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ABSTRACT

This paper is a review of a crucial topic in data assimilation: the joint estimation of model Q and observation
R matrices. These covariances define the observational and model errors via additive Gaussian white noises
in state-space models, the most common way of formulating data assimilation problems. They are crucial be-
cause they control the relative weights of the model forecasts and observations in reconstructing the state, and
several methods have been proposed since the 90’s for their estimation. Some of them are based on the mo-
ments of various innovations, including those in the observation space or lag-innovations. Alternatively, other
methods use likelihood functions and maximum likelihood estimators or Bayesian approaches. This review
aims at providing a comprehensive summary of the proposed methodologies and factually describing them as
they appear in the literature. We also discuss (i) remaining challenges for the different estimation methods,
(ii) some suggestions for possible improvements and combinations of the approaches and (iii) perspectives
for future works, in particular numerical comparisons using toy-experiments and practical implementations in

data assimilation systems.

1. Introduction

Data Assimilation (hereinafter denoted DA) for geo-
sciences is generally formulated in terms of nonlinear
state-space models with additive and Gaussian errors for
the dynamical and observation equations. This is statisti-
cally convenient and representative of a lot of DA prob-
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lems, see e.g. Carrassi et al. (2018). The errors on the
dynamics and observations are assumed to be zero-mean
Gaussian vectors with covariance matrices Q and R. Us-
ing the discrete time index k from 1 to K for the sake of
simplicity, it is assumed that

{ xX(k) = A (k—1,x(k—1))+n(k), (1
y(k) = A (k;x(k)) + &(k), ()

with . the time dependent dynamical model, .77 the time
dependent transformation operator from the hidden state
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X to the noisy observations y, Gaussian white noise errors
n(k) ~ A (0,Q(k)) and g(k) ~ .4 (0,R(k)). We suppose
that the initial state condition at k = 0 is a Gaussian vector
with mean x” and variance B and that 17 and & are mutu-
ally independent. However, in some situations it may be
relevant to consider cross-correlation between these errors
(see Berry and Sauer (2018) for more details).

DA algorithms are used to estimate sequentially the
state of the system x conditionally to the observations y.
When current and past observations are used, the estima-
tion is referred as filtering or analysis and when future
observations are also used, it is referred as smoothing or
reanalysis. The outcome of the analysis/filter or of the re-
analysis/smoother highly depends on the uncertainty asso-
ciated to observations and to the model state, which have
to be as realistic as possible. Using the formulation given
in Egs. (1-2) these uncertainties are Q and R. In prac-
tice, the observation error covariance matrix R in Eq. (2)
can be determined empirically by estimating the instru-
ment noise and the representativeness error between the
state and the observation space, but a correct estimation
of the latter is often challenging (see Janji¢ et al. (2017)
for more details). During the dynamical model evolution
from k—1 to k in Eq. (1), the model state is contami-
nated by two sources of uncertainty, the error in the state
at k — 1 and the model uncertainty itself which is repre-
sented in state-space models via the additive model error
term 7. Determining the covariance matrix Q model er-
ror is difficult because it accounts for the model deficien-
cies to represent the underlying physics, the cumulative
effects of errors in the parameters, the numerical schemes,
the unresolved scales and the fact that in geosciences, we
usually have much less observations that those needed to
estimate the entries of Q (see e.g. Daley (1992) and Dee
(1995)). When using either variational or ensemble-based
DA methods, the quality of the reconstructed state vec-
tor highly depends on the relative amplitudes between the
assumed observation and model errors. For instance, in
Kalman filter-like, the ratio ||Q||/||R|| impacts the filter
gain that gives the relative weights of the observations
against the model forecasts. Desroziers and Ivanov (2001)
also studied this ratio in variational DA. Unfortunately, in
real DA frameworks, the impact of Q, R and ||Q||/||R||
on the reconstruction of the state is not easy to evaluate.
This is due to the complexity and size of the dynamical
models, the effect of forcing terms and the huge variety of
observations.

The importance of estimating error covariance matrices
in state-space models can be illustrated using a simple ex-
ample with linear dynamics. Suppose that we aim at track-
ing a scalar state x governed by an autoregressive AR(1)
model in Eq. (1) defined by

x(k) = 0.95x(k— 1) +1(k), 3)

with 7 ~ 47 (0,0") where the superscript 7 means “true”
and Q' = 1. Furthermore, observations y of the state
are contaminated with another independent additive zero-
mean and unit-variance Gaussian noise (i.e. R’ = 1) in
Eq. (2) with JZ (x) = x. The goal is to reconstruct x from
the noisy observations y at each time step. The AR(1)
model defined by Eq. (3) has an autoregressive coeffi-
cient close to one and thus represents a process which
evolves slowly in time. The linear dynamical model
evolves stochastically and the measurement process also
introduces a noise at each time step. Although, the knowl-
edge of these two sources of noise is crucial for the es-
timation problem, in practice identifying them is not an
easy task. Given that the dynamical model is linear and
the error terms are additive and Gaussian in this simple
example, the Kalman smoother provides an exact algo-
rithm to compute the smoothing distribution (see Sect. 2
for more details). To evaluate the impact of badly specified
Q and R errors on the reconstructed state with the Kalman
smoother, different experiments were conducted using val-
ues of {0.1,1,10} for the ratio Q/R. Figure 1 shows, as a
function of time, the true state (red line) and the smoothing
Gaussian distributions represented by the 95% confidence
intervals (gray shaded) and their means (black line). We
also report the Root Mean Squared Error (RMSE) of the
reconstruction as well as the so called “coverage probabil-
ity” or percentage of x falling in the 95% confidence in-
tervals (defined as the mean +1.96 the standard deviation
in the Gaussian case). In this synthetic experiment, the
best RMSE and coverage probability obtained using the
Kalman smoother with true Q' = R" = 1 are respectively
0.71 and 95%. When using a low model error variance
Q = 0.1Q" in Fig. 1(a), it gives an important weight to
the forecasts given by quasi-persistent autoregressive dy-
namical model. On the other hand, when using a low ob-
servation error variance R = 0.1R' in Fig. 1(b), too much
weight is given to the observation and the reconstructed
state is too close to the noisy measurements. These results
show the negative impact of independently badly scaled Q
and R error variances. In the case of overestimated model
error variance as in Fig. 1(c), the mean reconstructed state
vector and so its RMSE are similar to Fig. 1(b). In the
same way, overestimated observation error variance as in
Fig. 1(d) gives similar mean reconstruction than Fig. 1(a).
These two last results are due to the fact that in both cases,
the ratio Q/R are equal, respectively to 10 and 0.1. Now,
we consider in Fig. 1(e) and Fig. 1(f) the case where O/R
ratio is good (equal to 1), but respectively using the simul-
taneous underestimation and overestimation of model and
observation errors. In both cases, the mean reconstructed
state is equal to the one obtained with the true error vari-
ances, i.e. RMSE=0.71. The main difference is the gray
confidence interval which is supposed to contain 95% of
the true trajectory: the spread is clearly underestimated
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FIG. 1. Example of a univariate AR(1) process generated using Eq. (3) with Q' = 1 (red line), noisy observations using R’ = 1 (black dots) and
reconstructions using a Kalman smoother (black lines and gray 95% confidence interval) with different values of Q and R.

in Fig. 1(e) and overestimated in Fig. 1(f) with respective
coverage probability of 36% and 100%.

Finally, let us consider again the Kalman smoother
where one of the variances Q or R is erroneous. This time,
we compensate the error in the wrong prescribed variance
by optimizing the other free variance using the maximum
likelihood estimation method given in Shumway and Stof-
fer (1982), see Sect. 4. Results presented in Fig. 2 show
that best optimal RMSE (0.71) and coverage probability
(95%) are reached close to the optimal variance noises
Q' = R" = 1. Results also indicate that a compensation
of bad variances is possible but is not optimal. For in-
stance, when fixing Q to a bad value like 0.25 in Fig. 2(a)
and Fig. 2(b), the maximum likelihood estimator of R is
1.57 and corresponding RMSE and coverage probability
are respectively 0.86 and 80% (out of range of the color
bar). These two skill metrics are extremely important to
evaluate the quality of the reconstructed state. Neverthe-
less, often only the RMSE is presented in research papers.
The coverage probability is a measure of the DA capability
to quantify the uncertainty, a problem that we believe to be
of increasing relevance for the DA community in the com-
ing years. Indeed, the reconstructed state error variance
may vary significantly as shown in Fig. 1(e) and Fig. 1(f).
Here, we use a simple synthetic example but for large di-
mensional and highly nonlinear dynamics as in the DA
in geosciences, such underestimation or overestimation of

uncertainty may have a strong impact and may make filters
to collapse. In this linear and Gaussian example, the use of
RMSE and the probability of coverage are sufficient, but
for nonlinear and more realistic DA cases, we should also
consider the rank histograms and the proper scores.

Since the 90’s, a significant number of works have dealt
with the error covariances in state-space models. The first
ones who mentioned the importance of noise covariance
matrices Q and R in DA were Ghil and Malanotte-Rizzoli
(1991) in their Sect. 4.1, as well as Daley (1991) in his
Sect. 4.9. Daley (1992) clarified the difference between
“predictability error” and “model error”, the two compo-
nents of the forecast error, denoted as P/ in modern DA.
As illustrated in Fig. 3, the first error is due to imperfect
initial conditions and the second one is caused by model
imperfections represented by Q. Dee (1995) proposed a
maximum likelihood estimator for parameterized versions
of Q and R using the innovation likelihood criterion. Dee
et al. (1999a) extended this online method to the estima-
tion of the mean of the innovations, which depends on the
biases in the forecast and in the observations, and later ap-
plied to realistic cases in Dee et al. (1999b). These initial
studies clearly impulsed the treatment of this topic in mod-
ern DA literature and several works have appeared there-
after on the joint estimation of model and observation er-
rors. However, authors like Todling (2015) pointed out
that using only the current innovation is not enough to dis-
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FIG. 2. Estimation results of R and Q for respectively fixed Q and R in the case of a Kalman smoother with the univariate AR(1) process given in
Eq. (3). Here, we consider the maximum likelihood estimator given by Shumway and Stoffer (1982).

tinguish the impact of Q and R in the Kalman equations,
and to estimate them independently is challenging in this
case. Thus, they proposed various alternatives to tackle
this issue.

An history of what have been, in our opinion, the most
relevant contributions and the key milestones for covari-
ance estimation in geophysical systems is sketched in
Fig. 4 and is discussed in this review with a summary given
in Table 1. We distinguish four methodologies and among
them, one could classify the approaches whether they rely
upon the innovations or the likelihood. The innovations
are defined as the difference between the observations
and state estimates transformed to the observational space,
with both the forecast and the analysis. The use of their
corresponding statistics in the observation space has been
initiated by Desroziers et al. (2005). Then, this approach
has been used extensively for the calibration of inflation of
the forecast covariance with various implementations in-
cluding additive, relaxation-to-prior and the multiplicative
inflation case, see Li et al. (2009a) and Miyoshi (2011). In-
stead of working on different innovations at a given time,
Berry and Sauer (2013) as well as Harlim et al. (2014)
suggested to use lag-innovations or innovation between
consecutive times. At the same time, methods based on
likelihood functions and their maximization using statis-
tical approaches appeared. Bayesian inference techniques
with the use of prior distributions and hyperparameters as

in Stroud and Bengtsson (2007) or Stroud et al. (2018) are
typical examples. Finally, Ueno and Nakamura (2014),
Dreano et al. (2017) and Pulido et al. (2018) proposed to
maximize the total likelihood of the state-space model us-
ing iterative expectation-maximization algorithms.

The four methods mentioned above are detailed in this
review and are factually described as they appear in the
literature. We consider both online and offline estima-
tions, for which the computational cost highly varies. In
the online or adaptive approaches, we try to estimate a
time-dependent Q(k) and R(k) at the same time as the
state vector, using filtering methods. When considering
offline or batch approaches, averaged Q and R are esti-
mated using all the observations on a given time interval,
using smoothing methods. Moreover, offline procedures
are iterative, meaning that the procedures are repeated un-
til convergence according to a given criterion, for instance
the likelihood. Finally, in some methods presented here,
additional tuning parameters are needed and have to be
carefully chosen for practical implementations. We dis-
cuss this point in this review.

Note that other review papers on parameters estima-
tion in state-space models appeared in the statistical and
signal processing communities by Mehra (1972), Kantas
et al. (2015) and Dunik et al. (2017). The Mehra (1972)
paper is a concise review which accounts for linear dy-
namical models using the classic Kalman filter while Kan-
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FI1G. 3. Sketch of sequential data assimilation algorithms in the ob-
servation space where H is omitted for simplicity reasons. The ellipses
represent the error covariances computed from the Kalman-based equa-
tions, i.e. the forecast P/ and analysis P“, as well as the model error
Q and observation error R, unknown entries of the state-space model in
Eqgs. (1-2). This is a modified figure based on Fig. 1 from Carrassi et al.
(2018).

tas et al. (2015) and Dunik et al. (2017) focus on the
challenging covariance estimation in non-Gaussian Monte
Carlo methods, and include various implementations of
offline and online methods based on maximum likelihood
and Bayesian approaches, but not methods based on in-
novation statistics. They evaluate the methods on one-
dimensional and easy-to-simulate nonlinear models, using
a large number of members or particles. The Kantas et al.
(2015) and Dunik et al. (2017) review papers address more
theoretical aspects and asymptotic results. The current re-
view is addressed to the DA community, so that we focus
on methods which can be implemented for nonlinear op-
erators and high-dimensional systems, in particular using
Kalman formulation.

The review is organized as follows. Section 2 presents
the filtering and smoothing DA algorithms used in this
present work. Then, we present the main families of meth-
ods used in the literature to jointly estimate error covari-
ance matrices Q and R. First, innovation-based methods
are presented in Sect. 3. Then, we describe in Sect. 4 the
likelihood-based approaches. We also list other alterna-
tives in Sect. 5 with methods used in the past and not ex-
actly matching the scope of this review, or diagnostic tools
to check the accuracy of Q and R. Finally, in Sect. 6, we
summarize this review and discuss possible perspectives
for future works and remaining challenges to be faced in
this domain.

2. Filtering and smoothing algorithms

For the overall discussion of the methods and for in-
troduction of the notation, we present in this section a

short description of the extended version of the Kalman
equations for nonlinear dynamical systems and observa-
tion operators. Here we use time dependent linearizations
M and H of the nonlinear operators .# and .7 defined
in Egs. (1-2). We have chosen to based the discussion on
the Extended Kalman Filter and Smoother (EKF/EKS) in
this review, compared to Ensemble Kalman Filter (EnKF)
for instance, to avoid the overburdening notations intro-
duced by the ensemble members. However, the methods
are also straightforward to apply in stochastic and square-
root EnKFs.

Note that the most natural algorithms to solve the state-
space model given in Egs. (1-2) are the Particle Filter and
Smoother (PF and PS) from Gordon et al. (1993) and
firstly reviewed in DA by van Leeuwen (2009). These
methods converge to the true posterior distributions for
a large number of particles in theory. However, we fo-
cus in this review on Gaussian additive errors ) and € in
Eqgs. (1-2), and EKF/EKS perform generally well in this
situation. Moreover, the current PF and PS implementa-
tions are subject to the curse of dimensionality (Snyder
et al. (2008)) and are not suitable for high dimensional
systems, although recent implementations appear to shed
some light on these contention points (e.g., Atkins et al.
(2013) and Zhu et al. (2016)). However, because of PF
relies on a state-space model formulation as in Egs. (1-2),
the model error covariance specification is an essential re-
quirement in the definition of the transition density. There-
fore, the estimation of Q with Gaussian Kalman-based
methods may give a useful constraint or parameterization
setup of the model error covariance matrix for PF (see Zhu
et al. (2017)).

Kalman-based algorithms assume a Gaussian prior
distribution  p (x(k)[y(1:k—1)) ~ A (x/(k),P/(k)).

Then, filtering and smoothing estimates are cor-
responding to the Gaussian posterior distribu-
tions  p(x(k)|y(1:k)) ~ A (x*(k),P*(k)) and
p(x(k)|y(1:K)) ~ A (x°(k),P*(k)) of the state
conditionally to  past/present  observations  and
past/present/future observations respectively. Here,

we briefly remind the equations of the EKF and EKS
based on the Rauch-Tung-Striebel (RTS) solution detailed
in Cosme et al. (2012). They are divided in three main
steps:
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FIG. 4. Timeline of the main methodologies used in the data assimilation community for the joint estimation of Q and R in the last 15 years. Dee
(1995) paper is not represented here but is certainly the seminal work of this research field in data assimilation.

Forecast step (forward in time):
x/ (k) =4 (x(k—1)) 4)
P/ (k) =M (k)P (k— 1)M(k) " + Q(k) ©)

Analysis step (forward in time):

d(k) =y(k) = (x’ (k)) ©6)
K/ (k) =P/ (K)H (k) (H(k)Pf(k)H(k)T + R(k)) -
@)

x“ (k) =x/ (k) + K/ (k)d (k) ®)
P4 (k) = (1-K/ (k)H(k)) P/ (k) ©)

Reanalysis step (backward in time):

K (k) =P“()M(k) " (P/ (k+1)) "
X (k) =x“(k) + K* (k) (x*(k+ 1) —x/ (k+1))

(10

(11)
P’ (k) =P*(k)
—K(k) (P (k+1) =P (k+ 1)) K*(k) "
(12)

P (k,k+1) =P (k+1)K*(k)" (13)

Here, P/(k), P*(k), P*(k) and P*(k,k + 1) denote re-
spectively the covariance matrices of the forecasted state
x/ (k), the filtered state x“(k), the smoother state x* (k) and
the pair {x*(k),x*(k+1)}. Finally, note that K/ and K*

are the filter and smoother Kalman gains and the innova-
tion is denoted as d.

3. Innovation-based methods

The importance of the innovation statistics has been em-
phasized in the DA community by Daley (1992) and Dee
(1995). The “classic innovation” d, difference between
the observations and the forecasted states in the observa-
tion space, defined in Eq. (6), implicitly takes into account
the Q and R covariances. Unfortunately, as explained in
Blanchet et al. (1997), by using only current observations,
their individual contributions cannot be easily disentan-
gled. Thus, the approaches using only the classic innova-
tions are not studied in this review. Two main approaches
were proposed in the literature to tackle this issue. They
are based on the idea of producing multiple equations in-
volving Q and R. The first one uses different innovation
statistics in the observation space. The second one is based
on lag-innovations or differences between consecutive in-
novations. From a statistical point of view, the innovation-
based methods are “methods of moments”’, where we con-
struct a system of equations which links various moments
of the innovations with the parameters and then replace
theoretical moments by the empirical ones in these equa-
tions.

a. Innovation statistics in the observation space

Desroziers et al. (2005) proposed to examine various in-
novation statistics in the observation space. This method
is now popular in the DA community. It is based on dif-
ferent innovation statistics between observations, forecasts
and analysis, and all of them defined in the observation
space: namely, d°~/ (k) = y(k) — 5 (x/ (k)) as in Eq. (6)
and d°~“(k) = y(k) — o (x“(k)). We remark that another
diagnostic using the difference between analysis x*(k) and
reanalysis x* (k) has been proposed by Todling (2015) and
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Bowler (2017) in the case of sequential and variational DA
respectively to estimate the covariance Q alone. In theory,
in the linear and Gaussian case, the Desroziers innovation
statistics should verify the equalities:

E [/ (K)a*~/ (5) 7| = HIOP (0H(K) T+ R(K)4)

E {do—“(k)d"—f (k)T} —R(k) (15)

with E the expectation operator. In this approach, we do
not estimate Q directly which is implicitly taken into ac-
count in P/ Instead, the approach attempts to compensate
in P/ for the lack of knowledge of Q as well as the sys-
tematic variance underestimation. This method is referred
to as “covariance inflation”. In practice, when using for
instance EnKF with a small ensemble size, the spread is
most of the time underestimated and this leads to filter di-
vergence (see e.g. Carrassi et al. (2018), their appendix
A). Thus, covariance inflation can be required in a perfect
model scenario (i.e. without 1), because of sampling er-
rors. For imperfect models, both sampling errors and an
inappropriate representation of model errors lead to an un-
derestimation of forecast ensemble spread and thus to filter
divergence, see Raanes et al. (2018).

We distinguish three inflation methods: multiplicative,
additive and relaxation-to-prior. In the multiplicative case,
the forecast error covariance matrix P/ is usually multi-
plied by a scalar coefficient greater than 1, see Anderson
and Anderson (1999). Adaptive procedures to estimate
this coefficient have been proposed by Wang and Bishop
(2003), Li et al. (2009a), Miyoshi (2011) and Bocquet
(2011) in the case of innovation statistics in the observa-
tion space. In the additive case, the diagonal of the forecast
and/or analysis empirical covariance matrices is increased
(Mitchell and Houtekamer (2000), Corazza et al. (2003),
Whitaker et al. (2008) and Houtekamer et al. (2009)). In
the relaxation-to-prior case, Zhang et al. (2004) blended
the forecast and analysis ensemble perturbations whereas
Whitaker and Hamill (2012) multiplied the analysis en-
semble spread to relax the reduction of the spread, with-
out blending perturbations. Finally, Bocquet and Sakov
(2012), Ying and Zhang (2015) and Kotsuki et al. (2017)
proposed methods to adaptively estimate the relaxation pa-
rameters using innovation statistics. Adaptive covariance
inflations are online estimation methods directly plugged
to classic filtering method (like EKF here), with almost
no additional computational cost. In practice, the use of
this technique does not necessarily imply an additive error
term 7 in Eq. (1). Thus, it is not a direct estimation of Q
but an inflation applied to P/ in order to compensate model
uncertainties and sampling errors in EnKFs (see Raanes
et al. (2018), Sect. 4 and appendix C for more details).
Several DA systems work with an inflation method and
used it for its simplicity, low-cost and efficiency.

Here, we focus on the straightforward online estimation
of a multiplicative inflation factor A of the badly scaled
P/ (k) so that the corrected forecasted covariance is given
by P/ (k) = A (k)P (k). The estimate of the inflation factor
is given by taking the trace of Eq. (14):

d°~/(k)Td~/ (k) — Tr (R(k))
Tr (H(k)P/ (k)H(k)T)

A(k)=E (16)

The use of temporal smoothing for the online estimation
of A(k) is crucial in operational procedures and Miyoshi
(2011) proposed augmenting the state vector with the in-
flation factor whose evolution is governed by a random
walk equation. In this case, we need to specify an ad-
ditional parameter for the variance term of this random
walk, denoted by G}%. This parameter has to be carefully
tuned to avoid the divergence of the filter. Then, at each
time step k, when sufficient observations are available, an
estimate of R(k) is directly given by Eq. (15). Note that
Li et al. (2009a) proposed to estimate each component of
a diagonal R matrix, and also suggested to use an offline
procedure to compute the average of these variance terms.

b. Lag-innovation between consecutive times

Another way to estimate error covariances is to use
multiple equations involving Q and R exploiting cross-
correlations between lag-innovations, i.e. the current d(k)
and past classic innovations d(k — 1), ..., d(k —[). For
instance, considering the lag-zero and lag-one innova-
tions, the following equations are satisfied in the linear and
Gaussian case:

E {d(k)d(k)T} — H(k)P/ ()H(K) T +R(k) = Z(6)7)
E {d(k)d(k - 1)1 — H()M(K)P/ (k— 1H(k)"

—H()M (KK (k—1)Z(k—1). (18)

Lag-innovations were introduced by Mehra (1970) in
order to simultaneously recover the error covariance ma-
trices for a Gaussian and linear state-space model. Mehra
established analytic exact relations between Q and R, and
the probabilistic expectations of d(k)d(k —1I)" for linear
systems in steady state. Then, Bélanger (1974) extended
these results to the case of time-varying linear stochas-
tic processes, taking d(k)d(k — ) as “observations” of
Q and R and using a secondary Kalman filter to update
them iteratively. As pointed out in Bélanger (1974), this
method would no longer be analytically exact if the error
matrices are updated adaptively at each time step. Later,
Dee et al. (1985) proposed a computationally cheaper al-
gorithm for the Bélanger’s method. More recently, authors
focused on high-dimensional and nonlinear systems us-
ing the EKF and EnKF: Berry and Sauer (2013) proposed
a fast algorithm based on Mehra’s method and Harlim
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et al. (2014) followed the original Bélanger’s algorithm.
Zhen and Harlim (2015) proposed a modified version of
Bélanger’s method and compared it to the Berry and Sauer
(2013) approach.

Here, we briefly introduce the algorithm of Berry and
Sauer (2013) using lag-one innovations. It is based on the
online (or adaptive) estimation of Q(k) and R(k), which
satisfy the following relations in the linear and Gaussian
case:

P(k) =M (k) "H(k) " 'd(k)d(k—1) "H(k)~"

+K (k—1)d(k—1d(k—1)TH(K)""T (19
Q(k) =P(k) —M(k—1)P*(k— )M(k—1)""  (20)
R

= )
(k) =d(k—1)d(k—1)" —H(k)P/ (k— 1)H(k)~".
21

In this online procedure, joint estimations of Q(k) and
R(k) can abruptly vary over time. Thus, the temporal
smoothing of the covariances being estimated becomes
crucial. As suggested by Berry and Sauer (2013), an ex-
ponential smoothing between current and past estimates is
a reasonable choice,

Q(k+1) =Q(k) +(Q(k) —Q(K)) /7,

R(k+1) =R(k)+ (R(k) —R(k))/T

(22)
(23)

with T the smoothing parameter and started from Q(0).
When 7 is small, weight is given to the current estimate Q
and when 7 is larger it gives a smoother sequence Q. As
pointed out by Zhen and Harlim (2015), usually a large
value of 7 is chosen to avoid numerical instability.

It is worth pointing out that in the case of sparse ob-
servations, the estimate of P in Eq. (19) might be under-
determined, even if the system is observable. This is at-
tributed to the use of only one lag-innovation. Theoreti-
cally, all components of Q should be identifiable if the sys-
tem is observable and more lag-innovations are used. But
in practice, using more lag-innovations implies increased
computational cost and does not necessary lead to accurate
estimates. Zhen and Harlim (2015) compared the modi-
fied version of Bélanger’s method with different choices
of maximal lags and found that a maximal lag of 4 is opti-
mal in a specific numerical example on Lorenz-96 defined
in Lorenz (1996).

4. Likelihood-based methods

The likelihood approaches were put forward in the DA
community by Dee (1995), Blanchet et al. (1997) as well
as Mitchell and Houtekamer (2000) where it was pro-
posed to maximize the likelihood of the innovation, i.e.
p(y(k)|y(k—1)), defined by the mean vector d(k) com-
puted in Eq. (6) and covariance matrix X(k) introduced in
Eq. (17) and also used in the computation of the Kalman

filter gain in Eq. (7). Unfortunately, they reach the same
conclusions than for the innovation-based methods, i.e.
the joint estimation of Q and R is not straightforward if
we use only the current observations. To tackle this issue,
several methods have been proposed recently. The first
one is to write the estimation problem using a Bayesian
framework, and jointly estimate prior distributions of Q
and R parameters with the innovation likelihood. The sec-
ond one is to maximize the so-called “total likelihoods™,
i.e. taking into account the innovation likelihoods of each
time step or taking into account the global structure of the
sate-space model for all the time steps.

a. Bayesian inference

In a Bayesian approach, we assume that the elements of
Q and R covariance matrices have a priori distributions
which are controlled by some hyperparameters. In prac-
tice, it is difficult to have a prior distribution for each ele-
ment of Q and R, especially for large DA systems. Instead,
parametric forms are used for the matrices, typically de-
scribing the shape and level noise, and we denote the cor-
responding parameters as 6. Then, we jointly and adap-
tively estimate the state x and parameters 6 using Bayes’
theorem:

p(x(k),0(k)y(1: k) =
p(x(k)ly(1:&),6(k)) p(6(k)|y(1:k)). (24)

In Eq. 24), p(x(k)|y(l:k),0(k)) is given by fil-
tering DA algorithms and we approximate recursively
p(0(k)|y(1:k)) using the the likelihood of the innova-
tions p (y(k)|y(1:k—1),0(k)) as

p(B(k)ly(1:k)) o
p(y(K)ly(1:k=1),0(k)) p(6(k)[y(1:k—1)).

Bayesian approaches have been applied in the atmo-
spheric chemistry community and reviewed by Micha-
lak et al. (2005) and Wu et al. (2013). Purser and Par-
rish (2003) introduced the Bayesian approach in varia-
tional DA for the estimation of two statistical parameters,
controlling the magnitude of the variance and the spa-
tial dependencies in Q, assuming that R is known and
using a univariate model. Then, Stroud and Bengtsson
(2007) used a similar approach combined with EnKF in
the Lorenz-96 model for the estimation of a common mul-
tiplicative scalar parameter for predefined matrices Q and
R. In that case, the scalar parameter affects simultane-
ously the Q and R matrices. Considering the experi-
ments about the importance of ||Q||/||R|| ratio presented
in Fig. 1, we can guess that this approach is maybe not
optimal. Then, other works have applied similar Bayesian
approaches for the estimation of parameters governing the
shape of R only: Frei and Kiinsch (2012) in the Lorenz-
96 system, Winiarek et al. (2012, 2014) assimilating nu-
clear pollutants using a regional atmospheric model (in

(25)
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this case, R partially accounts for model error), Ueno and
Nakamura (2016) using two linear shallow-water equa-
tions to assimilate satellite altimetry. By contrast, Solonen
et al. (2014) proposed a Bayesian approach for the esti-
mation of Q only, assuming that the R matrix is known,
in a two-layer quasi-geostrophic model. Finally, Stroud
et al. (2018) tested their estimation method on different
spatio-temporal systems with a joint estimation of Q and
R. Their experiments on the Lorenz-96 system assumed
no model error Q.

The Bayesian inference approach is an online estima-
tion procedure with joint estimation of the state of the
system and hyperparameters 6(k), controlling shape pa-
rameters of the Q(k) and R(k) error covariance matrices.
In terms of the hidden state, this corresponds to a hier-
archical Bayesian approach so that an ensemble of fil-
ters may be required to determine the posterior distribu-
tion in Eq. (24). In practice, this method may required
a large number of Monte-Carlo simulations to estimate
correctly p (0(k)|y(1 : k)) defined in Eq. (25) or iterative
procedures as in Ueno and Nakamura (2016). Alterna-
tively, Scheffler et al. (2018) assume a Gaussian distri-
bution for p(6(k)|y(1:k—1)) in Eq. (25) and use two
nested EnKFs, reducing the computational cost of this hi-
erarchical Bayesian procedure. In principle, the Bayesian
approach is able to estimate time dependent hyperparam-
eters, however recent works assume that 8 (k) is constant,
not depending in time. The potential of this framework
to estimate time dependent covariances is an interesting
topic to be addressed. The joint estimation of parameters
controlling separately Q and R still remains a challenge.
However relevant parametric shapes of covariance matri-
ces, such as the Matérn covariance model for R, have been
proposed as in Stroud et al. (2018).

b. Maximization of the total likelihoods

The innovation likelihood at time k is defined by
p(y(k)|y(1:k—1),0(k)) in Eq. (25). Maximizing this
likelihood at each time step has been proposed by vari-
ous authors: Dee (1995), Blanchet et al. (1997), Zheng
(2009), Mitchell and Houtekamer (2000) and Liang et al.
(2012). But the maximization of the innovation likelihood
has two main issues. Firstly, the innovation covariance
matrix (k) = H(k)P/ (k)H(k) " +R(k) is mixing the in-
formation of R and Q, contained in P/. When using only
time k, it is difficult to identify the model and observation
error covariances and in practice, authors only estimated
one of them. Secondly, the number of observations at each
time step is in general limited and as pointed out by Dee
(1995), available observations should exceed “the num-
ber of tunable parameter by two or three orders of mag-
nitude”. For these reasons, a reasonable alternative is to
use a batch of observations distributed in time and assume
0 being constant in time. The resulting total likelihood

expressed sequentially through conditioning is given by

Hp

This likelihood is said to be “incomplete” because it
only depends on the observations of the state-space sys-
tem, not the hidden state. But since this is an integration
innovation likelihood over a long period of time, this gives
more information to estimate Q and R or related parame-
ters. This likelihood is said to be marginal since it results
from marginalizing the hidden state at a given observa-
tion time. The incomplete total likelihood is also a use-
ful tool to evaluate the quality of model forecasts or how
well they match the observations, considering both model
and observation uncertainties. Hannart et al. (2016) and
Carrassi et al. (2017) used it for model evidence, when
various models are in competition. The maximization of
the incomplete total likelihood given in Eq. (26) has been
applied to linear and nonlinear systems in the estimation
of deterministic and stochastic parameters (related to Q)
in Delsole and Yang (2010) using a direct sequential opti-
mization procedure. Then, for nonlinear dynamics, Ueno
et al. (2010) used a grid-based procedure to estimate noise
levels and spatial correlation lengths of Q and a level noise
for R. This grid-based method used predefined sets of co-
variance parameters and test the different combinations
to find the one that maximizes the likelihood criterion.
Brankart et al. (2010) proposed also a method using the
same criterion additionally with an initial information on
scale and correlation length parameters of Q and R. This
information is only given at the first time and progressively
forgotten with time using a decreasing exponential factor.
The marginalization of the hidden state in Eq. (26) is con-
sidering all the previous observations and in practice it re-
quires the use of a filter. The maximization of the total
incomplete likelihood using the EnKF to estimate model
error covariance Q was conducted in Pulido et al. (2018)
where they used a gradient-based optimization technique.

Authors also proposed to work on the maximization of
the total likelihood using the marginalization of the whole
trajectory of the hidden state from k = 0 to K. In that
case, we talk about the “complete” total likelihood or joint
density of the observations and the hidden state, expressed
as

p(y(1:K)|6) = Ky(1:k—1),08).  (26)

p(y(1:K),x(0:K)|6) =

p(x(k)[x(k—1) G)Hp ,0)
27)

:x

=~

where the three terms on the rhs are related to the ini-
tial state, the state equation in Eq. (1) and the observa-
tion equation in Eq. (2). In practice, the marginalization
of the full hidden state from k = 0 to K is not possible,
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so that the complete total likelihood cannot be evaluated
directly, see explanations in Pulido et al. (2018). There-
fore, Shumway and Stoffer (1982) proposed to use an iter-
ative procedure, requiring the use of a smoother, to max-
imize the likelihood criterion given in Eq. (27). They
used the Expectation-Maximization algorithm (hereinafter
noted EM, see Dempster et al. (1977) for more details) to
ensure the convergence to the maximum likelihood esti-
mator, and applied it to estimate Q and R in the case of
linear dynamics. In DA, the EM algorithm has been im-
plemented for estimating only R in Ueno and Nakamura
(2014) for the Zebiak and Cane (ZC) model and satellite
altimetry, for the background covariance matrix B and R in
Liu et al. (2017) in case of accidental pollutant source re-
trieval, for both Q and R with an orographic subgrid-scale
nonlinear observation operator in Tandeo et al. (2015),
and for the Lorenz-63 in Dreano et al. (2017). Recently,
Pulido et al. (2018) used the EM algorithm and compared
with a gradient ascent optimization of the incomplete total
likelihood to estimate Q along with the deterministic and
stochastic physical parameters in the one and two scales
Lorenz model described in Lorenz and Emanuel (1998).
Finally, Chau et al. (2018) combined conditional particle
filters and the EM algorithm for the joint estimation of Q
and R and show the improvement compared to Kalman-
based filters.

The EM algorithm considers the total period of time
k =0 to K to maximize complete the total likelihood given
in Eq. (27). Thus, it leads to an offline estimation of the
error covariance matrices or related parameters (i.e. con-
stant, non-adaptive). In the expectation step, we evalu-
ate the expected likelihood given in Eq. (27) conditionally
to the previous estimates of Q and R as well as the to-
tal observations {y(1),...,y(K)}. This leads to the use of
Kalman smoother procedures to estimate x* and P* at the
different times. In the maximization step, Q and R are
updated using the following estimators:

K
Q= ;{k;{oﬁ(k) — X (k=1)) (< (k) = Ax° (k1))
+M(K)P*(k— 1)M(k) " +P*(k)
—P(k—1,k)M(k) " —M(k)P*(k—1,k) "}
(28)
K
R= o ) {(5(0) - HEX () (v(6) - HERX (®)
k=1
+H(k)P*(k)H(k) " }. (29)

In practice, the total and complete likelihood given in
Eq. (27) cannot be evaluated exactly. Thus, to evaluate
the performance at each iteration of the EM procedure, we
compute the incomplete total likelihood given in Eq. (26)
and this criterion increases along the iterations of the EM
algorithm, see Wu (1983). The computational cost of

the EM algorithm is large because it requires the use of
Kalman-based filter and smoother at each iteration. Nev-
ertheless, this EM method does not require any additional
parameter and is robust to initial conditions, i.e. the val-
ues given for Q and R matrices in the first EM iteration.
Additionally, note that the maximization of the total likeli-
hood allows the estimation of the initial state vector x” and
covariance matrix B as discussed in Tandeo et al. (2015)
and Dreano et al. (2017). In that case, we should write
p(x(0)]0) instead of p (x(0)) in Eq. (27).

5. Other methods

In this section, we describe other methods which have
been used in the past or methods that are more diagnostic
tools than direct estimations of error covariance matrices.
We also include some relevant references on inverse prob-
lems in environmental data.

a. State augmentation

State augmentation was first proposed in Schmidt
(1966) and is known as the Schmidt-Kalman filter. Then,
Jazwinski (1970) proposed some extensions. The idea is to
augment the state vector in order to estimate both the state
of the system and additional parameters among which the
bias, forcing terms, physical parameters, and finally error
covariances as in Zupanski (1997) and Tremolet (2007).
In these works, authors create cross-correlation between
the state of the system and the additional parameters. The
method works only for parameters strongly related to the
state of the system, such as physical parameters, see Ruiz
et al. (2013). However, Stroud and Bengtsson (2007) as
well as Delsole and Yang (2010) formally demonstrated
that augmentation methods fail for variance parameters
and thus for Q and R. Indeed, a critical aspect of this ap-
proach is that one needs to define an evolution model for
the covariance parameters. This is a difficult task, and of-
ten persistence is used, which means that the estimate and
the associate error variance only change at analysis times,
and the estimated variance is thus bound to decrease in
time: it is reduced during the forecast step using a per-
sistence model. This makes the use of random walk or
inflation mandatory, or a change in the parametric error
dynamics such as in Carrassi and Vannitsem (2011a).

b. Analysis increment approach

Analysis increments refers to statistical methods that
study the relationship between two consecutive times of
a dynamical system. The use of regression methods has
been firstly proposed by Lorenz (1977) and then by Leith
(1978) to learn error statistics of dynamical models in me-
teorology (e.g. bias and covariance Q of the error n).
Then, this approach was first discussed in the context of
DA by Li et al. (2009b), and it was then further expanded
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by Carrassi and Vannitsem (2010) in the context of vari-
ational DA with time correlated model error. The same
reanalysis increment approach has been used in Carrassi
and Vannitsem (2011b) to estimate model error due to un-
resolved scale and later applied in the context of a deter-
ministic EnKF by Mitchell and Carrassi (2015).

c. Covariance matching

The covariance matching method has been introduced
by Fu et al. (1993). It consists in matching sample covari-
ance matrices to their theoretical expectations. It corre-
sponds to a method of moments applied to different inno-
vations. Thus, it is very similar to Desroziers et al. (2005)
method, except that covariance matching is performed on
a set of historical observations and numerical simulations,
not online in a DA scheme. It has been extended by Men-
emenlis and Chechelnitsky (2000) to time-lagged inno-
vations as in Bélanger (1974) and they also relaxed the
assumption of independence between the true state and
model simulation errors.

d. The x?, cross-validation and whiteness of lag-
innovations

These methods are not direct estimation of error covari-
ance matrices but diagnostic tools. The first one is a sta-
tistical test that examines the variance of the normalized
innovations that follow in theory a x2 distribution with a
given number of degrees of freedom. As pointed out by
respectively by Michalak et al. (2005) and Rayner et al.
(1999), lots of combination of Q and R errors can lead to
the acceptation of this test and this method cannot guide
the relative allocation of error between the 2 ones. Cross-
validation is a classic bootstrap strategy to test the accu-
racy in statistical modeling. It is based on the repetition of
validations between a learned model from a random train-
ing dataset and test on the rest of the observations, see Wu
et al. (2013) for more details. The third one was pointed
by Jazwinski (1970) and consists in evaluating the proper-
ties of lag-innovations. They are supposed to be white in
time in case of optimal filtering, i.e. using appropriates Q
and R matrices.

6. Summary, conclusions and perspectives

In this review paper, we presented different methods
to estimate the error covariances in data assimilation. As
usually stated in data assimilation, we assume that model
and observation errors are additive and Gaussian with cen-
tered null mean and covariance matrices noted Q and R.
The individual and joint impacts of badly calibrated co-
variances were firstly presented using a linear toy-model.
The experiments clearly showed that for reaching reason-
able results of the filter, in terms of pure reconstruction
using root mean squared error, the joint estimation of both

components is a crucial point. We also highlighted the im-
pact on the coverage probability, related to the estimated
covariance of the reconstructed state and thus to the uncer-
tainty quantification in data assimilation.

Summary of existing methods

We focused on four main methodologies for the joint
estimation of Q and R used in data assimilation. They
are summarized in Table 1. We first dealt with meth-
ods based on innovations, i.e. the difference between ob-
servations and forecasted state, and the use of empirical
and theoretical moments, also known as method of mo-
ments in statistics. We presented the method of innova-
tion statistics in the observation space by Desroziers et al.
(2005). This approach is often associated with inflation
methods where model error covariance Q is not necessary
needed and where an estimated inflation factor artificially
increases the forecast error covariance P/. This online
method is low-cost and adaptive but the inflation factor
controls the global amplitude of the covariance and cannot
adapt to specific parts of it. Nevertheless, the covariance
inflation is used in lot of operational data assimilation sys-
tems and is very common with lot of implementations like
the multiplicative one, see Li et al. (2009a) and Miyoshi
(2011) for instance. Another approach received recently
specific attention in the data assimilation context: the lag-
innovation exploiting the autocorrelation of the innova-
tion between consecutive times. It has been introduced by
Mehra (1970) and Berry and Sauer (2013) extended this
lag-one innovation method to the nonlinear case in data
assimilation, whereas Harlim et al. (2014) implemented a
lag-/ innovation method following Bélanger (1974) idea.
These lag-innovation techniques are adaptive, online and
plugged into any filter with a moderate additional compu-
tational cost. However, results are very sensitive to a tun-
ing parameter 7, used to smooth the estimated covariance
matrices along time and avoid the method from breaking
down. Lag-innovation methods have been tested on linear
and Lorenz-96 systems, not yet on real data assimilation
schemes. At this stage, authors considered constant Q and
R but in practice, when T parameter is correctly tuned,
lag-innovations can deal with time varying matrices.

The two last methods summarized in Table 1 are based
on the maximization of the likelihood criterion. Dee
(1995) firstly pointed out the importance of maximizing
the innovation likelihood, but the estimation of both Q and
R using only current observations is limited. Thus, authors
then proposed Bayesian inferences to jointly maximize the
innovation likelihood and the likelihood of parameters of
the error covariance matrices. These parameters are as-
sumed to follow prescribed prior distributions that have to
be carefully chosen. Moreover, large Monte-Carlo simula-
tions are needed to estimate the hyperparameters of these
distributions. The joint estimation of Q and R has not been
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TABLE 1. Comparison of several methods to estimate error covariances matrices Q and R in data assimilation.

Described Criteria Estimation method Estimation mode Estimation of Additional
method (computation cost)  covariance Q? parameters?

Covariance Innovation statistics in  Method of moments Online (low) No (inflation A Yes (inflation
inflation the observation space instead) variance G/%)
Lag- Lag-innovation between = Method of moments ~ Online (moderate)  Yes Yes (temporal
innovation consecutive times smoother 7)
Bayesian Innovation & hyperpa- Likelihood methods Online (high) No (or joint pa-  Yes (prior dis-
inference rameter likelihoods rameter with R)  tributions for 0)
Expectation- Total likelihoods of the Maximum likelihood  Offline (high) Yes No
maximization  state-space model

evaluated, except in Stroud and Bengtsson (2007) where
they used the same inflation parameter for both matrices.
These approaches have been tested with the Lorenz-96
system in Frei and Kiinsch (2012) and with realistic mod-
els and observations in Winiarek et al. (2012, 2014) as well
as Ueno and Nakamura (2016). Bayesian approaches are
online methods and able to deal with time varying covari-
ances. The last method is based on the maximization of
the complete total likelihood as proposed in linear state-
space by Shumway and Stoffer (1982). Given its stabil-
ity and robustness, we choose to detail the expectation-
maximization procedure that iteratively aims at maximiz-
ing the complete total likelihood, even in nonlinear state-
space models as shown in Dreano et al. (2017). In com-
parison to the previous three methods, this one is offline
and not adaptive, assuming that Q and R are constant over
a batch period. It has a high-computational cost but it does
not require any additional tuning parameter. So far, recent
works jointly estimate model and observation error ma-
trices in toy-models like Lorenz-63 and Lorenz-96 with
one and two scales, respectively in Dreano et al. (2017)
and Pulido et al. (2018). Ueno and Nakamura (2014) ap-
plied the EM algorithm for the estimation of R in a realis-
tic coupled atmosphere-ocean model and Liu et al. (2017)
applied EM algorithm to a radionuclide transport model
using real observations.

Remaining challenges

There are still remaining challenges for the four meth-
ods detailed in this review. The first concerns the improve-
ments of online and adaptive techniques regarding addi-
tional parameters that control the variations of Q and R
estimates in time. Instead of using fixed values for these
parameters, for instance 7 in lag-innovations or cr)zL in in-
flation methods, we suggest to use time-dependent adap-
tations. This will avoid the problems of instabilities close
to the solution. Another option could be to adapt these
online procedures to the offline case, working with very

stable parameters values (7 high, G;% low) and iterate the
procedures on a batch of observations as in the EM algo-
rithm. This was suggested and rapidly tested in Desroziers
et al. (2005) with encouraging results. To the best of our
knowledge, it has not been yet tested with lag-innovation
methods.

The second challenge concerns the Bayesian approach
where joint estimation of Q and R seems problematic. As
pointed out by Berry and Sauer (2018), correlation be-
tween model and observation error terms is in practice
highly probable in real data assimilation problems. In this
case, instead of using independent prior distributions, the
use of joint prior distributions for parameters of Q and R
might physically constraint the optimization procedure.

A third challenge concerns the offline EM algorithm us-
ing the total likelihood over a large batch of observations.
This procedure can be adapted to account for time varying
error covariances. A simple way is to work on small in-
dependent sets of observations and apply various EM pro-
cedures. Then, the Q and R could be smoothed in time.
Another way is to apply online EM algorithms (see for
instance Cappé (2011)) with the likelihood averaged lo-
cally in time. Note also that EM algorithm, whether for
the online or offline case, can be coupled with direct op-
timization methods like Newton-Raphson to speedup con-
vergence.

From our point of view, the last challenge concerns the
estimation of other statistical parameters of the state-space
model given in Egs. (1-2) and associated filters. Indeed,
the initial condition x” and B are crucial for certain satel-
lite retrieval problems and have to be estimated, princi-
pally in offline cases where filtering and smoothing are
repeated on various iterations. Finally, estimation meth-
ods should also consider the estimation of systematic or
time varying biases, corresponding to the deterministic
part of 1 and €. It has been initially proposed by Dee
et al. (1999a) and tested in Dee et al. (1999b) in the case
of the maximization of the innovation likelihood and re-
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cently adapted with a Bayesian formulation in Liu et al.
(2017) as well as Berry and Harlim (2017).

Perspectives

Beyond these possible improvements in techniques, we
also discuss prospects for future work. A first perspec-
tive concerns the combination of methods, especially re-
garding the estimation modes, i.e. online or offline.
In our opinion, a great advantage of the expectation-
maximization algorithm is the absence of additional pa-
rameter and its robustness, due to the number of observa-
tions used to approximate the total state-space likelihood,
potentially large when using an important batch period.
Thus, it is a useful tool to get a first estimate and averaged
form for Q and R matrices, i.e. to infer mean amplitudes
and parametric shapes including bloc structures and spa-
tial dependencies. Since the computational cost for this
offline method is important, this calibration part has to be
done once during the configuration stage of the assimila-
tion system. Then, low-cost online methods, e.g. based
on lag-innovations, can use the robust offline estimates as
initial conditions and adapt to slow variations of Q(k) and
R(k) using relevant parametric shapes of these matrices.

In a following work, we plan to evaluate offline and on-
line methods to different cases, considering both constant
and time varying Q and R matrices. First, we will com-
pare the different methodologies to the linear and unidi-
mensional model used in this review in order to evaluate
their performance and convergence in the asymptotic case.
We will use the root mean squared error and the coverage
probability to measure the inference performance on mean
and covariance. Then, we will test the estimation methods
on the chaotic Lorenz-96 model and evaluate their perfor-
mance and robustness varying the number of available ob-
servations. We will finally implement methodologies to
a more realistic case for operational data assimilation, ap-
plying for instance to a mid-complexity general circulation
model and real or simulated satellite data. In this case, the
number of observations will be limited compared to the
size of the state. To reduce the degrees of freedom, the use
of parametric shapes for error covariances will be neces-
sary to tackle the rank-deficient observations. Moreover,
the use of deterministic ensemble filters with localizations
will be necessary in such realistic data assimilation prob-
lems.

Finally, the Gaussian and additive formulation of the er-
ror terms generally stated in data assimilation as in Eqs (1-
2) is extremely convenient. In practice, it allows the ap-
plication of Kalman-based algorithm and greatly simplify
the use of method of moments and maximum likelihood
approaches as detailed in this review. But is it able to com-
pensate for non-additive sources of errors? Indeed, in real-
istic data assimilation problems, errors are multiplicative
or introduced in the model by misparametrization and/or

parameter evolution. The presented methods have to be
tested on those configurations to evaluate whether or not
the additive and Gaussian formulation with covariances Q
and R is robust enough and identify its limitations.
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