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Abstract. AIS data streams provide new means for the monitoring and
surveillance of the maritime traffic. The massive amount of data as well as
the irregular time sampling and the noise are the main factors that make
it difficult to design automatic tools and models for AIS data analysis.
In this work, we propose a multi-task deep learning model for AIS data
using a stream-based architecture, which reduces storage redundancies
and computational requirements. To deal with noisy irregularly-sampled
data, we explore variational recurrent neural networks. We demonstrate
the relevance of the proposed deep learning architecture for a three-
task setting, referring respectively to vessel trajectory reconstruction,
abnormal behaviour detection and vessel type identification on a real
AIS dataset.
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1 Context

In the modern world, maritime safety, security and efficiency are vital. For ex-
ample, about 90% of the world trade is carried by sea, but only 2% of them is
physically inspected. Vessel monitoring, therefore, becomes an essential demand.
Besides that, the construction of a maritime situation map is also necessary for
multiple purposes: security, smuggling detection, EEZ intrusion detection, trans-
shipment detection, fishing activities control, maritime pollution monitoring, etc.

Over the last decades, the development of terrestrial networks and satellite
constellations of Automatic Identification System (AIS) has opened a new era
in maritime surveillance. Every day, AIS provides tens of millions of messages,
which contain ships identification, their Global Positioning System (GPS) co-
ordinates, their speed, etc. This massive amount of data would be very useful
if the information contained inside could be extracted, analyzed and exploited
effectively.

Several efforts have been conducted in order to create automatic/semi-automatic
AIS analysis systems. The aims are to extract useful information from AIS data
stream[9] [8], and use it for specific tasks such as maritime routes detection [7] [4],
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vessel trajectory prediction [1] [10] or anomaly detection [3] [5]. However, those
models depend on strong assumption, and can not capture all the heterogeneous
characteristic of noisy, irregularly sampled AIS data.

In this work, we propose a multi-task model which explores deep learning,
and more specifically recurrent neural networks to process AIS data stream for
multiple purposes: trajectory reconstruction, anomaly detection and vessel type
identification.

2 Proposed multi-task RNN model for AIS data

Fig. 1. Proposed RNN architecture.

As sketched in Fig. 1, we propose a multi-task Recurrent Neural Network
(RNN) for the analysis of AIS data streams. The key component of this model
is the embedding layer, which introduces hidden regimes. These regimes may
correspond to specific activities (eg, under way using engine, at anchor, fishing,
etc.). The embedding layer relies on a latent variable RNN [2]. It operates at a
10-minute time scale and allows us to deal with noisy and irregularly-sampled
AIS data. Higher-level layers are task-specific layers at different time-scales (e.g.,
daily, monthly,...) to address the detection of abnormal behaviors, the automatic
identification of vessel types, the identification of maritime routes,....

3 Results

We implemented the proposed framework for a three-task setting in the Gulf of
Mexico to deal with vessel trajectory reconstruction, abnormal behavior detec-
tion and vessel type identification. Preliminary results are reported here for AIS
data in January 2014, which amount to 10 154 808 AIS messages.

3.1 Vessel trajectory reconstruction

The trajectory reconstruction layer is a particle filter, estimates the position
of vessel where data are missing. We follow [6] and take into account maritime
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contextual information to build this filter. Instead of using TREAD [8] to extract
maritime routes, the contextual information in our case is here learned by the
embedding layer.

We test the trajectory reconstruction by deleting 2-hours segments in vessel
tracks, then reconstruct these missing segments. The model is able to perform
some surprising good results like those shown in Fig. 2.

Fig. 2. Two examples of vessel trajectory prediction. Blue dots: received AIS messages;
red dots: missing AIS messages; red line: estimated trajectory. The model could predicts
these turns because others vessels in this regions did the same.

3.2 Abnormal behaviour detection

This layer addresses the detection of abnormal vessel behaviors at a 2-hour time
scale. Our model learns the distribution of vessels’ trajectories from the training
set, both in terms of geometrical patterns, space-time distribution as well as
speed and heading angle features. Any trajectory in the test set that does not
suit this distribution will be considered as abnormal. An example of the outcome
of the detector is shown in Fig. 3.
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Fig. 3. Three examples of detected abnormal tracks: Tracks in the training set (which
itself may contain abnormal tracks) are presented in blue. Abnormal tracks detected in
the test set are presented in red; a) this track diverges from the usual maritime route
in this area. b) example of abnormal speed pattern, c) example of simulated geometric
pattern correctly detected as abnormal (this example was simulated by translating
behaviors observed in zone C to zone D.

3.3 Vessel type identification

Using a Convolutional Neural Network (CNN) on top of the RNN, we design
a vessel type classifier. This layer operates at a 1-day time scale. The targeted
classification task comprises 4 classes of vessel: cargo, passenger, tanker and tug.
We reach a relevant f1-score of 88.01%.

4 Conclusions and perspectives

We introduced a deep learning model that can process the AIS stream on-the-fly
for multiple purposes. The use of variational recurrent neural networks provide
our model the ability to deal with irregular time sampling and noisy AIS data
streams. Three tasks have been tested with successful outcomes. Other tasks
(fishing detection, AIS on-off switching detection, etc.) can be added by simply
plugging in other task-specific layers on top of the current ones.

Future work could involve benchmarking experiments with current state of
the art methods, including the evaluation of the ability of the proposed ap-
proaches to scale up to global AIS data streams. The fusion with other sources
of information in the maritime domain could be a promising solution.
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