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Abstract

This paper presents an automatic classification method dedicated to mysticete calls. This method relies on

sparse representations which assume that mysticete calls lie in a linear subspace described by a dictionary-

based representation. The classifier accounts for noise by refusing to assign the observed signal to a given

class if it is not included into the linear subspace spanned by the dictionaries of mysticete calls. Rejection of

noise is achieved without feature learning. In addition, the proposed method is modular in that, call classes

can be appended to or removed from the classifier without requiring retraining. The classifier is easy to

design since it relies on a few parameters. Experiments on five types of mysticete calls are presented. It

includes Antarctic blue whale Z-calls, two types of “Madagascar” pygmy blue whale calls, fin whale 20 Hz

calls and North-Pacific blue whale D-calls. On this dataset, containing 2185 calls and 15000 noise samples,

an average recall of 96.4% is obtained and 93.3% of the noise data (persistent and transient) are correctly

rejected by the classifier.
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I. INTRODUCTION1

Passive acoustic monitoring (PAM) is very useful tool for helping scientists study marine mam-2

mals [1], detect their presence during seismic surveys and as a consequence, mitigate the impact3

of man-made acoustic activities [2, 3]. The success of PAM has led to an increasing deployment4

of underwater acoustic recorders across many oceans [4]. As a result, the development of efficient5

and robust automatic methods is needed to analyze the growing amount of acoustic data gener-6

ated by these recording systems. Such methods are helpful for human analysts to detect, classify,7

locate, track or count marine mammals.8

PAM is particularly relevant for mysticetes or baleen whales which are known to produce a9

wide variety of underwater sounds [5–7]. Their repertoire is composed of tonal [8, 9], frequency-10

modulated (FM) [10], pulsive [11, 12] sounds and other calls with exotic names such as boings11

[13], moans and grunts [14], exhalation and gunshot [15], and “star-wars” vocalization [16]. Mys-12

ticete calls exhibit different levels of variability. Some calls, such as Antarctic blue whale Z-calls13

[17], only show slight inter-annual and seasonal variations [8], whereas other vocalizations, such14

as songs produced by bowhead whales [3, 18], fully change from one year to another [19]. In15

between, there are a variety of calls with the same signal structure but with parameters, such as16

duration and/or bandwidth and/or FM rate, whose values may change over time [7].17

Automatic classifiers of mysticete calls face several challenges. As any pattern recognition18

algorithms, they have to identify the salient features of the calls of interest. However, this may19

be difficult because (i) signal-to-noise ratios can be low, (ii) propagation effects can distort the20

call features [20] and, (iii) the selected features must not only describe and discriminate the calls21

of interest, but also [21] “provide contrast to any other type of signal that is likely to occur”22

in the same acoustic context. Past experiments have shown that acoustic recordings can contain23

a wide variety of interfering transient sounds in the frequency range of mysticete calls [22–26].24

Therefore, providing classifiers with a rejection option that refuses to assign a signal of no interest25

to any class is of prime importance for PAM applications.26

In the context of multiclass classification, most automated techniques for mysticete calls im-27

plement a two-step procedure. They usually operate in the frequency or cepstral domain and first28

extract sound attributes like start frequency, end frequency, frequency slope, duration etc. A super-29

vised learning algorithm then maps these attributes to a call class after learning training examples30

labeled by human analysts. Classifier of this kind include aural classification [27], neural networks31
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[3], hidden Markov models [28], quadratic discriminant function analysis [29], Gaussian mixture32

models [30] or classification trees [31]. More recently, Halkias et al. [25] proposed an alternative33

approach based on hybrid generative/discriminative models commonly used in machine learning.34

This method involves injecting a spectrogram image of the sound to process into a multiple-layer35

neural network. The main advantage of the used network is that it automatically learns the signal36

attributes from unlabeled data and does not rely on “hand-engineered” features.37

Although applied with success in specific contexts, state-of-the-art methods may however show38

some limitations. For instance, some classifiers lack of general applicability because they are tuned39

for specific species. This is the case of spectrogram correlation [32], non-spectrogram correlation40

[13], vector quantization algorithm and dynamic time warping [33]. Others may require to tune41

many (hyper)-parameters [25, 29]. In case these parameters are not easy to physically interpret,42

their numerical values may be difficult to set, which can limit the robustness of the classifier or lead43

to under- or over-fitting. Moreover, some methods offer a rejection option that rely on parametric44

models of noise [24] or require the classifier to learn the features of the unwanted signals [25].45

Exhaustive noise learning or modeling is hardly feasible in practice since the underwater acoustic46

environment is very complex and contains many transient signals with very different features.47

In addition, these features may fluctuate in time and space so that they may greatly vary from48

one dataset to another. Finally, most existing classifiers lack of modularity/flexibility and are49

often designed for a specific set of calls, so that adding or removing a call class usually requires50

to “retrain” the entire classifier. In a PAM context, where the same classifier may be used on51

platforms operating at different geographic locations and at different time of the year, offering the52

capability of selecting online the class of calls taken into account by the classifier may have an53

operational interest. Classes corresponding to species whose habitats are known to be far away54

from the sensor may therefore be removed from the classifier, thus reducing the probability of55

miss-classification.56

In this paper, a general method capable of classifying multiple mysticete calls is described.57

The method has been designed to meet the following requirements: (i) a rejection option is im-58

plemented, (ii) the classifier is modular, (iii) it is tuned by a very few (easy-to-set) parameters59

and (iv) it involves a compression option so as to provide a good trade-off between robustness to60

call variability and computational load. The proposed approach relies on the sparse framework61

recently developed in signal processing and machine learning [34–36]. Sparse representations ex-62

press a given signal as a linear combination of base elements in which many of the coefficients are63
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zero. Such representations can capture the possible variability observed for some vocalizations64

and can automatically be learned from the time-series of the digitized acoustic signals, without65

requiring prior transforms such as spectrograms, wavelets or cepstrums. This framework is gen-66

eral and applicable to any mysticete call lying in a linear subspace described by a dictionary-based67

representation. Successfully applied to the detection of mysticete calls [23], this framework is thus68

extended to the classification of mysticete calls and evaluated in this context. To the authors’ best69

knowledge, this paper is a first attempt in this direction.70

The paper is organized as follows. In Sec. II, the classification method is presented. The71

performance of the classifier is then evaluated on five call classes extracted from four real datasets72

in Sec. III. Finally, conclusions are given in Sec. IV.73

Notation: Throughout this paper, Rn designates the space of all n-dimensional real column74

vectors and Rn×m is the set of all real matrices with n rows and m columns. The superscript T
75

means transposition. ‖ · ‖p designates the `p norm.76

II. METHODOLOGY77

Supervised learning makes it possible for systems to perform automatic classification of pre-78

viously unseen inputs, after learning examples labeled by experts. The learning phase proceeds79

as follows. A labeled or training dataset is made of N pairs {(si, `i)}1≤i≤N representative of C80

classes, i.e., C call types in our case, where si is the i-th feature vector in the training set and `i81

is the corresponding class or label of si, e.g., `5 = 3 means that the fifth element of the training82

set belongs to the third class. This training set is used to determine a map f(·|{(si, `i)}1≤i≤N) that83

infers a label from a given feature vector.84

The map f is either learned on the training set by minimizing a loss function representing the85

cost paid for inaccuracy of predictions (i.e., discrepancy between the predicted and the actual la-86

bel) or derived from a prior choice of a similarity measure that compares new test data to training87

examples. Neural network-based classifiers typically implement the first approach, whereas meth-88

ods such as banks of matched-filters [37] or spectrogram correlators [32, 38] implement the second89

one.90

As discussed below, our method relies on the second approach. This choice is mainly motivated91

by the will to build a robust and modular method where the similarity measure does not depend92

on the training set or on the number of call classes. It is also desirable to avoid using too many93
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("no-so-easy-to-tune") hyperparameters so as to ease the deployment of the method.94

In the sequel, {sk : k > N} stands for the test feature vectors that the system must classify.95

Given such a test feature vector sk with k > N , ̂̀k = f(sk|{(si, `i)}1≤i≤N) is the output label in96

{1, 2, . . . , C} assigned to sk.97

In the method proposed below, feature vectors are digitized time-series of calls. It is assumed98

that detection of regions of interest within the time-series has already been achieved either au-99

tomatically or manually. In Sections II A and II B, the sparse representation and classification100

framework for calls is presented. Sections II C and II D introduce the compression and the rejec-101

tion options. In Section II E, an overall description of the procedure is given.102

A. From standard similarity measures to sparse representation103

There exists a wide variety of similarity measures, e.g. Euclidean distance, absolute value, like-104

lihood, correlation, etc. For instance, let |〈sk, si〉| be the non negative normalized scalar product105

or correlation between a signal sk and a signal si. For approaches such as banks of matched filters106

or spectrogram correlators, the map f chooses the class that maximizes the correlation between a107

test signal sk, k > N , and all the signals in the training dataset, i.e.,108

ˆ̀
k = `i∗ , (1)

where i∗ = argmaxi∈{0,1...,N−1}|〈sk, si〉|.109

A well-known extension of such an approach is the K Nearest Neighbors algorithm (KNN)110

[39] where sk is assigned to the most common class among its K nearest neighbors (e.g., the K111

signals in the training dataset having the highest correlation with sk). In general, choosing K112

greater than one is beneficial as it reduces the overall noise [40] .113

Beyond KNN, the classification can be based on a similarity measure between the test signal114

sk to be labeled and a linear combination of the K signals closest to sk. All training signals then115

become elementary atoms which can be combined to create new signals. In this way, the new116

representation space makes it possible to cover a larger space than the original training dataset117

and, as such, is expected to better capture the intrinsic/proper structure of the signals of interest.118

On the one hand, K should be small enough to prevent overfitting, especially in presence of noise.119

On the other hand, given a test signal, the similarity measure must help select a linear combination120
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of atoms from the same class as the signal to guarantee a meaningful comparison between this one121

and each average model of each class. Therefore, the choice of K results from a trade-off between122

the risk of overfitting and the necessity to approximate sufficiently well the test signal.123

Formally, it is assumed that any test signal sk with dimension n from class c approximately lies124

in the linear span of the training signals associated with this class, i.e.,125

sk ≈ Acwc, with ‖wc‖0 ≤ K � Nc, (2)

where Ac ∈ Rn×Nc is a matrix containing all the Nc training signals of length n belonging to the126

class c, wc ∈ RNc is a vector of weights used in the linear combination and ‖wc‖0 denotes the `0-127

pseudonorm that returns the number of non-zero coefficients in wc. When sk can be represented128

by a small number of non-zero coefficients in the basis Ac, model (2) is referred to as “sparse129

representation” in the signal processing literature [35]. The inequality ‖wc‖0 ≤ K is called the130

sparsity constraint. This constraint K is directly related to the “complexity” of each single call to131

be classified. Signals combining variability and high complexity (such as erratic signals) must be132

constructed from a large number of atoms while signals of low complexity should be composed of133

a few atoms. For instance, D calls of blue whales [41] are frequency-modulated (FM) sweep that134

could well be approximated by a linear combination of a few atoms. However, such calls exhibit135

variability in initial frequency, FM rate, duration, and bandwidth. Therefore, the `0 norm of wc136

is small for each single call but the active atoms, corresponding to non-zero entries of wc, can be137

different from one call to another so thatNc must be large. Note that model (2) is an approximation138

as calls may be affected by local propagation conditions and noise. However, the very good results139

obtained in Sec. III indicate that it is sufficiently accurate for classification purposes. Examples of140

test signal reconstruction with training signals are shown in the appendix for real calls.141

B. Sparse Representation-based Classification142

Based on a linear model similar to (2), Wright et al. proposed a Sparse Representation-based143

Classifier (SRC) in [34]. It achieved impressive results in a wide range of applications such as bird144

classification [42], EEG signal classification [43], face recognition [34, 44]. Originally applied to145

face recognition, we suggest adapting this approach to our context. To this end, this subsection146

recalls the SRC procedure, whereas the next two propose additional features to improve SRC147
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performance in our particular application.148

SRC assumes that test signals can be represented by a linear combination of training signals.149

In our context, these signals are digitized time-series and represent the input feature vectors of150

the classifier. SRC is a two-step procedure: (i) it seeks the linear combination of training signals151

that best approximates — in the sparse sense — the test signal and (ii) chooses the class that152

mostly contributes to this approximation. More precisely, the true label of the test signal sk being153

unknown, sk is first represented as a linear combination of all training signals stored in a matrix154

A = [A1,A2, · · · ,AC ] ∈ Rn×
∑C

c=1 Nc , where C is the number of call classes, i.e.,155

sk ≈ Aw, with ‖w‖0 ≤ K. (3)

Ideally, the entries of w ∈ R
∑C

c=1 Nc are all zeros except at most K entries related to the training156

signals from the same class as the test signal. For instance, if sk belongs to class c, i.e., `k = c,157

then w should ideally satisfy w = [0, · · · , 0,wT
c , 0, · · · , 0]T where wc ∈ RNc and ‖wc‖0 ≤ K.158

Therefore, the actual class of the test signal could be obtained by estimating w and finding the159

indexes of the nonzero entries of w. However, in practice, because of the noise and the non-160

orthogonality between training signals from different classes, nonzero entries of w may appear at161

indexes not related to the true class of the test signal. Consequently, the class label for the test162

signal is not determined by finding the indexes of the nonzero entries of w but by finding the163

class-specific entries of w yielding the best approximation of sk in (3).164

More specifically, the two-step procedure of SRC is as follows:165

1. Estimate w by sparsely encoding sk over the basis A. i.e., by solving166

w∗ = argmin
w
‖sk −Aw‖22, with ‖w‖0 ≤ K. (4)

Sparse encoding can be performed with pursuit algorithms [35] or `1-norm minimization167

[45]. In Section III, this step is implemented with orthogonal matching pursuit (OMP) [46].168

2. Associate sk to the class ˆ̀
k that satisfies169

ˆ̀
k = argmin

1≤c≤C
‖sk −Aδc(w

∗)‖22, (5)

where δc(w∗) is a characteristic function that selects the coefficients of w∗ associated with170

7



the c-th class. For any w ∈ R
∑C

c=1 Nc , δc(w) ∈ R
∑C

c=1 Nc is a vector whose nonzero171

entries are the entries in w that are related to the c-th class. For instance, if w =172

[wT
1 ,w

T
2 , · · · ,wT

C ]
T where each wi belongs to class i, then δc(w) = [0, · · · , 0,wT

c , 0, · · · , 0]T .173

The solution to (5) is found by exhaustive search through all the classes.174

C. Compression option175

Ideally, the training dataset A should span the space that includes any mysticete call we wish176

to classify. In particular, for each class, Ac should incorporate enough variability to model all177

possible calls of the same class. It is thus desirable to inject in A the maximum amount of infor-178

mation we have on these calls. However, the computational complexity of (4) grows with the size179

of A without necessarily adding any performance improvement if A contains redundant signals.180

To limit redundancy in A and thus achieve a trade-off between variability and computational load,181

we suggest building a lower dimensional dictionary D = [D1,D2, · · · ,DC ] from the training182

dataset, where each submatrix Dc has N ′c ≤ Nc columns, i.e., Dc ∈ Rn×N ′c . Each Dc is found as183

the subdictionary that leads to the best possible representation for each training signal of class c184

with the sparsity constraint (4). More precisely, the new subdictionary Dc for class c is derived by185

solving the minimization problem:186

min
Dc,W

‖Ac −DcW ‖2F

subject to ‖wi‖0 ≤ K, ∀ 1 ≤ i ≤ Nc,

(6)

where W = [w1, · · · ,wNc ] and wi ∈ RN ′c . The minimization problem (6) is commonly referred187

to as “dictionary learning” and is only performed offline once. Numerical solutions to (6) can188

be obtained with the method of optimized direction (MOD) [47], K-SVD [48] or online learning189

[45]. Once the lower dimensional dictionary is learned, A and Ac are replaced by D and Dc in (4)190

and (5), respectively and δc(·) is adapted to the size of D. In addition to removing the redundant191

information in the learning process, dictionary learning extracts the salient feature of A and this192

thus expected to limit the sensitivity to noisy training signals or to overfitting issues.193
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D. Rejection option194

A major challenge in automatic classification of underwater sounds is the management of195

“noise”. In our context, noise is defined as any test signal, fed into the classifier, that does not196

belong to one of the C output mysticete call classes of the classifier. This noise can be:197

• Transient noise or interference that designates any transient signal of no interest for the198

classifier, e.g. calls of other whales, ship noise, airguns, earthquakes, ice tremors, etc.199

• Background noise which is a mixture of numerous unidentifiable ambient sound sources200

that does not include any transient signal.201

The rejection option offers the capability of refusing to assign the examined signal to any class,202

possibly prompting for a deeper investigation by a human analyst. In [34, Sec. 2.4], a rejection203

option is proposed for SRC. It relies on the assumption that a valid test signal has a sparse repre-204

sentation whose nonzero entries concentrate mostly on one class, whereas a signal to be rejected205

has coefficients spread widely among multiple classes. While such an assumption may be valid206

in applications such as face recognition [34], it is not applicable in our context. The main reason207

is that transient underwater acoustic noises may have a non-negligible amount of their energy ly-208

ing in a subspace in which a specific class of calls resides. For instance, the sparse coefficients209

of impulsive noise are likely to concentrate on classes related to impulsive calls (such as the fin210

whale 20 Hz calls presented in Sec. III A), whereas tonal noise coefficients will be related to tonal211

calls having similar frequencies. To deal with noise, we propose to apply a post-processing pro-212

cedure that decides whether the test signal actually lies in the subspace spanned by the column of213

the subdictionary corresponding to the class chosen by SRC. More precisely, the result of SRC is214

validated if the estimated Signal-to-Interference-plus-Noise Ratio (SINR)215

SINR(sk, ˆ̀k) =
||Dδˆ̀

k
(w∗)||22

||sk −Dδˆ̀
k
(w∗)||22

(7)

is greater than some threshold. Based on model (2), Dδˆ̀
k
(w∗) is an estimate of the signal of in-216

terest and sk −Dδˆ̀
k
(w∗) is an estimate of the interference plus background noise. This criterion217

measures the reconstruction quality of the test signal sk when approximated by a linear combi-218

nation of the elements of Dˆ̀
k
. It is inspired by Constant False Alarm Rate (CFAR) detectors of219

known signal in noise with unknown power, which show optimal properties with respect to de-220

tection performance [22, 23, 49]. The methodology used to set the SINR threshold is presented221
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in Sec. III C 2. A key aspect of our approach is that the classifier does not need to learn features222

of transient noises to reject them. This differs from methods such as [25] where noise features223

are learned by neural networks or from [24] where, for each class of noise, “a parametric model224

of noise is introduced. The models are based on the spectral properties of typical kinds of im-225

pulsive noise observed in the data” [24, pp. 360]. This implies to find exhaustive examples of226

underwater noise, which seems difficult given the complexity of the underwater environment. The227

characteristics of sensed underwater sounds are highly dependent on the anthropogenic, biologi-228

cal, geological or oceanographic environment as well as on the way sensors are mounted in the229

water column. So the noise learned or modeled in one context can hardly be transposed to another230

one.231

E. Overall procedure232

The classification process resulting from the foregoing considerations is hereafter referred to233

as SINR-SRC. It is summarized as follows and illustrated with two classes in Figure 1.234

1. Offline selection of training signals representative of their call class.235

2. Offline application of the compression option (6) if required.236

3. Given some test signal sk, perform a sparse encoding of sk over dictionary D by computing:

w∗ = argmin
w
‖sk −Dw‖22, with ‖w‖0 ≤ K.

4. Application of SRC by computing the class contributing most to the test signal sk:

ˆ̀
k = argmin

1≤c≤C
‖sk −Dcδc(w

∗)‖22.

5. Application of the rejection option: if SINR(sk, ˆ̀k) is greater than some threshold, the result237

provided by SRC is validated, otherwise sk is considered as noise.238

This SINR-SRC procedure can be illustrated by the scheme shown in Fig. 1.239

In addition to the good classification performance achieved by SINR-SRC (see Sec. III), note240

also that it is modular, which can be very useful in an operational context. For instance, if a new241
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class of mysticete calls must be added to an existing SINR-SRC classifier, there is no need to242

“retrain” the entire classifier as required in approaches such as neural networks, random forest or243

support vector machine. Only the new subdictionary associated to the new class must be learned.244

Moreover, to reduce miss-classifications of online passive acoustic monitoring, prior information245

such as the geographical position of the sensor could be taken into account by removing the sub-246

dictionaries in D corresponding to species whose habitats are known to be far away from the247

sensor.248

Figure 1. Overview of the classification method for 2 classes.

III. EXPERIMENTAL RESULTS249

A. Call library250

SINR-SRC is evaluated for five call types: Antarctic blue whale Z-calls [50, 51], two types of251

Madagascar pygmy blue whale calls [50], fin whale 20 Hz calls [52], North-Pacific blue whale252

D-calls [26, 41]. These calls have been chosen because:253

• They all overlap in frequencies and some of them have similar durations so they cannot be254
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Figure 2. Frequency range of each call type.

discriminated based on these two elementary features (Fig. 2 and 3).255

• They offer some variety in terms of signal types: pulsive, tonal sounds or frequency-256

modulated (FM) sweeps (Fig. 4).257

• They exhibit different levels of variability: from almost stereotyped (e.g., Z-calls) to variable258

in duration, bandwidth and FM rate (e.g., D-calls).259

Figure 3. Boxplot of durations for each call type.

The five call types were manually extracted from three datasets.260

The DEFLOHYDRO dataset: Three autonomous hydrophones were deployed near the French261

territories in the Southern Indian Ocean from October 2006 to January and April 2008. The ob-262

jective of the project was to monitor low-frequency acoustic signals, including those produced263

by large whales [53]. The three instruments were widely spaced and located in the Madagascar264

12



(a) (b)

(c) (d)

Figure 4. Examples of spectrograms from the call library. (a) four Z-calls produced by Antarctic blue
whales, (b) two types of alternative calls produced by Madagascar pygmy blue whales, (c) 20 Hz pulse train
produced by fin whales, (d) five D-calls produced by North-Pacific blue whales.

Basin, about 320 nautical miles (nm) south of La Reunion Island, and 470 nm to the northeast265

(NEAMS) and 350 nm to the southwest (SWAMS) of Amsterdam Island. The mooring lines were266

anchored on the seafloor between 3410 and 5220 m depths and the hydrophones were deployed267

near the sound channel axis (SOFAR) between 1000 m and 1300 m. The instruments recorded268

sounds continuously at a sampling rate of 250 Hz (frequency range 0.1-110 Hz) [50]. 254 Z-calls269

and 1000 fin whale 20 Hz calls were manually extracted from this dataset.270

The OHASISBIO dataset: In continuation to the DEFLOHYDRO experiment, a network of271

hydrophones was initially deployed in December 2009 at five sites in the Southern Indian Ocean.272

This experiment was designed to monitor low-frequency sounds, produced by seismic and vol-273

canic events, and by large baleen whales [17, 54]. 551 Madagascar pygmy blue whale calls were274

manually extracted from the data recorded by La Reunion Island hydrophone in the Madagascar275

Basin (geographic coordinates : +26° 05’ S, +058 °08’ E) in May 2015. 264 were type-1 calls and276

287 were type-2, see Fig. 4.277
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The DCLDE 2015 dataset: These data have been obtained with high-frequency acoustic record-278

ing packages deployed in the Southern California Bight. 380 D-calls were extracted from data279

recorded at the CINMS B site (latitude: +34° 17’ N, longitude: +120° 01’ 7” W) in summer 2012280

[26].281

282

The whole library is composed of 2185 mysticete calls. Each call has been manually annotated283

in time and frequency: start and end time are identified as well as lowest and highest frequency of284

each call. All calls are band-pass filtered according to their annotation and resampled at 250 Hz.285

To apply SRC, all calls must have the same number of time samples, which is easily achieved by286

zero-padding. As shown in Fig. 5, the library contains signals with a large variety of Signal-to-287

Noise Ratios (SNR). The SNR is here defined as the ratio of signal power to noise power, measured288

in the frequency band of each individual call.289

Figure 5. Distributions of the SNRs (in dB) of all the vocalizations in the dataset.

Note that four types of calls (Z-calls, 20Hz pulses, Mad1, Mad2) were recorded in the Indian290

ocean and one type (D-calls) in the Southern California Bight. Sensors of the OHASISBIO or291

DEFLOHYDRO networks can sense the first four types of calls in the same recordings [55] but292

North-Pacific blue whales D-calls are observed separately. In practice, this type of D-calls can293

therefore be differentiated from the other calls based on the assumed habitats. To challenge our294

method, location information was not taken into account. A similar approach was considered in295

[25]. In addition, blue whales in the Indian ocean also produce D-calls [56]. Although slightly296

different from D-calls of North-Pacific blue whales, these D-calls are also FM-like signals with297

variable initial frequency, FM rate, duration, and bandwidth. This suggests that our method could298

be relevant for these calls as well.299
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(a)

(b) (c)

Figure 6. Examples of spectrograms from the noise library. (a) extracted from DCLDE 2015, (b) seismic
survey noise provided by Sercel [57] and (c) oceanic noise extracted from DEFLOHYDRO.

B. Noise library300

To test the robustness of SINR-SRC against noise, a noise library was also created. 5000 noise301

samples were extracted from the DEFLOHYDRO dataset, 5000 from the DCLDE 2015 dataset302

and 5000 more from a dataset, provided by Sercel [57], recorded during seismic surveys. The303

first 5000 noise samples mainly correspond to what is called “background noise” in Sec. II D and304

the others are mostly transient signals of no interest for the classifier, i.e., “interference” (see Fig.305

6). In practice, the features (duration, bandwidth, power, etc.) of the noise samples injected into306

the classifier depends on the actual behavior of the detector used to identify the region of interest307

before classification. Since we would like to test the performance of our classifier irrespective308

of the detector, the noise samples were randomly extracted from the datasets. In addition, to309

challenge the method, noise samples were filtered so that their bandwidths and durations were310

chosen identical to bandwidths and durations of mysticete calls to be classified. This corresponds311

to a worst-case scenario for the classifier as filtered noise samples will have a greater amount of312

energy in the subspaces in which calls reside, leading to an increase of SINR (7).313
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C. Performance314

The performance of SINR-SRC is first analyzed and compared with an implementation of a315

state-of-the-art method [29], in the absence of a rejection option. Results with the rejection option316

activated are then presented. The impact of the dictionary size as well as the sparsity constraint317

is discussed at the end of this section. The performance of the classifier is measured using cross-318

validation. As shown in Table I, for each class (with the exception of noise), 100 calls are randomly319

selected for training and the remaining calls in this class are used for testing. All the tests presented320

are averaged over 100 random selections of the training set to ensure that the results and conclu-321

sions do not depend on any specific choice of the training data. For each class, the recall metric,322

used below, is defined as the ratio between calls correctly classified and the total number of call323

in this class. This metric is sometimes referred to as sensitivity or true positive rate. A recall of324

100% for Z-calls class means that all Z-calls have been correctly classified.325

1. Results without rejection326

Table II shows the average confusion matrix of the SRC algorithm without rejection and without327

injecting noise in the classifier. Each column of the matrix represents the percentage of calls in a328

predicted class while each row represents the percentage of calls in an actual class. The standard329

deviation of the classification results is also displayed in Table II. For this test, no reduction of the330

dictionary dimension is applied, i.e., D = A and the sparsity constraint K is set to 3 (impact of331

these parameters on the classification performance is discussed in Sec. III C 2). An overall average332

recall of 99% is obtained. The SRC classifier not only makes very few errors but is also robust to333

training dataset changes.334

For comparison, Table III displays the classification results obtained with an implementation335

of the time-frequency based method introduced in [29]. Similarly to SINR-SRC, this method is336

modular and is endowed with a rejection option that requires no noise training. It relies on the337

extraction of four amplitude-weighted time-frequency attributes: the average frequency, the fre-338

quency variation, the time variation, and the slope of the pitch track in time-frequency space. In339

our implementation inspired by [29], this extraction is performed on several spectrograms, each340

spectrogram being tuned to the time-frequency features of a specific class. The attributes extracted341

from each spectrogram are aggregated and then used as inputs of a quadratic discriminant func-342
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tion analysis classifier. This method yields slightly worse performance than SINR-SRC (without343

rejection option). Its average recall is 92.36% compared to 99.46% for SINR-SRC. Note also that344

SINR-SRC provides much smaller standard deviations. The method inspired by [29] learns an345

average model for each call class and is therefore strongly dependent on the quality of the training346

calls. When the training database contains no "outliers", the resulting model is accurate and leads347

to good classification results. However, in presence of a few calls with poor quality, the model348

is affected and the performance of such a method decreases. In contrast, the dictionary of SINR-349

SRC involves sufficiently many atoms so that the reconstruction of the test signal is always good350

enough to yield good classification performance.351

2. Results with the rejection option activated352

We now illustrate the performance of SINR-SRC when the rejection option is activated. We353

recall that, as opposed to alternative methods such as [24, 25], rejection of noise is achieved354

without learning or modeling noise features, i.e., no dictionary is built from noise data. An input355

is rejected by the classifier if the estimated SINR, obtained by computing (7), is lower than some356

threshold. This approach is very efficient to discriminate noise data from calls of interest [23].357

There exists numerous ways of setting the rejection threshold. For instance, it can be empirically358

chosen by the user according to the context and based on his own experience or it can rely on359

performance statistics.360

For instance, we hereafter present a method that is based on the estimation of a false-alarm361

probability as commonly done in the Neyman-Pearson framework for binary hypothesis testing.362

Assuming that the probability density function (pdf) of the SINR metric is known when noise363

samples are injected into the classifier, a rejection threshold guaranteeing a user-specified false-364

alarm probability can then be found. However, since the space of all possible underwater transient365

noises is very large, it is hardly possible to know precisely this pdf in practice. Therefore, we366

resort to an empirical approach and inject into the classifier synthetic random noise samples to367

obtain a pdf from which we can set a threshold. This noise is synthetic so as to be as independent368

as possible of a specific dataset. In our experiment, we generate independent and identically369

distributed samples following the standard Gaussian distribution. Any variance different from 0370

could be used, as the SINR metric is scale invariant. The synthetic noise is then obtained by371

filtering these samples in time and frequency. The filters have bandwidths and durations identical372
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to bandwidths and durations of mysticete calls to be classified. As explained in Sec. III B, this373

corresponds to a worst-case scenario for our method because such a noise will yield a greater SINR374

than noise with any other bandwidth and duration. In practice, actual detectors possibly used ahead375

of the classifier are unlikely to trigger the classifier with a false alarm signal whose bandwidth376

and duration exactly match those of an actual mysticete call. The consideration of worst-case377

scenarios is justified by the will to measure achievable classification performance irrespective of378

the detector. Rejection thresholds are estimated on each SINR distribution obtained after injecting379

Gaussian samples into each dictionary. Figure 7 shows an example of a rejection threshold chosen380

by setting a false-alarm probability at 1% on the SINR distribution obtained with filtered Gaussian381

samples injected into the Z-call dictionary. Note that distributions other than Gaussian may have382

been relevant to model noise samples. However, Fig. 7 indicates that the SINR distribution (in red)383

of real noises (not necessarily Gaussian) obtained after SRC is close to the distribution obtained384

with Gaussian input samples. Once again, the rejection threshold could be selected with alternative385

methods. It is beyond the scope of the paper to thoroughly investigate this point; we rather focus386

our attention on the general methodology and the classifier structure.387

Figure 7. Distribution of SINR, as computed in (7), for Gaussian samples (in blue), real noise (in red) and
real calls from the test dataset (in magenta), all identified as Z-calls according to the SRC algorithm without
the rejection option. For a 1% false-alarm probability, the rejection threshold is set to -12.5 dB.

Table IV shows the average confusion matrix of the SINR-SRC algorithm with rejection. As388

expected, activating the rejection option yields a slight drop in the average recall. This drop is389

mostly significant for D-calls due to their high variability in duration, frequency range and energy390
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distribution which cause that certain calls in the test dataset are considered as transient noise and391

therefore rejected. However, observe that 93.34% of noise inputs are correctly rejected. This392

clearly shows that SINR-SRC is capable of efficiently handling input data that are unknown to the393

classifier. This property is highly desirable in the low-frequency underwater environment where394

interfering sound sources can be very active. The classification results of SINR-SRC with the395

rejection option deactivated are shown in Table V when noise inputs only are injected into the396

classifier. It can be seen that noise inputs are spread among the 5 classes with a slightly higher397

probability for classes of calls embedding impulsive structures with a large frequency slope. This398

is explained by the large number of transient signals in the noise library.399

For comparison, the classification results obtained with the method derived from [29], with400

its rejection option, are shown in Table VI. A test signal is rejected if the Mahalanobis distance401

between its feature vector and its assigned mean attribute vector exceeds 3. This rejection option402

does not significantly reduce the recall. However, the noise rejection proposed in [29] is not403

as effective as the SINR-SRC rejection option. Actually, Tables IV and VI show that 93.3% of404

noise samples are correctly rejected by SINR-SRC, whereas only 66.4% are rejected by [29]. For405

a deeper analysis of the rejection performance for SINR-SRC and [29], zooms on the receiver406

operating characteristics (ROC) curves are shown in Figures 8 and 9. Such a comparison is all the407

more relevant that the noise rejection is controlled by both methods via one parameter only that408

we made vary. For our implementation of [29], this parameter is the threshold on the Mahalanobis409

distance between a test signal feature vector and its assigned mean attribute. For SINR-SRC,410

this parameter is the false alarm probability we can specify to all the SINR distributions obtained411

after injections of filtered Gaussian noise samples into the dictionaries. Given a specified false412

alarm probability for SINR-SRC, or a specified threshold on the Mahalanobis distance for our413

implementation of [29], we calculated the actual false alarm rates and recalls obtained by each414

method in presence of real noise and calls. We remind the reader that filtered noise samples have415

similar bandwidths and durations as those of mysticete calls to be classified, which is the worst-416

case scenario for both methods.417

These ROC curves highlight the better ability of SINR-SRC to reject noise compared to the418

reference method. In particular, the offset in Figure 8 indicates that filtered noise tends to have419

average time-frequency attributes close to learned attributes of calls, whatever the type of call.420

In the worst-case scenario we have considered, the method derived from [29] cannot provide a421

false alarm rate smaller than 5%. Note also the following facts. To begin with, the noise rejection422
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rate of 66.41% reported in the confusion matrix of Table VI corresponds to a false alarm rate of423

33.59%. The reader can then verify that the recall values of Table VI can be retrieved from the424

ROC curves of Figure 8. In the same way, given that a specified false alarm probability of 1% on425

the SINR distributions yielded an actual false alarm rate of 6.66% for SINR-SRC (equivalently,426

a noise rejection rejection rate of 93.34% for this method), the recall values displayed in Table427

IV can be obtained from Figure 9. The ROC curves of Figure 9 also emphasize the relevance428

of setting a false alarm probability of 1%, leading to an actual false alarm rate of 6.66%. This429

choice is seemingly a good trade-off between false alarm rate and recall, even for D-calls. Indeed,430

beyond this false alarm probability, increases in false alarm rates become more important than431

gains in recalls.432
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Figure 8. ROC curve for each class of the method derived from [29] with rejection option.
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Figure 9. ROC curve for each class of SINR-SRC with rejection option.

So far, no reduction of the dictionary dimension has been considered, i.e., D = A. As men-433
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tioned in Sec. II B, limiting the redundancy by solving (6) during the training phase may be useful434

to reduce the computational complexity. Figure 10 shows the impact of the dictionary size N ′c435

on the classification performance for each call class. For this test, (6) was solved using online436

dictionary learning [45] (the Matlab code is available at http://spams-devel.gforge.437

inria.fr/). The dictionary size affects the recall and it is interesting to note that its impact438

is class-dependent. For stereotyped calls such as Z-calls, the size of the dictionary can be small439

since the dimension of the signal space is related to the call variability, which is low in this case.440

However, for varying signals such as D-calls, which also have overlapping features with 20 Hz-441

pulses, the classification recall increases (on average) with the dictionary size. In this experiment,442

choosing N ′c = 40 for each class is sufficient to achieve close-to-optimal performance.443
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Figure 10. Average recall as a function of the dictionary size N ′c, K = 3 and rejection option activated.

The impact of the dictionary size on the computational complexity is visible in Figure 11 where444

the run-time-to-signal-duration ratio (RTSDR) of SINR-SRC is shown as a function of the dictio-445

nary size N ′c. This ratio is computed as the duration of the processing time divided by the total446

duration of the test dataset (58 h). SINR-SRC is implemented in Matlab (without parallel comput-447

ing) and runs on a workstation with the 2.9 GHz Intel Core i7 processor, 8 Gio of RAM memory448

and a DDR3 internal hard drive. Most of the computation time is spent in solving (4) by using449

OMP, which makes the RTSDR increase withN ′c. In this experiment, the processing time increases450

linearly with N ′c. Therefore, according to Figure 10, the processing time can be divided by 2.5 by451

choosing N ′c = 40 instead of N ′c = 100 without any performance loss. For N ′c = 40, SINR-SRC452

took less than 24 seconds to process the 58 hours of tests signals, which meets the requirements453

of most PAM applications. Note that this time is expected to increase with the number of classes454
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considered by the classifier.455

Figure 11. Run-time-to-signal-duration ratio as a function of the dictionary size N ′c.

As shown in Figure 12, the sparsity constraint K can also affect the classification recall. Sim-456

ilarly to the dictionary size, the optimal value for K depends on the variability and complexity457

of the test signals and is therefore class-dependent. However, no fine tuning is required. SINR-458

SRC performs better for all classes when K is greater than 1, K = 1 corresponding to a bank of459

matched-filters. For a sparsity constraint greater than 3 and less than 10, this test shows that SINR-460

SRC is robust to the choice of K. Since K contributes to the complexity of our algorithm, it may461

be relevant to limit it to 3 or 4 for the call classes tested in this experiment. In addition, choosing462

a large value for K (much greater than 10 for instance) may be detrimental to the classification463

performance as the SINR metric will tend to reject less noise samples [23, Sec. 4.1.2].464

IV. CONCLUSION465

Sparse representations have shown to be efficient to classify low frequency mysticete calls.466

Such representations model calls as linear combinations of atoms in an (overcomplete) dictionary467

in which many of the coefficients are zero. In this framework, the classifier seeks to approximate468

the input test signals with (a few) linear combinations of previously learned calls and assigns the469

class label that gives the best approximation. The proposed method directly processes the digitized470

time series and therefore does not suffer any loss of information due to a possible projection in471
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Figure 12. Average recall as a function of the sparsity constraint K, N ′c = 100 and rejection option
activated.

another space (as can been done when extracting features from spectrograms or cepstrums). Since472

the classification is based on a measure of similarity, it relies on a few parameters, namely, the473

dictionary size and the sparsity constraint. These parameters reflect the degree of variability and474

complexity of a given call class. As shown in the numerical experiments, these parameters are475

easy to set and do not require a fine tuning.476

Sparse representations also allows building simple confidence metrics to reject noise data. The477

SINR statistic (7) has been used at the output of the classifier and has rejected 93.3% of real noise478

data. With this approach, noise is handled without making the algorithm learn the features of real479

noise data. The overall method has been tested on five types of mysticete calls with overlapping480

time-frequency features and different degrees of variability. Numerical results have shown that, on481

the test dataset, 96.4% are correctly classified on average. As expected, stereotyped calls, such as482

Z-calls of Antarctic blue whale are easier to classify than more variable calls such as blue whale483

D calls, which can be incorrectly rejected by the SINR statistic.484

Class labels can easily be removed or added to the proposed method. This can be useful for485

operational passive acoustic monitoring where prior information such as location of the sensor486

and/or time of the year can be taken into account to focus on specific species.487

In a recent work [23], sparse representations have shown good performance for detecting mys-488

ticete calls. A possible extension of this work would therefore be to merge both approaches to489

jointly detect and classify mysticete sounds. Since calls are affected by local propagation condi-490

tions and noise, further work could also study the potential benefit of building dictionaries from491

parametric model of calls rather than/as well as from the call themselves. In addition, the SINR492
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statistic could be used as a confidence metric (related to the threshold position) and also as a nov-493

elty detector. In this way, the SINR-SRC algorithm would not only offer the capability of rejecting494

noise but it could also be used to develop an automatic semi-supervised incremental learning al-495

gorithm able to build new dictionaries online. After detection by the SINR-SRC algorithm of an496

unknown structured signal, a human analyst could label it and decide to add it to a new dictionary497

for automatic classification of future occurrences of this new class of signals.498
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APPENDIX499

Figures 13 and 14 show examples of Z and D-call reconstruction using Orthogonal Matching500

Pursuit (OMP) [46], withK = 3 atoms. These calls have been extracted from the DEFLOHYDRO501

and the DCLDE 2015 datasets described in Sec. III A.502

Figure 13. Example of Z-call reconstruction with OMP. The spectrogram representation and the temporal
signal of a test Z-call are displayed on the top left. The spectrogram and time representations of the recon-
structed signal with K = 3 are given on the top right. Below are the three atoms and their combination that
provided the Z-call reconstruction.

503

504
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Figure 14. Example of D-call reconstruction with OMP. The spectrogram representation and the temporal
signal of a test D-call are displayed on the top left. The spectrogram and time representations of the sig-
nal reconstructed by OMP with K = 3 are given on the top right. Below are the three atoms and their
combination that provided the D-call reconstruction.
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TABLES656

Class Training sig. Test sig. Total

Z-call 100 154 254
Mad1 100 164 264
Mad2 100 187 287

20Hz-pulse 100 900 1000
D-call 100 280 380
Noise - 15000 15000

Table I. Number of training and test signals used for each class and for each iteration of the cross-validation.

Z-call Mad1 Mad2 20Hz-pulse D-call

Z-call 100 0.00 0.00 0.00 0.00
0.10 0.00 0.10 0.00 0.10

Mad1 0.00 97.7 1.90 0.00 0.40
0.00 1.10 1.10 0.00 0.50

Mad2 0.00 0.30 99.60 0.00 0.10
0.00 0.30 0.30 0.10 0.20

20Hz-pulse 0.00 0.00 0.00 100 0.00
0.00 0.00 0.00 0.00 0.00

D-call 0.00 0.00 0.00 0.00 100
0.00 0.10 0.10 0.00 0.10

Table II. Confusion matrix of the SINR-SRC algorithm (in %) without the rejection option. For each class,
the upper line contains the mean and the lower line the standard deviation obtained for 100 cross-validation
trials on the call library only.
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Z-call Mad1 Mad2 20Hz-Pulse D-call

Z-call 79.89 0.00 19.66 0.45 0.00
15.96 0.00 16.06 0.44 0.00

Mad1 0.25 96.77 2.70 0.00 0.29
0.66 1.44 1.22 0.00 0.33

Mad2 3.42 0.69 95.89 0.00 0.00
3.09 0.37 3.14 0.00 0.00

20Hz-Pulse 0.01 0.00 0.00 93.00 6.99
0.02 0.00 0.02 5.13 5.14

D-call 3.73 0.00 0.00 0.00 96.27
1.17 0.00 0.00 0.00 1.17

Table III. Confusion matrix (in %) for the method derived from [29] without rejection option. For each class,
the upper line contains the mean and the lower line the standard deviation obtained for 100 cross-validation
trials on the call library only.

Z-call Mad1 Mad2 20Hz-pulse D-call Rejected

Z-call 99.62 0.00 0.00 0.00 0.00 0.38
0.44 0.00 0.00 0.00 0.00 0.44

Mad1 0.00 96.92 0.52 0.00 0.00 2.56
0.00 1.27 0.56 0.00 0.00 1.07

Mad2 0.00 0.35 98.11 0.00 0.00 1.54
0.00 0.28 0.73 0.00 0.00 0.64

20Hz-Pulse 0.00 0.00 0.01 97.63 0.00 2.36
0.00 0.00 0.03 0.72 0.00 0.72

D-call 0.00 0.01 0.00 0.00 89.89 10.1
0.00 0.04 0.00 0.00 1.81 1.81

Noise 0.75 0.79 3.21 0.27 1.64 93.34
0.39 0.62 1.96 0.17 1.89 4.65

Table IV. Confusion matrix of the SINR-SRC algorithm (in %) with the rejection option activated. The
false alarm probability specified on the SINR distributions after injection of filtered Gaussian noise samples
into the dictionaries is 1%. For each class, the upper line contains the mean and the lower line the standard
deviation obtained for 100 cross-validation trials on the call and noise library.

Z-call Mad1 Mad2 20Hz-pulse D-call

Noise 11.76 4.97 35.08 21.70 26.49
19.61 7.34 27.92 29.49 30.89

Table V. Classification results of SINR-SRC (in %) with noise inputs only. The rejection option is de-
activated. The upper line contains the mean and the lower line the standard deviation obtained for 100
cross-validation trials.
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Z-call Mad1 Mad2 20Hz-Pulse D-call Rejected

Z-call 75.64 0.00 0.01 0.00 0.00 24.35
14.91 0.00 0.06 0.00 0.00 14.91

Mad1 0.01 87.98 1.13 0.00 0.00 10.88
0.09 3.70 0.61 0.00 0.00 3.55

Mad2 1.93 0.43 90.60 0.00 0.00 7.04
1.87 0.32 3.88 0.00 0.00 3.26

20Hz-Pulse 0.01 0.00 0.00 85.08 0.00 14.92
0.02 0.00 0.00 5.30 0.00 5.30

D-call 3.73 0.00 0.00 0.00 88.26 8.01
1.17 0.00 0.00 0.00 2.51 2.32

Noise 4.94 0.00 21.60 0.00 7.05 66.41
5.13 0.00 16.68 0.00 5.21 24.62

Table VI. Confusion matrix (in %) for the method derived from [29] with the rejection option activated. The
rejection threshold is 3 on the Mahalanobis distance between feature vectors and assigned mean attributes.
For each class, the upper line contains the mean and the lower line the standard deviation obtained for 100
cross-validation trials on the call and noise library.
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