
HAL Id: hal-01839930
https://imt-atlantique.hal.science/hal-01839930v1

Submitted on 16 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding Top-k Most Frequent Items in Distributed
Streams in the Time-Sliding Window Model

Emmanuelle Anceaume, Yann Busnel, Vasile Cazacu

To cite this version:
Emmanuelle Anceaume, Yann Busnel, Vasile Cazacu. Finding Top-k Most Frequent Items in Dis-
tributed Streams in the Time-Sliding Window Model. DSN 2018 - 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, Jun 2018, Luxembourg, Luxembourg.
pp.1-2, �10.1109/DSN-W.2018.00030�. �hal-01839930�

https://imt-atlantique.hal.science/hal-01839930v1
https://hal.archives-ouvertes.fr


Finding Top-k Most Frequent Items in Distributed
Streams in the Time-Sliding Window Model

Emmanuelle Anceaume
CNRS, IRISA
Rennes, France

Email: emmanuelle.anceaume@irisa.fr

Yann Busnel
IMT Atlantique, IRISA
Cesson-Sévigné, France

Email: yann.busnel@imt-atlantique.fr

Vasile Cazacu
CNRS, IRISA
Rennes, France

Email: vasile.cazacu@irisa.fr

I. INTRODUCTION AND PROBLEM STATEMENT

From marketing over social networks to prevention of
distributed denial of service (DDoS) attacks, the need to
analyze in real time large-scale and distributed data streams
has recently became tremendous. Among several important
problems raised in this context, the need to dynamically
detect heavy-hitters (or hot) items during the most recent
time window is essential but highly challenging. The problem
of finding the most frequent items has been heavily studied
during the last decades with both exact and probabilistic
solutions [1], [2]. Nevertheless, answering this issue over
a sliding time window is still an active research field [3].
Very recently, Song et al. [4] formalized this problem as
the Windowed Top-k Frequent Items (WTK) problem and
proposed an efficient and very elegant solution, named the
Floating Top-K (FTK) method, to solve WTK. We improve
upon their solution by providing a new algorithm, that we call
FTKCE , which is based on a deterministic counting of the
most over-represented items in the data streams, which are
themselves identified probabilistically. Performances (both in
accuracy and memory cost) are astonishingly good, despite an
adversary whose objective is to manipulate the order in which
items are received at the nodes.

System model. We consider a set of N nodes S1, . . . , SN
such that each node Si receives a large sequence σSi

of data
items or symbols. We assume that streams σS1

, . . . , σSN do
not necessarily have the same size, i.e., some of the items
present in one stream do not necessarily appear in others
or their occurrence number may differ from one stream to
another one. We also suppose that node Si (1 ≤ i ≤ N )
does not know the length of its input stream. Items arrive
regularly and quickly, and due to memory constraints (i.e.,
nodes can locally store only a small amount of information
with respect to the size of their input stream and perform
simple operations on them) need to be processed sequentially
and in an online manner. Let σ = a1, a2, a3, . . . , an be a
stream of data items that arrive sequentially. Each data item i is
drawn from the universe Ω = {1, 2, . . . , N}, where N is very
large. A natural approach to study a data stream σ of length n
is to model it as a fingerprint vector over the universe Ω, given
by X = (x1, x2, . . . , xN ) where xi represents the number of
occurrences of data item i in σ.

Problem statement. The windowed Top-k frequent items
definition is borrowed from [4]. Specifically,

Definition 1 (Windowed Top-k Frequent Items [4]): Let t
be the current time unit. The Windowed Top-k Frequent Item
problem consists in returning the k most frequent items for
any given time window from time unit t − w to time unit t,
denoted as [t − w, t], with w ≤ W , W being a user-defined
upper bound of w. More formally, we seek the set Topk =
{i ∈ Ω | xi ≥ xj where xj is the k-th greatest value in X}.
This query may be asked at any time unit t.
Moreover, the time domain is partitioned into time units, which
define the granularity of window sliding (“jumping”). Indeed,
the time unit acts like a micro-batch for the WTK problem.
The top-k most frequent items are generated for each time
unit, after what the top-κ most frequent items over the whole
past window is returned. Moreover, window’s length w ≤ W
and number κ ≤ k of items requested are freely chosen by
the user at execution time.

II. ALGORITHM DESCRIPTION

Our algorithm FTKCE is based on two steps allowing
respectively (i) to select the relevant candidates to integrate
the Topk set and (ii) to rank these candidates to answer the
problem whatever the value of κ ≤ k provided.

Step 1: Probabilistic selection is inspired by the use of
the primitive RANDOMLEVEL proposed in [4]. This primitive
associates to any item received a random level value computed
on the fly, as follow. At each call of RANDOMLEVEL, the
algorithm starts by throwing a coin, and with probability p
gets “head”, and with probability 1−p gets “tail”. This process
continues as long as “head” are returned. Once a “tail” is
returned, the primitive returns the number of “head” obtained
for this item. The random variable level follows a geometric
distribution. Given a predetermined threshold θ, this item is
then considered as a potential candidate if level ≥ θ. Else, it
is simply ignored and do not enter to the next step.

Step 2: The second step of our algorithm is the counting
phase. It uses a buffer memory Γt whose size is dynamic. For
each candidate item i ∈ Ω selected in the first step, if item i
already has a ci counter in Γt, this one is simply incremented.
Otherwise, a new (i, 1) counter is added to Γt. The set of all
tuples of a unit of time t are grouped into a data structure



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Top

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 
 R

ec
al

l
FTKCE

FTK

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Top k

0

10

20

30

40

50

60

70

80

Co
un

te
rs

FTKCE

x log(x)

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Zipf - 

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 
 R

ec
al

l

FTKCE

FTK

(c)

Fig. 1. Simulation results obtained with 106 executions of both FTKCE and FTK fed with input streams of n = 106 items made of N = 104 distinct items.

Γ. This structure brings together subsets from Γt to Γt−W
arranged in reverse chronological order.

Intuitively, if an item is very frequent, its probability of
exceeding θ increases due to the large number of calls to
RANDOMLEVEL primitive. In comparison, the chance for a
rare item to be a candidate is very low. Thus, the expectation
for item i of being a candidate is statistically proportional to its
frequency xi. Counting how many times an item is candidate
allows us to obtain a global ranking which is, in expectation,
accurate with the weight of the heavy hitters in X .

Query: When requesting the Topκ set (with κ ≤ k) on a
window of size w ≤ W , the algorithm just sums, for each
item i of Γ, all the tuples corresponding to i in the different
sub-structures Γτ (for τ ∈ {t − w, . . . , t}). The set of items
with the κ highest global counter value is then returned.

The challenging aspect of FTKCE is to properly choose θ.
θ must minimize the number of candidates while maximizing
the probability for the heavy hitters to be retained. We rely on
a former analysis of the coupon collector problem [5, Formula
(5)] and an analysis of a leader election problem [6, Th. 4.1] to
compute θ. Anceaume et al. [5] analysis allows us to compute
the expected number of items to be drawn in order to collect
the Topk items we are interested in. We apply next a leader
election result from [6], which allows us to determine θ as the
expected number of rounds to elect the expected number of
items to be drawn.

III. PERFORMANCE EVALUATION

Our theoretical analysis shows us that FTKCE returns the
same Topk items when applied directly over the whole time
window or over per time units. This is of utmost impor-
tance when considering a malicious environment. Briefly, any
ordering manipulation of the input data stream during any
time window has no impact on the returned top-k items. The
only feature that influences the probability of error of our
algorithm is the total items frequency during the time window.
This comes from the random and independent level attribution
schema, which by construction selects each item independently
of each other, and thus independently of the order in which
items are received.

In the remaining of the paper, we present a summary of
the experiments we have conducted to compare performances
of our algorithm with the one of Song et al. [4], which is
so far, and to the best of our knowledge, the most impressive

solution to solve the windowed top-k problem. Note that these
experiments illustrate the nice theoretical properties we are
still conducting on our algorithm. Performances of our algo-
rithm are denoted by “FTKCE” on the graphs, and the ones
of Song et al. [4] are denoted by “FTK” for “Floating Top-k”.
Figure 1a compares the precision of both FTKCE and FTK
algorithms, fed with a Zipf-α distribution of items, with α = 2,
when queried to provide the top-κ, with k = 15. By precision,
we mean the number of top-i, with 1 ≤ i ≤ k, correctly
detected by the algorithms divided by the total number of
detected items. A particularity of the Top-k problem is that
precision and recall are equivalent in this case. Indeed, the
number of false positives in the returned Topκ set corresponds
exactly to the number of false negatives not returned by the
algorithm. Figure 1b represents the total number of counters
used in both algorithms. Note that we have plotted the x·log(x)
function as Song et al. [4] argue in their paper that this should
represent a lower memory bound of their algorithm. Figure 1c
compares the precision of both solutions as a function of
different Zipf-α distributions of items (from a uniform one,
i.e., α = 0, to a strongly skewed one, i.e., α = 4.5). FTKCE
is capable of detecting frequent items even for very flat item
distributions (i.e., Zipf-0.5).

To conclude, we have briefly shown the impressive behavior
of our algorithm. We are still analyzing the theoretical behav-
ior of our algorithm (i.e., (ε, δ)-approximation and bounds on
the memory cost), and we conducting extensive simulations in
a particularly adversarial environment.

REFERENCES

[1] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proceedings of the 10th
International Conference on Database Theory (ICDT), 2005.

[2] E. Anceaume, Y. Busnel, N. Rivetti, and B. Sericola, “Identifying
global icebergs in distributed streams,” in Proceedings of the 34th IEEE
Symposium on Reliable Distributed Systems (SRDS), 2015, pp. 266–275.

[3] Z. Wei, G. Luo, K. Yi, X. Du, and J.-R. Wen, “Persistent data sketching,”
in Proceedings of the 2015 ACM International Conference on Manage-
ment of Data (SIGMOD), 2015.

[4] C. Song, X. Liu, and T. Ge, “Top-k frequent items and item frequency
tracking over sliding windows of any sizes,” in Proceedings of the 2017
IEEE 33rd International Conference on Data Engineering (ICDE), 2017.

[5] E. Anceaume, Y. Busnel, and B. Sericola, “New results on a generalized
coupon collector problem using markov chains,” Journal of Applied
Probability, vol. 52, no. 2, pp. 405–418, 2015.

[6] R. Kalpathy, H. M.Mahmoud, and W. Rosenkrantz, “Survivors in leader
election algorithms,” Statistics & Probability Letters, vol. 83, no. 12, pp.
2743 – 2749, 2013.


