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Abstract—This paper proposes a new family of recursive
systematic convolutional codes, defined in the non-binary domain
over different Galois fields GF(q) and intended to be used as
component codes for the design of non-binary turbo codes. A
general framework for the design of the best codes over different
GF(q) is described. The designed codes offer better performance
than the non-binary convolutional codes found in the literature.
They also outperform their binary counterparts when combined
with their corresponding QAM modulation or with lower order
modulations.

Index Terms—Finite field, non-binary codes, recursive system-
atic convolutional codes, coded modulation, turbo codes.

I. INTRODUCTION

Since the early 2000s, binary turbo and low density parity-
check (LDPC) codes [1], [2], [3], have been adopted in many
communication standards, such as the third, fourth and fifth
generations of mobile communications (3G, 4G, 5G), the
second generation of digital video broadcasting (DVB) and
the WiMAX standards. When transmitting long codewords,
most of these codes are known to approach the Gaussian
channel capacity very closely. However, they do not perform
so close to the theoretical limit when small block lengths are
considered [4]. The performance loss is due to the correlation
experienced in the iterative decoding process of short data
blocks [5].

These observations have triggered much attention from the
channel coding research community, and are being taken into
consideration with the increasing need for short packet trans-
mission, for instance for machine to machine communications.
In particular, numerous studies have investigated the design
of codes over high-order Galois fields (GF), especially for the
LDPC family, and have shown the potential of these codes
[6], [7]. New structures of non-binary (NB) LDPC codes are
proposed where the encoded NB symbols are directly mapped
to a NB modulation with the same order. These codes are
jointly designed with the corresponding modulation depending
on the GF order.

While NB LDPC codes have been widely studied in the
literature, research related to NB convolutional and turbo
codes over GF(q), q > 2 is very limited. Convolutional codes
over rings are defined in [8] using a matched mapping in order
to easily find the best codes. In [9], [10], NB turbo codes are
constructed derived from protograph sub-ensembles of regular

LDPC codes. These codes are defined as a concatenation of
two NB time-variant accumulators. Also, convolutional codes
over GF(q) are defined in [11], where the author has limited
the study to codes over GF(4). Using the results in [11], turbo
codes over GF(4) are defined in [12]. In addition, turbo codes
over GF(4) with different types of channels are studied in [13],
[14]. A general study for the design of convolutional codes to
be used as component codes for NB turbo codes over different
GF(q) seems to be missing in the literature.

From an information theoretic perspective, previous studies
have shown that bit-interleaved coded modulation (BICM)
schemes suffer from a capacity loss compared to coded
modulation (CM) schemes [15], [16]. This loss is even more
pronounced for high modulation orders and at low spectral
efficiencies. An example of comparison between the CM and
BICM capacities is illustrated in Fig. 1, where a transmission
with 64-QAM and QPSK modulations over an additive white
Gaussian noise (AWGN) channel is considered. The BICM
and CM capacities are calculated based on the model pre-
sented in [16].

Fig. 1. BICM and CM capacities versus signal-to-noise ratio (SNR) over an
AWGN channel.

Fig. 1 shows a gain in capacity of more than 1.0 dB for
the coded modulation using 64-QAM for spectral efficiencies
lower than 2 bit/channel use. In other words, a potential gain



of more than 1.0 dB of SNR can be achieved by using a NB
coding scheme with coding rate 1/3 over GF(64) combined
with a 64-QAM modulation, compared to a BICM scheme
using binary coding. This is mainly due to the fact that, in the
NB structure, the encoded symbols are directly mapped onto
the modulation, instead of being marginalized as in the binary
case. However, Fig. 1 shows almost equal CM and BICM
capacities in the case of QPSK for all SNR regions. Therefore,
from the capacity standpoint, there is no real interest in using
codes over GF(4) combined with QPSK modulation.

From these results, one can assume that well-designed NB
codes can outperform their binary counterparts for certain
coding rate ranges and modulation orders. To this end, this
paper presents a detailed study of the design of convolutional
codes over NB GF(q), to be used as constituent codes for NB
turbo codes.

This contribution is structured as follows: in section II
we propose a new recursive systematic convolutional code
structure over GF(q) and we show its superiority with respect
to the classical structure with the same number of states.
Section III starts by describing the used design criterion,
then evaluates the impact of the constellation mapping on the
search procedure. Simulation results comparing the proposed
codes with the best published binary and non-binary convolu-
tional codes in the state of the art are provided in section IV.
Section V concludes the paper.

II. NON-BINARY RECURSIVE SYSTEMATIC
CONVOLUTIONAL CODE STRUCTURES

In order to limit the complexity of the design process,
only rate-1/2 convolutional codes with one memory element
were considered in this work. First, the accumulator structure
(structure S1 in Fig. 2), inspired from the binary case, was
used as an encoding template. Then, the proposed structure
S2 depicted in Fig. 2 was adopted for the reasons that will be
presented shortly.
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Fig. 2. Non-binary convolutional code structures with one memory element.

Both structures consist of a recursive systematic convolu-
tional (RSC) code with recursion polynomial:

Pr(D) = 1 + α1D (1)

Note that the recursive nature of the code requires α1 6= 0.
The structures in Fig. 2 differ in the parity polynomial. For
structure S1, it is equal to:

Pp1(D) = α2 + α2α1D (2)

and for structure S2 to:

Pp2(D) = α2(1 + α1D) + α3D

= α2 + (α1α2 + α3)D
(3)

In order for structures S1 and S2 to represent a convolutional
code, an additional constraint should be met in every structure.
For structure S1, it is sufficient to assume that α2 6= 0. For
S2, we should have that:

α1α2 + α3 6= 0 (4)

When α1α2 + α3 = 0, the input data is just multiplied by a
fixed coefficient without being encoded.

For a code defined over GF(q), coefficients αj , j =
{1, 2, 3}, the input data, systematic and parity output data are
elements of GF(q). Since the encoding structures use only one
memory element, the codes considered here have the lowest
level of complexity, for a given value of q, among all the codes
over GF(q). Their trellis diagrams have a number of states
equal to the order of the Galois field and are fully connected.

Structure S2 is more general than structure S1 since the
latter can be derived from the former by using the same
coefficient α1 and α2 and by setting α3 = 0.

Let Ei and Ei+1 be the encoder states at time i and i+ 1
and si and pi be the systematic and parity symbols labeling
the transition between Ei and Ei+1. The relation between the
successive encoder states is, for both structures:

Ei+1 = si + α1Ei (5)

For structure S1, the parity symbol labeling the transition
between Ei and Ei+1 can be written as:

p1,i = α2 (si + α1Ei) = α2Ei+1 (6)

For structure S2, it is written as:

p2,i = α2 (si + α1Ei) + α3Ei = α2Ei+1 + α3Ei (7)

If we assume that coefficients αj , α2 and α3 are non-zero,
(q−1)2 different NB convolutional codes can be obtained with
structure S1 when varying the coefficients, while structure
S2 can provide (q − 1)3 different codes. For both structures,
(5) shows that for a given value of α1, q transitions stem
from each state Ei, ending in q different possible states Ei+1.
Equation (5) also shows that these q transitions are labeled
with q different values of systematic symbols. Equations (6)
or (7) provide the corresponding q different values of parity
symbols for the two structures considered in this paper. The
main difference between structures S1 and S2 is that the parity
symbol p1,i is the same for the q transitions arriving at state
Ei+1 in S1 due to (6). On the contrary, (7) shows that a non-
zero value of α3 allows all the transitions arriving at state



Ei+1 in S2 to be labeled with q different parity values p2,i.
Consequently, structure S2 allows the search space for the
code to span all the combinations of systematic and parity
symbols for each transition between two states in the trellis.

III. SEARCHING FOR GOOD NB CONVOLUTIONAL CODES

A. Design Criterion

Going back to Ungerboeck’s results on trellis codes [17],
the selection criterion for a code, when associated with a
high-order modulation, is based on the Euclidean distance
spectrum of the coded modulation instead of the Hamming
distance spectrum of the code, when no bit interleaving is
considered. As far as NB convolutional codes are concerned,
their selection is usually based on the minimization of the
average symbol error probability Ps, which is upper bounded
by [18]:

Ps ≤
∑
I∈S

∑
Î∈S

n(I, Î)p(I)P (I → Î) (8)

where S denotes the set of different possible sequences in the
trellis, I and Î are the information sequences corresponding
respectively to the correct path and to an erroneous path in
the trellis, p(I) is the probability that the source transmits
sequence I , P (I → Î) is the pairwise error probability (PEP),
that is, the probability that the decoder chooses erroneous
sequence Î instead of the correct transmitted sequence I , and
n(I, Î) is the number of erroneous symbols due to such an
error event. For the case of an AWGN channel, deriving the
Chernoff bound for the PEP [19], [20] gives:

P (I → Î) ≤ e−
Es
4N0

∑N
n=1|In−În|2 (9)

where Es is the average energy per transmitted symbol for the
considered constellation C. Therefore, minimizing the average
symbol error probability amounts to maximizing the Euclidean
distance between sequences in the trellis diagram, which is our
primary objective in this study.

Contrary to binary convolutional codes, when associated
with a high order modulation, the first terms of the distance
spectrum of a NB code cannot be obtained by assuming
that the all-zero sequence has been transmitted. This is due
to the fact that common NB constellations used in most
communication systems, such as high-order QAM constella-
tions, do not have the uniform error property [18]. Therefore,
to determine the distance spectrum of a NB convolutional
code associated with a high order modulation, we have to
consider all possible pairs of competing sequences, with paths
diverging from a given state in the trellis diagram and then
converging again to a given state. Such sequence pairs are
called DC (diverging and converging) sequences or paths
within this paper. The corresponding cumulated Euclidean
distance is computed as the sum of the Euclidean distances
between symbols transmitted along the two DC paths.

For DC paths stretching over L trellis sections, the squared
cumulated Euclidean distance between two DC sequences X1

and X2 is calculated as follows:

D2
Euc =

L∑
l=1

(
d2(X1

ls, X
2
ls) + d2(X1

lp, X
2
lp)
)

=

L∑
l=1

[
(IX1

ls
− IX2

ls
)2 + (QX1

ls
−QX2

ls
)2

+(IX1
lp
− IX2

lp
)2 + (QX1

lp
−QX2

lp
)2
]

(10)

where Xb
ls and Xb

lp are the systematic and parity values
respectively, at trellis section l in sequence Xb, b = 1, 2, and
Ix and Qx represent the in-phase and quadrature components
of constellation signal x.

The search for good NB convolutional codes consists in
searching for the set of coefficients α1, α2 and α3 that
maximize the lowest DEuc values while minimizing their
multiplicities (i.e. the number of sequence pairs with a given
distance).

B. Distance spectrum computation methodology
The distance spectrum of a NB code can be calculated

by enumerating the DC sequences in the code trellis and by
computing the corresponding cumulated Euclidean distances
according to (10). For the NB code model adopted in our
study (structure S2 in Fig. 2), the trellis is fully connected.
Therefore, any pair of paths in the trellis diverging from a
state at time i can converge to any state at time i+2, i.e., the
shortest DC sequences have length 2. We have observed that,
whatever the values of coefficients α1, α2 and α3, enumerating
the length-2 and length-3 DC pairs of paths (see Fig. 3)
is enough to find all the sequences corresponding to the
minimum cumulated Euclidean distance d1 and to the second
minimum cumulated Euclidean distance d2 of the code. This
is guaranteed since, when considering length-3 sequences
diverging from a state but not converging to another (see
truncated DC-4 sequences in Fig. 3), the obtained cumulated
distances are greater than d1 and d2.

State 
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i i+1 i+2 i+3 i+4 

: DC-2 : DC-3 : Truncated DC-4  : DC-4 

Fig. 3. Examples of length-2, length-3, truncated length-4 and length-4 DC
pairs of sequences in GF(4).

Therefore, for each examined code, we have enumerated
length-2 and 3 DC sequences, computed the corresponding



cumulated Euclidean distances and stored the multiplicities
for the two first distance terms d1 and d2.

C. Search for convolutional codes over GF(q), q > 2, with
conventional q-QAM constellations

As described in section II, the code is defined through the
choice of the coefficients α1, α2 and α3. The selection of
the coefficient values defining the best code depends on the
mapping of the encoded symbols X in GF(q) to the q-ary
constellation C. A question that arises is whether changing
the mapping has an impact on the distance spectrum of the
best convolutional code that can be found by varying the
coefficients α1, α2 and α3. For a q-ary constellation C, q!
different mappings µ can be defined. Since the values of the
first and second minimum cumulated Euclidean distances, and
their multiplicities, are calculated from length-2 and 3 DC
sequences as stated in section III-B, the study of the effect
of changing the mapping µ on these sequences should be
performed to answer this question. Two cases are considered
for this study:
• The code is defined and kept unchanged (constant values

are taken for the αj parameters, j = 1 · · · 3 ), while the
constellation mapping µ spans the different q! possibili-
ties,

• The mapping µ is kept unchanged, while each αj code
parameter spans the q − 1 possible values.

If both cases provide two coded modulations with the same
distance spectrum, we can then conclude that the mapping has
no impact on the result of the search procedure.
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Fig. 4. An example of length-3 DC sequences in a GF(4) code trellis.

Fig. 4 shows an example of two DC sequences of length-3.
The exploration of such DC sequences can be divided into
three steps:
• The first step focuses on the divergence section of the

sequences, i.e. the section where they first diverge from
the same state Ei to two different states Ei+1 and E′i+1.

• The second step addresses the trellis section (or sections
for longer sequences) where these sequences do not

have any state in common. This step corresponds to the
transitions from Ei+1 to Ei+2 and from E′i+1 to E′i+2

in the example of Fig. 4. Note that for length-2 DC
sequences, this step does not exist.

• The final step concerns the trellis section where the
sequences converge to the same state Ei+3.

The exploration consists of counting the total number of
different possible cumulated Euclidean distances between DC
sequences for each of the two previously mentioned study
cases. It is performed for the general assumption of an arbi-
trarily shaped q-ary constellation, which represents the worst
case scenario. For QAM constellations, symmetry could be
exploited to reduce the number of different possible Euclidean
distances.

a) Case 1 – αj parameters are constant and µ changes:
Let Nµ denote the number of different possible values of the
cumulated Euclidean distance between any two DC sequences
of length up to 3, when µ changes.
• Step 1: The Euclidean distances are computed between

transitions labeled by systematic and parity symbols
emanating from the same state. They are divided into
two sub-terms, one for the systematic part and one for
the parity part (see (10)). The number of differently
valued sub-terms for each symbol type is the number
of combinations of 2 in a set of q elements, denoted
by
(
q
2

)
. When varying the mapping, any combination of

any two possible values of each symbol type is possible.
Therefore, the contribution of step 1 to Nµ is

(
q
2

)2
.

• Step 2: The Euclidean distances are computed between
transitions without any state in common. Contrary to step
1, the transitions with equal values of systematic (si+1 =
s′i+1) or parity (pi+1 = p′i+1) symbols should also be
considered. Therefore, the contribution of step 2 to Nµ is((
q
2

)
+ 1
)2−1. The omitted term corresponds to the non-

existing case where (si+1 = s′i+1) and (pi+1 = p′i+1),
due to the code structure, following (5) and (7).

• Step 3: Dictated by the code structure, by exploiting the
existing symmetry with regards to step 1, we can deduce
that the contribution of step 3 to Nµ is also

(
q
2

)2
.

In summary, Nµ =
(((

q
2

)
+ 1
)2 − 1

)
·
(
q
2

)4
.

b) Case 2 – µ is constant and αj parameters change:
Let Nα denote the number of different possible values of the
cumulated Euclidean distance between any two DC sequences
of length up to 3, when varying αj values.
• Step 1: When emanating from the same state, the transi-

tions are labeled by all the possible systematic symbols.
This corresponds to

(
q
2

)
different possible sub-terms in

the Euclidean distance. When varying the αj parameters,
if all combinations of q2 parities labeling any couple of
transitions are spanned, then the ensemble of generated
codes covers all possible parity symbol combinations.
This can be verified by taking one reference transition
(systematic and parity values kept constant) and by
validating that the second transition can span all possible
parity values, even when the systematic part is constant.



In Fig. 4, for the same starting state Ei, if transition (si,
pi) is taken as a reference, then parity p′i should be able
to span the q − 1 possible values (excluding pi = p′i)
when s′i is kept unchanged. From (5) and (7), we have:

pi + p′i = α2(si + s′i) (11)

When α2 spans GF(q), pi+p′i takes the q−1 different non
zero values. Therefore, p′i can actually take any possible
value in {GF(q)\{pi}}. Consequently, the contribution
of step 1 to Nα is

(
q
2

)2
.

• Step 2: With code structure S2, q2 different competing
transitions are considered in this step regardless of the
code parameters αj , since any two transitions differ at
least by their systematic or parity value. Therefore, the
contribution of step 2 to Nα is

(
q2

2

)
.

• Step 3: Again, dictated by the code structure, by exploit-
ing the existing symmetry with regards to step 1, the
contribution of step 3 to Nα is

(
q
2

)2
.

In summary, Nα =
(
q2

2

)
·
(
q
2

)4
.

The comparison of Nµ with Nα allows us to determine
if the mapping plays a role in the definition of the best
code distance spectrum.

(
q
2

)4
is a common factor of Nµ

and Nα, it is then sufficient to compare the terms
(
q2

2

)
and((

q
2

)
+ 1
)2 − 1:

δN =

(
q2

2

)
−
((

q

2

)
+ 1

)2

+ 1

=
q2(q2 − 1)

2
− q(q − 1)(q2 − q + 4)

4

=
q(q − 1)2(q + 4)

4
> 0 ∀ q > 0

(12)

Since δN > 0, then Nα > Nµ. In conclusion, varying the
code parameters αj is sufficient to find the best code using
the proposed search procedure. Therefore, in the rest of the
paper, the mapping function µ is kept constant and is given
in Table I for 16-QAM and 64-QAM constellations. It was
chosen such that the binary image of the constellation symbol
follows a Gray mapping. The binary images of the symbols
are denoted by b3b2b1b0 and b5b4b3b2b1b0 for 16-QAM and
64-QAM, respectively, with the highest index corresponding
to the most significant bit of the symbol representation.

Using the NB convolutional code structure S2 depicted in
Fig. 2, the first terms of the distance spectra for all possibles
codes in GF(16) and GF(64) were determined by varying
coefficients α1, α2 and α3, according to the methodology
proposed in Section III-B. The primitive polynomials used to
generate the elements of the Galois fields are: PGF(16)(D) =
1 +D3 +D4 and PGF(64)(D) = 1 +D2 +D3 +D5 +D6.

Table II provides the values of coefficients α1, α2 and
α3 for three specific codes resulting from the search in
GF(16) and in GF(64). In each field, C1 is a code instance
showing the worst distance spectrum, C3 is a code instance
showing the best distance spectrum, and code C2 is a code
with a “medium” distance spectrum. Table II also displays

TABLE I
BINARY MAPPING OF THE IN-PHASE I AND QUADRATURE Q AXES FOR

16- AND 64-QAM.

16-QAM
Q value b3b1 I value b2b0

+3 00 +3 00
+1 01 +1 01
-1 11 -1 11
-3 10 -3 10

64-QAM
Q value b5b3b1 I value b4b2b0

+ 7 000 + 7 000
+5 001 +5 001
+3 011 +3 011
+1 010 +1 010
-1 110 -1 110
-3 111 -3 111
-5 101 -5 101
-7 100 -7 100

the corresponding distance spectra truncated to the first two
minimum distances d1 and d2, with their multiplicities n(d1)
and n(d2), i.e. the number of DC sequences with distances
d1 and d2.

TABLE II
THREE REPRESENTATIVE CODES OBTAINED FROM THE SEARCH OVER
GF(16) AND GF(64), WITH THE TWO FIRST TERMS OF THE SQUARED

EUCLIDEAN DISTANCE SPECTRA d21 AND d22 AND THE CORRESPONDING
MULTIPLICITIES n(d1) AND n(d2).

GF(16)
Code C1 C2 C3

(α1, α2, α3) (12, 4, 0) (10, 12, 3) (13, 7, 11)

d21 (d2min) 1.20 2.00 4.00
n(d1) 22128 5532 22484
d22 1.60 2.40 4.80

n(d2) 16596 8424 141144
GF(64)

Code C1 C2 C3

(α1, α2, α3) (41, 2, 0) (41, 1, 24) (31, 5, 18)

d21 (d2min) 0.38 1.14 1.52
n(d1) 238422 1542390 652698
d22 0.57 1.23 1.61

n(d2) 230886 4111444 1084014

IV. SIMULATION RESULTS

The error rate performance of the selected codes was
assessed through Monte Carlo simulations over a Gaussian
channel. We simulated the transmission of blocks of 100
symbols, corresponding to 400 bits in the case of GF(16)
and 600 bits in the case of GF(64), decoded with the well-
known Max-Lop-MAP algorithm [21]. The symbol error rate
curves are shown in Figure 5 for the codes in GF(16) and
in Figure 6 for the codes in GF(64). These figures show the
range of performance that can be obtained with the proposed
code structure and search process. We have also checked that
several code instances with the same distance spectra display
the same error rate performance (which is not shown in this
paper for the sake of concision).



Fig. 5. Performance comparison of convolutional codes over GF(16) in terms
of symbol error rates over the AWGN channel.

Fig. 6. Performance comparison of convolutional codes over GF(64) in terms
of symbol error rates over the AWGN channel.

In [8], the construction of non-binary convolutional codes
over rings was proposed and assessed in the case of AWGN
channel. For the code defined over Z64, the resulting coded
symbols are directly mapped to a 64-QAM constellation. Fig.
7 shows the comparison in terms of bit error rate of our best
code over GF(64) (C3), with the best code defined in [8] over
Z64. This comparison shows that our best code in GF(64)
outperforms by around 0.5 dB the best proposed code over
Z64.

In addition, the designed NB code over GF(64) was com-
pared with the binary 64-state recursive systematic convolu-
tional code with generator polynomials

(
1, 171133

)
in octal. The

latter is known to be the 64-state binary recursive systematic
convolutional code with the highest minimum Hamming dis-
tance [22]. Bit error rate curves were plotted for both BPSK
and 64-QAM constellations. The curves in Fig. 8 show that,
when combined with a 64-QAM, the designed NB code yields
a gain in the order of 0.7 dB in comparison with the binary
code, which is in accordance with the gain predicted by the

Fig. 7. Performance comparison of the proposed convolutional code defined
over GF(64) (code C3) with the code defined over Z64 and labeled C1 in
[8], in terms of bit error rate. Transmission is over an AWGN channel using
64-QAM constellation.

Fig. 8. Performance comparison of the proposed convolutional codes over
GF(64) with the best known 64-state-binary code in terms of bit error
rate. Transmission is over an AWGN channel, using BPSK and 64-QAM
constellations.

capacity comparison in Fig. 1 at coding rate 1/2. In addition,
when used with a BPSK modulation, the NB code still shows
a slightly better performance than the binary code, although
no capacity gain was expected.

V. CONCLUSION

This paper presents a general framework for the design of
recursive systematic convolutional codes defined over high-
order Galois fields. A new low-complexity structure of convo-
lutional codes is proposed, using only one memory element.
This structure allows the search space for the code to span
all the combinations of systematic and parity symbols for
each transition between two states in the trellis. It was also
shown that the distance properties of the resulting codes are
independent of the constellation mapping. The designed codes
offer better performance than the non-binary codes previously
proposed in the literature. They also outperform their binary
counterparts when combined with their corresponding QAM



modulation or with lower order modulations. This study can be
considered as a first step to design non-binary turbo codes. The
exploration of interleaving techniques, puncturing patterns and
the reduction of the decoding complexity can be identified as
the next steps to complete this work.
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