite different from
one node to another. Node #55 seems to converge towards the
choice of a single RX after the breakdown, while node #2
seems to converge to a probability distribution over the RXs
choice. This shows the adaptation capability of the proposed
scheme.

V. CONCLUSION

In this paper, we have shown the benefits of RL to un-
derwater acoustic networks through the study of a particular
application scenario. These algorithms are able to offer some
self-configuration and adaptation capabilities in a decentral-
ized way, without the need of large overheads or messages
exchanges between network nodes to retrieve information
about the channel state. However, we believe that what we
have proposed is not limited to the type of underwater sensor
network described here. For example, one could consider
nodes having different transmission strategies than choices of
an access point in a discrete set. The same method could
be used in any problem where UW transmitters have some
degrees of freedom in their transmission strategy and can
easily get some feedback about how good it was to take
a particular action at a time. Another strength of some RL
algorithms such as Q-learning is that they do not rely on a
detailed model of the problem. This is desirable in UW where
there is no consensus on the channel statistical properties and
where it is usually difficult to predict precisely the conditions
in which modems or networks will operate.
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