
HAL Id: hal-01868757
https://imt-atlantique.hal.science/hal-01868757

Submitted on 5 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-complexity decoders for non-binary turbo codes
Rami Klaimi, Charbel Abdel Nour, Catherine Douillard, Joumana Farah

To cite this version:
Rami Klaimi, Charbel Abdel Nour, Catherine Douillard, Joumana Farah. Low-complexity decoders
for non-binary turbo codes. 10th International Symposium on Turbo Codes & Iterative Information
Processing (ISTC 2018), Dec 2018, Hong Kong, Hong Kong SAR China. �10.1109/ISTC.2018.8625359�.
�hal-01868757�

https://imt-atlantique.hal.science/hal-01868757
https://hal.archives-ouvertes.fr

Low-complexity decoders for non-binary turbo
codes

Rami Klaimi, Charbel Abdel Nour and Catherine Douillard
IMT Atlantique, CNRS UMR 6285 Lab-STICC,

Brest, France
e-mail: firstname.surname@imt-atlantique.fr

Joumana Farah
Faculty of Engineering, Lebanese University,

Roumieh, Lebanon
e-mail: joumanafarah@ul.edu.lb

Abstract—Following the increasing interest in non-binary
coding schemes, turbo codes over different Galois fields have
started to be considered recently. While showing improved
performance when compared to their binary counterparts, the
decoding complexity of this family of codes remains a main
obstacle to their adoption in practical applications. In this work,
a new low-complexity variant of the Min-Log-MAP algorithm
is proposed. Thanks to the introduction of a bubble sorter for
the different metrics used in the Min-Log-MAP decoder, the
number of required computations is significantly reduced. A
reduction by a factor of 6 in the number of additions and
compare-select operations can be achieved with only a minor
impact on error rate performance. With the use of an appropriate
quantization, the resulting decoder paves the way for a future
hardware implementation.

Index Terms—Non-binary turbo codes, decoding algorithm,
bubble check, complexity reduction.

I. INTRODUCTION

Non-binary (NB) turbo codes (TC) designed over Galois
Fields GF(q) are shown to have a real potential in outper-
forming existing binary error correction codes [1]. Designed
over finite fields and directly mapped to the corresponding
Quadrature Amplitude Modulation of the same order (e.g.
q-QAM), these codes can benefit from the capacity gain
observed between a coded modulation and a bit-interleaved
coded modulation [2]. A main obstacle to their wide adoption
resides in the fact that their decoding complexity increases
with the order q of the finite field. The computational com-
plexity of the symbol-based BCJR algorithm [3] in terms of
additions and compare-select (ACS) operations scales as qν+1,
ν being the code memory, whereas the storage requirements
for the extrinsic information varies linearly with q and the
state metric memory is in the order of qν .

Complexity-related issues have already been addressed
for the implemention of non-binary low-density parity-check
(NB-LDPC) codes. Several complexity reduction techniques
were proposed in the literature. In [4], [5], the extended Min-
Sum (EMS) decoding algorithm was introduced, reducing
the computational complexity from the order of q2 to the
order of n2

m, with nm << q, as shown in [6]. Later, the
bubble check algorithm was introduced [7], which reduces the
computational decoding complexity to the order of nm

√
nm.

Inspired by the EMS algorithm simplifications, a modified
Min-Log-MAP algorithm is proposed in this work. It targets
the reduction of the number of performed ACS operations
through the use of a modified bubble check algorithm. The
paper is organized as follows: the structure of the considered

non-binary component convolutional codes is described in
Section II. The proposed low complexity decoding algorithm
is presented in Section III and a computational complexity
analysis of this algorithm is carried out in Section IV. Compar-
isons of error correcting performance and complexity results
are shown in Section V. Finally, Section VI concludes this
work.

II. NON-BINARY RECURSIVE SYSTEMATIC
CONVOLUTIONAL CODE SRUCTURE

The NB-TC structure considered in this paper is based
on the concatenation of two constituent recursive systematic
codes designed over GF(q). In order to limit the complexity
of the decoder, constituent codes with memory ν = 1 are
used, as illustrated in Fig. 1(a). It can be shown that if the
code coefficients a1, a2 and a3 are chosen so as to respect
a1 , 0 and a2 + a3 , 0, the trellis of the resulting code is
fully connected and the q2 transitions in the trellis are labeled
by the q2 possible combinations of the systematic and parity
symbols s and p [8]. An example of a fully connected trellis
for a code designed on GF(4) is shown in Fig. 1(b).

D +

S

P

I

+

𝑎1

𝑎2

𝑎3

s/p State
0/0

0

1

2

3

1/2

2/3

3/1

3/2

2/0

1/1

0/3

1/3

0/1

3/0

2/2

2/1

3/3

0/2

1/0

a b

State
0

1

2

3

Fig. 1. (a) Structure of a NB recursive convolutional code with one memory
element. (b) Trellis of a NB recursive convolutional code defined over GF(4).

III. SIMPLIFIED DECODING OF NB CONVOLUTIONAL
CODES

A. Min-Log-MAP decoding of NB convolutional codes

The reference decoding algorithm considered in the study is
the scaled Min-Log-MAP algorithm. This algorithm is equiv-
alent to the well-known scaled Max-Log MAP algorithm [9],
except that we adopt a log-likelihood ratio (LLR) definition
which is the opposite of the conventional definition:

L(a) = − ln
P(x = a)
P(x = ã)

, a ∈ GF(q) (1)

where ã = Argmax
a∈GF(q)

P(x = a) .

With this definition, the LLRs are positive and searching
for the most likely symbol comes to find the minimum LLR,
which is better suited to a compact hardware representation
of the LLRs.

Decoding using the Min-Log-MAP algorithm requires the
repeated computation of the minimum of cumulated terms
(Min-Sum), for the derivation of the state metrics and of the
extrinsic LLRs.

The forward state metric related to state Si = j, j ∈
{0 · · · q − 1} at trellis stage i is computed through the forward
recursion as:

αi(j) = min
j′∈{0· · ·q−1}

(αi−1(j ′) + γs,i−1(j ′, j) + γp,i−1(j ′, j)) (2)

where αi−1(j ′) is the forward state metric related to state
Si−1 = j ′ at trellis stage i − 1, γs,i−1(j ′, j) and γp,i−1(j ′, j)
are the systematic and parity transition metrics between states
Si−1 = j ′ and Si = j, respectively. Similarly, the backward
state metric related to state Si = j at trellis stage i is computed
through the backward recursion as:

βi(j) = min
j′∈{0· · ·q−1}

(βi+1(j ′) + γs,i(j, j ′) + γp,i(j, j ′)) (3)

Additionally, the extrinsic LLR related to symbol a ∈ GF(q)
at trellis stage i is computed using:

Le
i (a) = min

(j, j′)∈{0· · ·q−1}2 | s(j, j′)=a
(αi(j) + βi+1(j ′) + γp,i(j, j ′))

(4)
where s(j, j ′) is the systematic data symbol in GF(q) labeling
transition (j, j ′).

The straightforward computation of Eq. 2 or Eq. 3 for the q
encoder states requires, at each trellis stage, the computation
of q2 cumulated terms that are compared using q(q − 1)
compare and select operations. The same holds for the compu-
tation of Eq. 4 for the q different symbols in GF(q). For high
values of q, such as 64, 256 or larger, the decoding complexity
becomes prohibitive and cannot be efficiently implemented
in hardware without simplification. Therefore, we propose a
low-complexity algorithm for Min-Log-MAP decoding of NB
convolutional codes. The proposal is inspired by the bubble
check algorithm proposed in [7] to simplify the elementary
check node processing of the extended min-sum algorithm
for NB-LDPC codes.

B. The bubble check algorithm

The bubble check algorithm described in [7] is based on
bubble sorting and aims to simplify check node processing
in NB-LDPC decoders using the EMS algorithm. First of all,
only a limited number nm of messages at the input of the check
node are considered, in order to reduce the computational
burden of the check node update. From two sorted vectors
U = (U(1),U(2), · · · ,U(nm)) and V = (V(1),V(2), · · · ,V(nm)),
the bubble checker calculates an output vector E , containing
the sorted values of the set {U(i)+V(j)}, (i, j) ∈ [1 · · · nm]2 in
a limited number of operations. An example is illustrated in
Fig. 2. The first activated bubble is (U(1),V(1)) as indicated in
Fig. 2(a). Therefore, E(1) = U(1)+V(1) and then two bubbles

can be activated: (U(1),V(2)) and (U(2),V(1)), as shown in
Fig. 2(b). Since U(1)+V(2) < U(2)+V(1), the algorithm sets
E(2) = U(1) + V(2) and the bubble (U(1),V(3)) is activated
next. The process continues until the row or the column
number reaches the maximum value allowed for the sorter
size. This algorithm was shown to reduce the computational
decoding complexity to the order of nm

√
nm [7].

0 7 15 21 25

0

6

13

17

21

0 7 15 21 25

6 13 21 27 31

13 20 28 34 38

17 24 32 38 42

21 28 36 42 46

a

0 7 15 21 25

0

6

13

17

21

0 7 15 21 25

6 13 21 27 31

13 20 28 34 38

17 24 32 38 42

21 28 36 42 46

b

0 7 15 21 25

0

6

13

17

21

0 7 15 21 25

6 13 21 27 31

13 20 28 34 38

17 24 32 38 42

21 28 36 42 46

c

U(1) U(3)U(2) U(4) U(5)

V(1)

V(2)

V(3)

V(4)

V(5)

U(1) U(3)U(2) U(4) U(5) U(1) U(3)U(2) U(4) U(5)

V(1)

V(2)

V(3)

V(4)

V(5)

V(1)

V(2)

V(3)

V(4)

V(5)

Fig. 2. Example of bubble check processing.

However, this algorithm cannot be directly applied for the
Min-Sum processing of metrics and LLRs in the Min-Log-
MAP algorithm, due to several reasons:
• Min-Sum processing does not require any sorting of the

LLRs or cumulated metrics: only their minimum value
has to be found;

• the computation of each cumulated term in Eq. 2, Eq. 3
and Eq. 4 involves the addition of three terms instead
of two : sorting the cumulated values according to the
standard bubble check algorithm would require running
it twice;

• all the combinations of values are not possible in each
sum: in other terms, some cells in the sorting table are
empty.

C. Simplified Min-Sum processing for NB convolutional codes

The proposed Min-Sum processing algorithm takes these
differences into consideration. Due to the second point, two
sorting processes should be used in turn, requiring two sorting
tables. However, in order to limit the computational complex-
ity, we implemented the search for the minimum cumulated
term using only one table, with rows and columns indexed
with two among the three terms of the sum.

The Min-Log-MAP algorithm requires, at every trellis stage
and in each iteration, q2 addition and comparison operations
for its recursive calculation of the forward and backward state
metrics. Inspired by the algorithm described in [7], a new
low complexity decoder is proposed next. In the following,
we detail the application of the proposed algorithm for the
computation of the forward state metrics. However, the same
algorithm can be applied for the backward metrics and the
extrinsic LLRs.

Considering the calculation of the forward metric αi(j)
given by Eq. 2, the sorting table contains the q values of the
different terms B(j ′, j) = αi−1(j ′) + γs,i−1(j ′, j) + γp,i−1(j ′, j),
called bubbles, by analogy with [7]. The rows and columns
of the table are arranged according to the values of the
forward metrics αi−1(j ′) and the values of the systematic
transition metrics γs,i−1(j ′, j), both sorted in increasing order:
{αkα }, kα = {1 · · · q} and {γs,ks }, ks = {1 · · · q}. Each bubble
value B(j ′, j) is placed in the table at the intersection of the

corresponding αi−1(j ′) and γs,i−1(j ′, j) values. The parity tran-
sition metrics γp,i−1(j ′, j) are sorted separately in increasing
order following index kp = {1 · · · q}.

In the fully connected trellis of the code structure described
in Fig. 1, each transition corresponds to one of the q2 cells
of the table. However, when computing Eq. 2, only the q
transitions merging at state Si = j are considered. In the
studied code structure, all the transitions merging at a given
state are labeled with different values of systematic symbols.
Therefore, the q values of B(j ′, j) in the table are all placed
in different rows and columns. An example of such a table is
shown in Fig. 3 for q = 8.

To reduce the number of computations involved in Min-
Sum processing, a preliminary step consists in defining a
radius R which sets the boundaries of the table region cor-
responding to the R2 lowest, i.e. most reliable, values of
αi−1(j ′) + γs,i−1(j ′, j). Before starting the computation, the
proposed algorithm checks whether this high reliability zone
(colored in blue in Fig. 3) contains at least one bubble. If not,
it is highly unlikely that the considered state has been visited
by the encoder. Therefore, the corresponding αi(j) value is set
to a predefined high value. The value of R has an impact on
the complexity and the error rate performance of the decoder,
as shown in Section V.

If the radius-R region contains one bubble or more, the com-
putation process can be launched according to the flowchart
of Fig. 4. The algorithm processes the bubbles alternately
vertically and horizontally (or vice-versa) and updates two
upper bounds, kα,max and ks,max, on the maximum values of
indexes kα and ks to be processed.
• Step 1 – Initialization: Initialize kα, ks and kp to 1 and

initialize kα,max, ks,max to q.
• Step 2 – Vertical processing: 1) Calculate the bubble in

the column indexed by kα. 2) Update αi(j) with the computed
bubble Bi(j ′, j) if Bi(j ′, j) < αi(j). 3) If the parity transition
metric term γp,i−1(j ′, j) in Bi(j ′, j) is γp,kp , increment kp .
• Step 3 – Update ks,max and increment kα: Let m be

the row number of the systematic transition metric term
γs,i−1(j ′, j) used to compute Bi(j ′, j) in step 2. Compute a
dummy bubble B′ with the lowest values of αi−1(j ′) and
γp,i−1(j ′, j) not yet used (that is with indexes kα + 1 and kp
due to the applied sorting) and with γs,m+1: B′ = αkα+1 +
γs,m+1 + γp,kp . This dummy bubble sets a lower bound on
the values of the actual bubbles located at rows with indexes
greater than m+ 1. If B′ ≥ αi(j), there is no need to continue
the calculation process below this row: ks,max is set to m + 1.
kα is incremented for the next iteration.
• Step 4 – Horizontal processing: 1) Calculate the bubble

in the row indexed by ks . 2) Update αi(j) with the computed
bubble Bi(j ′, j) if Bi(j ′, j) < αi(j). 3) If the parity transition
metric term γp,i−1(j ′, j) in Bi(j ′, j) is γp,kp , increment kp .
• Step 5 – Update kα,max and increment ks: Let n be

the column number of the state metric term αi−1(j ′) used to
compute Bi(j ′, j) in step 4. Compute a dummy bubble B′′

with the lowest values of γs,i−1(j ′, j) and γp,i−1(j ′, j) not yet
used (that is with indexes ks + 1 and kp due to the applied

sorting) and with αn+1: B′′ = αn+1 + γs,ks+1 + γp,kp . This
dummy bubble sets a lower bound on the values of the actual
bubbles located at columns with indexes greater than n + 1.
If B′′ ≥ αi(j), there is no need to continue the calculation
process to the right of this column: kα,max is set to n + 1. ks
is incremented for the next iteration.

Steps 2 to 5 are repeated until ks ≥ ks,max and kα ≥ kα,max.

α1

γ𝑠,1

𝐵(2,𝑗)

α6 α2 α3 α4 α5

γ𝑠,2

γ𝑠,3

γ𝑠,4

γ𝑠,5

γ𝑠,6

𝐵(0,𝑗)

𝐵(7,𝑗)

𝐵(3,𝑗)

𝐵(5,𝑗)

𝐵(6,𝑗)

α7 α8

γ𝑠,7

γ𝑠,8

𝐵(4,𝑗)

𝐵(1,𝑗)

𝐵′

𝐵′′

R
el

ia
b

ili
ty

 s
o

rt
in

g

𝑘α 𝑘𝑠 𝑘𝑝

α γ𝑠 γ𝑝

Fig. 3. Example of sorting table used for the computation of αi (j) with Eq. 2
for q = 8. All B(j′, j) values, j = 0 · · · q−1 are placed in different rows and
columns. Min-Sum processing is performed with radius R = 3, ks,max = 5
and kα,max = 6. Illustration of Steps 2 and 3 (resp. Steps 4 and 5) for kα = 1
(resp. for ks = 1), and illustration of sorted vectors α, γs and γp .

The proposed decoding algorithm limits the activated bub-
bles to the ones lying inside the area bounded by kα,max and
ks,max.

The same process is repeated for every state j ∈ {0 · · · q−1}
and at each trellis stage.

The proposed algorithm can also be directly applied for the
computation of backward state metrics and extrinsic LLRs.

A question that arises is the choice of the metric to be
handled separately in the process (e.g the parity transition
metric in the example above). Although any metric could play
this role, in practice it is better to keep in the table the metrics
that are refined during the iterative decoding process thanks to
the incoming extrinsic information, i.e. the state metric and the
systematic transition metric: this speeds up the computation
over the iterations.

D. Additional simplification and vector sorting

In order to further reduce the complexity of the decoding
process, the previously described algorithm does not need
to consider all the q state metrics and systematic transition
metrics to find the minimum bubble value. Similarly to the
EMS decoding algorithm of NB-LDPC codes, only the first
nm lowest (i.e. most reliable) metrics need to be sorted, with
nm << q. Therefore, in the algorithm of Section III-C, q can
be replaced by nm. The impact of the value of nm on the
complexity and error correction performance is assessed in
Section V.

An example of hardware architecture for the generation of
the sorted truncated vectors can be found in [10].

IV. COMPLEXITY ANALYSIS

The computational complexity for the calculation of the
forward state metrics, backward state metrics and extrinsic

Fig. 4. Flow chart of the proposed simplified Min-Sum processing algorithm.

LLRs is assessed in terms of the average number of ACS
operations executed per decoded frame. For the full Min-Log-
MAP algorithm, it is calculated as follows:

ACSMLM = 3nenc .Ks .nit .q2 (5)

where nenc denotes the number of component encoders in
the TC structure – for conventional TCs, nenc = 2, Ks is the
number of GF(q) symbols in the messages to be encoded and
nit represents the number of executed decoded iterations. The
factor 3 stands for the three processes needed to compute
the forward and backward probabilities and the extrinsic
information.

For the proposed bubble check algorithm, the number of
operations ACSBC is upper bounded by:

ACSBC = 3nenc .Ks .nit .2nm.q (6)

The factor 2 in (6) accounts for the update of the metrics in
Steps 2 or 4 of the algorithm (see Section III-C) and of the
update of kmax in Steps 3 or 5: for each of the q encoder
states, at most 2nm ACS operations are needed. Therefore,
from (5) and (6), it can be inferred that the proposed Min-
Sum processing reduces the complexity of the Min-Log-MAP
algorithm, provided that nm <

q
2 .

V. RESULTS AND DISCUSSION

The error correction performance of the proposed decoder
in terms of frame error rate (FER) is evaluated by simulations

over a Gaussian channel. The simulated NB-TC consists of
two identical constituent codes with the structure shown in
Fig. 1 and defined over GF(64). The coefficients a1, a2 and
a3 are taken equal to 41, 2 and 0, respectively. Since no
puncturing is applied, the overall coding rate is R = 1/3. The
message length at the encoder input is Ks = 900 symbols,
corresponding to Kb = 5400 bits. The coded symbols are
transmitted using a 64-QAM constellation. An almost regular
permutation (ARP) [11] is used for internal interleaving.
Interleaver parameters and corresponding minimum spread
Smin and girth values are given in Table I.

The turbo decoding algorithms are simulated using nit = 8
decoding iterations, unless otherwise specified. 8 quantization
bits are used for the representation of the input symbol LLRs
and 9 bits for the state metrics – forward and backward.

Three decoding configurations, shown in Table II, are
compared in terms of error rate performance and complexity,
which differ in the radius value R and in the truncation length
nm (see Section III-D).

TABLE I
ARP INTERLEAVER PARAMETERS, GF(64), Ks = 900 SYMBOLS AND
R = 1/3 (ARP EQUATION: Π(i) = (Pi + S (i MOD Q)) MOD Ks).

Smin Girth P Q (S(0),...,S(Q-1))
30 8 137 4 (0,854,396,362)

TABLE II
VALUES OF PARAMETERS R AND nm FOR THE THREE SIMULATED

CONFIGURATIONS.

Configuration C1 C2 C3
R 10 4 2
nm 16 8 4

Fig. 5 shows the error correction loss due to the reduced-
complexity decoding algorithm, with respect to the original
Min-Log-MAP algorithm. This loss varies from 0.1 to 0.9 dB
at a FER equal to 10−3, depending on the configuration. Two
additional curves were added, corresponding to the simulation
of two binary TCs using 16-state and 64-state constituent
codes and decoded with the Min-Log-MAP algorithm under
the same simulation conditions. We can observe that the
proposed NB-TC outperforms both binary codes even when
a complexity reduction is applied. The proposed code can
compete with the binary TC using the same number of
states, even when performing only 6 decoding iterations (curve
labeled C3-R2-nm4-6It) and even with the binary 16-state
binary turbo code, which displays a lower decoding threshold
than the binary 64-state code.

A comparison of the computational complexity was also
carried out. First, Table III presents the values of the upper
bound on the number of ACS for the proposed reduced-
complexity decoding algorithm obtained according to (6)
and that of the full Min-Log-MAP algorithm obtained with
(5), as well as the percentage gain for the three simulated
configurations.

Fig. 6 compares the actual computational complexity of the
different schemes in terms of measured ACS operations as a
function of the FER. The complexity reduction with respect
to the classical scaled Min-Log-MAP algorithm varies from

Fig. 5. Performance comparison, in terms of FER, of the 3 low-complexity
decoding configurations with Min-Log-MAP algorithm for NB-TC, and 16-
state and 64-state binary TC. Transmission using 64-QAM over the AWGN
channel. Generator polynomial for binary 16-state and 64-state component
codes: (1, 35/23) and (1, 171/133) respectively, in octal notation.

TABLE III
UPPER BOUNDS ON THE NUMBER OF ACS OPERATIONS BY FRAME FOR

DIFFERENT DECODING ALGORITHMS.

Algorithm MLM Bubble Check
nm = 16 nm = 8 nm = 4

ACS×106/Frame 176.9 88.4 44.2 22.1
Min. complexity

reduction (%) 0 50.1 75.1 87.5

a factor 3 to almost 10, depending on the configuration. For
instance, accepting a loss in the order of 0.2 dB in perfor-
mance will result in a complexity reduction by a factor of 6
using configuration C2. When comparing with the binary 16-
state, the NB-TC decoded with the Min-Log-MAP algorithm
is 20 times more complex and 6 times when comparing with
the 64-state TCs, for a corresponding gain in performance of
0.9 dB and 1.2 dB. With the simplified configuration C2, a
performance gain of 0.8 dB can still be achieved compared
to the 16-state TC, at the price of a complexity multiplied by
4. Note that, although not shown in the figure, we observed
that the NB-TC is able to achieve lower error floors than the
16-state binary TC.

Moreover, even when requiring a higher number of oper-
ations, the decoder of a NB-TC over GF(q) would enhance
the throughput, compared to the binary TC, thanks to symbol-
based processing that provides log2(q) bits when decoding a
trellis section. Indeed, comparisons should be performed at
the same throughput level which would require considering
high order radix-based decoder for binary codes.

VI. CONCLUSION

In this work, a reduced-complexity decoding algorithm for
NB-TC is proposed. It extends the bubble check algorithm
used for NB-LDPC codes to the particular case of metric
computations of NB turbo decoders. Based on the Min-Log-
MAP decoder, this algorithm largely reduces the number of

Fig. 6. Computational complexity comparison in terms of ACS operations
as a function of the achieved FER.

required addition/comparison operations. Different trade-off
levels can be achieved between performance and complexity.

When compared to their binary counterparts, the NB-TCs
still show better performance at an affordable additional
complexity. This paves the way to future hardware implemen-
tations.

ACKNOWLEDGMENT

This work was partially funded by the EPIC project of the
EU’s Horizon 2020 research and innovation programme under
grant agreement No. 760150, by Orange Labs and by the
Pracom cluster. It has also received support from the PHC
CEDRE program.

REFERENCES

[1] G. Liva, E. Paolini, B. Matuz, S. Scalise, and M. Chiani, “Short turbo
codes over high order fields,” IEEE Trans. Commun., vol. 61, no. 6, pp.
2201–2211, June 2013.

[2] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modula-
tion,” IEEE Trans. Inform. Theory, vol. 44, no. 3, pp. 927–946, 1998.

[3] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate (corresp.),” IEEE Trans. Inform.
Theory, vol. 20, no. 2, pp. 284–287, 1974.

[4] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary
LDPC codes over GF (q),” IEEE Trans. Commun., vol. 55, no. 4, pp.
633–643, 2007.

[5] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
complexity decoding for non-binary LDPC codes in high order fields,”
IEEE Trans. Commun., vol. 58, no. 5, pp. 1365–1375, 2010.

[6] L. Conde-Canencia, A. Al-Ghouwayel, and E. Boutillon, “Complexity
comparison of non-binary LDPC decoders,” in ICT MobileSummit,
2009, pp. 1–8.

[7] E. Boutillon and L. Conde-Canencia, “Bubble check: a simplified
algorithm for elementary check node processing in extended min-sum
non-binary LDPC decoders,” Electron. Lett., vol. 46, no. 9, pp. 633–634,
2010.

[8] R. Klaimi, C. Abdel Nour, C. Douillard, and J. Farah, “Design
of low-complexity convolutional codes over GF (q),” arXiv preprint
arXiv:1807.02481, 2018.

[9] J. Vogt and A. Finger, “Improving the Max-Log-MAP turbo decoder,”
Electron. Lett., vol. 36, no. 23, pp. 1937–1939, Nov 2000.

[10] A. A. Ghouwayel and E. Boutillon, “A systolic LLR generation archi-
tecture for non-binary LDPC decoders,” IEEE Commun. Lett., vol. 15,
no. 8, pp. 851–853, August 2011.

[11] C. Berrou, Y. Saouter, C. Douillard, S. Kerouédan, and M. Jézéquel,
“Designing good permutations for turbo codes: towards a single model,”
in IEEE Int. Conf. Communications, vol. 1, Paris, France, 2004, pp.
341–345.

